Skip to content
2000
Volume 19, Issue 1
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

Background

Theranostics is a method that focuses on providing patient-centred care and is evolving as a targeted, safe, and effective pharmacotherapy. Nanotheranostics combines diagnosis and therapeutic modalities that bridge traditional treatment and personalised medicine. Theranostics provides novel ideas for nanotechnology. This review describes the current state of nanotechnology-based therapies used to treat neurological illnesses. Some patents on theranostics are also discussed in this review.

Objective

This study aims to provide a more comprehensive review of the diagnosis and therapeutic properties of nanotheranostics, the present state of nanotechnology-based treatment of neurological disorders, and the future potential of theranostics.

Methods

The phrase “theranostics” refers to a treatment strategy that integrates therapeutics and diagnostics to monitor treatment response and enhance drug efficacy and safety. Theranostics is a crucial component of personalised medicine and calls for significant advancements in predictive medicine. The term “theranostics” refers to a diagnosis that screens patients for potential adverse drug reactions and targets drug delivery depending on the test results. Theranostics treats neurological disorders (like brain tumours (glioma), Parkinson's disease, Alzheimer's disease, and neurovascular diseases). Many review articles on Google Scholar, PubMed, Google Patents, and Scopus were used to gather information for this review. Data acquired from many sources was compiled in this review to provide more information on theranostics.

Results

The role of various nanocarrier systems as theranostic agents for neurological illnesses and the fabrication of nanomaterials for theranostics are discussed in this article after evaluating a substantial number of review articles.

Conclusion

The distinctive intrinsic features of nanoparticles make them useful for functionalization and imaging. Theranostics in nuclear medicine include diagnostic imaging and therapy using the same molecule that is radiolabeled differently or the same medication at various doses. It is possible to determine if a patient will benefit from a given treatment by visualising potential targets. Targeted nuclear therapy has been shown to be beneficial in patients if chosen carefully and has a good safety profile.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/1872210517666230718115651
2023-09-04
2024-12-26
Loading full text...

Full text loading...

References

  1. HoJ.A. WangL-S. ChuangM-C. Nanotheranostics – a review of recent publications.Int. J. Nanomedicine201274679469510.2147/IJN.S3306522956869
    [Google Scholar]
  2. PandeyP. PurohitD. SharmaS. Nanocrystals: A deep insight into formulation aspects, stabilization strategies and biomedical applications.Recent Pat. Nanotechnol.202317430732610.2174/187221051666622052312031335616680
    [Google Scholar]
  3. ParodiA. RudzinskaM. LeporattiS. AnissimovY. ZamyatninA.A.Jr Smart nanotheranostics responsive to pathological stimuli.Front. Bioeng. Biotechnol.2020850310.3389/fbioe.2020.0050332523946
    [Google Scholar]
  4. WongX.Y. Sena-TorralbaA. Álvarez-DidukR. MuthoosamyK. MerkoçiA. Nanomaterials for nanotheranostics: Tuning their properties according to disease needs.ACS Nano20201432585262710.1021/acsnano.9b0813332031781
    [Google Scholar]
  5. ThoratN.D. TofailS.A.M. von RechenbergB. Physically stimulated nanotheranostics for next generation cancer therapy: Focus on magnetic and light stimulations.Appl. Phys. Rev.20196404130610.1063/1.5049467
    [Google Scholar]
  6. MinochaN. KumarV. Nanostructure system: Liposome – A bioactive carrier in drug delivery systems.Mater. Today Proc.202269261461910.1016/j.matpr.2022.09.494
    [Google Scholar]
  7. BhuniyaS. MaitiS. KimE.J. An activatable theranostic for targeted cancer therapy and imaging.Angew. Chem. Int. Ed.201453174469447410.1002/anie.20131113324644015
    [Google Scholar]
  8. KelkarS.S. ReinekeT.M. Theranostics: Combining imaging and therapy.Bioconjug. Chem.201122101879190310.1021/bc200151q21830812
    [Google Scholar]
  9. PandeyP. MinochaN. SharmaN. VermaR. KaushikD. Solid lipid nanoparticles: Peculiar strategy to deliver bio-proactive molecules.Recent Pat. Nanotechnol.202317322824210.2174/187221051666622031714335135301957
    [Google Scholar]
  10. PandeyP. DurejaH. Recent patents on polymeric nanoparticles for cancer therapy.Recent Pat. Nanotechnol.201812215516910.2174/187221051266618032712064829589551
    [Google Scholar]
  11. AminolroayaeiF. Shahbazi-GahroueiD. Shahbazi-GahroueiS. RasouliN. Recent nanotheranostics applications for cancer therapy and diagnosis: A review.IET Nanobiotechnol.202115324725610.1049/nbt2.1202134694670
    [Google Scholar]
  12. JoS.D. KuS.H. WonY.Y. KimS.H. KwonI.C. Targeted nanotheranostics for future personalized medicine: Recent progress in cancer therapy.Theranostics2016691362137710.7150/thno.1533527375785
    [Google Scholar]
  13. SharmaM. DubeT. ChibhS. KourA. MishraJ. PandaJ.J. Nanotheranostics, a future remedy of neurological disorders.Expert Opin. Drug Deliv.201916211312810.1080/17425247.2019.156244330572726
    [Google Scholar]
  14. KumarV. MinochaN. GargV. DurejaH. Nanostructured materials used in drug delivery.Mater. Today Proc.202269217418010.1016/j.matpr.2022.08.306
    [Google Scholar]
  15. ChavdaV.P. BalarP.C. PatelS.B. Nanotheranostics-based management of head and neck cancer.Nanotheranostics20237220220910.7150/ntno.8172436793352
    [Google Scholar]
  16. YeY. ChenX. Integrin targeting for tumor optical imaging.Theranostics2011110212610.7150/thno/v01p010221546996
    [Google Scholar]
  17. WickiA. WitzigmannD. BalasubramanianV. HuwylerJ. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications.J. Control. Release201520013815710.1016/j.jconrel.2014.12.03025545217
    [Google Scholar]
  18. KawasakiE.S. PlayerA. Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer.Nanomedicine20051210110910.1016/j.nano.2005.03.00217292064
    [Google Scholar]
  19. BhojaniM.S. Van DortM. RehemtullaA. RossB.D. Targeted imaging and therapy of brain cancer using theranostic nanoparticles.Mol. Pharm.2010761921192910.1021/mp100298r20964352
    [Google Scholar]
  20. MuthuM.S. MeiL. FengS.S. Nanotheranostics: Advanced nanomedicine for the integration of diagnosis and therapy.Nanomedicine2014991277128010.2217/nnm.14.8325204816
    [Google Scholar]
  21. RadhakrishnanR. KamalasananK. Chapter 4-Pharmaceutical perspectives of selection criteria and toxicity profiling of nanotheranostic agents. In: Drug Delivery Nanosystems for Biomedical Applications.Elsevier: Amsterdam, Netherlands2018457410.1016/B978‑0‑323‑50922‑0.00004‑3
    [Google Scholar]
  22. DennahyI.S. HanZ. MacCuaigW.M. Nanotheranostics for image-guided cancer treatment.Pharmaceutics202214591710.3390/pharmaceutics1405091735631503
    [Google Scholar]
  23. ChavdaV.P. BalarP.C. PatelS.B. Interventional nanotheranostics in hepatocellular carcinoma.Nanotheranostics20237212814110.7150/ntno.8012036793354
    [Google Scholar]
  24. ChauhanV.P. PopovićZ. ChenO. Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration.Angew. Chem. Int. Ed.20115048114171142010.1002/anie.20110444922113800
    [Google Scholar]
  25. ConniotJ. SilvaJ.M. FernandesJ.G. Cancer immunotherapy: Nanodelivery approaches for immune cell targeting and tracking.Front Chem.2014210510.3389/fchem.2014.0010525505783
    [Google Scholar]
  26. AndersonD.S. Nanotechnology: The risks and benefits for medical diagnosis and treatment.J. Nanomed. Nanotechnol.20167e143
    [Google Scholar]
  27. BaiJ. JiaX. ZhenW. ChengW. JiangX. A facile ion-doping strategy to regulate tumor microenvironments for enhanced multimodal tumor theranostics.J. Am. Chem. Soc.2018140110610910.1021/jacs.7b1111429268612
    [Google Scholar]
  28. LeeN. KimH. ChoiS.H. Magnetosome-like ferrimagnetic iron oxide nanocubes for highly sensitive MRI of single cells and transplanted pancreatic islets.Proc. Natl. Acad. Sci.201110872662266710.1073/pnas.101640910821282616
    [Google Scholar]
  29. ChavdaV.P. KhadelaA. ShahY. PostwalaH. BalarP. VoraL. Current status of Cancer Nanotheranostics: Emerging strategies for cancer management.Nanotheranostics20237436837910.7150/ntno.8226337151802
    [Google Scholar]
  30. DasJ.M. Nanotheranostics.In: Neuro-oncology explained through multiple choice questions.ChamSpringer202310.1007/978‑3‑031‑13253‑7_12
    [Google Scholar]
  31. RapoportN. PayneA. DillonC. SheaJ. ScaifeC. GuptaR. Focused ultrasound-mediated drug delivery to pancreatic cancer in a mouse model.J. Ther. Ultrasound2013111110.1186/2050‑5736‑1‑1125516800
    [Google Scholar]
  32. JenjobR. PhakkeereeT. SeidiF. TheerasilpM. CrespyD. Emulsion techniques for the production of pharmacological nanoparticles.Macromol. Biosci.2019196190006310.1002/mabi.20190006331016873
    [Google Scholar]
  33. Shahbazi-GahroueiD. MoradiK.P. Shahbazi-GahroueiS. KhorasaniA. MahmoudiF. A literature review on multimodality molecular imaging nanoprobes for cancer detection.Pol J Med Phys Eng2019252576810.2478/pjmpe‑2019‑0009
    [Google Scholar]
  34. KeshtkarM. Shahbazi-GahroueiD. MahmoudabadiA. Synthesis and application of Fe3O4@Au composite nanoparticles as magnetic resonance/computed tomography dual-modality contrast agent.J. Med. Signals Sens.202010320120710.4103/jmss.JMSS_55_1933062612
    [Google Scholar]
  35. AndreouC. PalS. RotterL. YangJ. KircherM.F. Molecular imaging in nanotechnology and theranostics.Mol. Imaging Biol.201719336337210.1007/s11307‑017‑1056‑z28349293
    [Google Scholar]
  36. BoboD. RobinsonK.J. IslamJ. ThurechtK.J. CorrieS.R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date.Pharm. Res.201633102373238710.1007/s11095‑016‑1958‑527299311
    [Google Scholar]
  37. XuR. ZhangG. MaiJ. An injectable nanoparticle generator enhances delivery of cancer therapeutics.Nat. Biotechnol.201634441441810.1038/nbt.350626974511
    [Google Scholar]
  38. ChatterjeeK. SarkarS. JagajjananiR.K. PariaS. Core/shell nanoparticles in biomedical applications.Adv. Colloid Interface Sci.201420983910.1016/j.cis.2013.12.00824491963
    [Google Scholar]
  39. ChenQ. XuL. LiangC. WangC. PengR. LiuZ. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy.Nat. Commun.2016711319310.1038/ncomms1319327767031
    [Google Scholar]
  40. DengX. LiK. CaiX. A hollow‐structured CuS@ Cu2S@ Au nanohybrid: synergistically enhanced photothermal efficiency and photos witchable targeting effect for cancer theranostics.Adv. Mater.201729361701266
    [Google Scholar]
  41. DengX. LiK. CaiX. A hollow-structured CuS@ Cu2S@Au nanohybrid: Synergistically enhanced photothermal efficiency and photoswitchable targeting effect for cancer theranostics.Adv. Mater.20172936170126610.1002/adma.20170126628745411
    [Google Scholar]
  42. WuJ. KongT. YeungK.W.K. Fabrication and characterization of monodisperse PLGA–alginate core–shell microspheres with monodisperse size and homogeneous shells for controlled drug release.Acta Biomater.2013977410741910.1016/j.actbio.2013.03.02223535235
    [Google Scholar]
  43. FanM. HanY. GaoS. Ultrasmall gold nanoparticles in cancer diagnosis and therapy.Theranostics202010114944495710.7150/thno.4247132308760
    [Google Scholar]
  44. KojimaC. UmedaY. OgawaM. HaradaA. MagataY. KonoK. X-ray computed tomography contrast agents prepared by seeded growth of gold nanoparticles in PEGylated dendrimer.Nanotechnology2010212424510410.1088/0957‑4484/21/24/24510420498528
    [Google Scholar]
  45. Fazel-GhaziyaniM. Shahbazi-GahroueiD. Pourhassan-MoghaddamM. Targeted detection of the cancer cells using the anti-CD24 bio modified pegylated gold nanoparticles: The application of CD24 as a vital cancer biomarker.Nanomed. J.201853172179
    [Google Scholar]
  46. RandD. OrtizV. LiuY. Nanomaterials for X-ray imaging: Gold nanoparticle enhancement of X-ray scatter imaging of hepatocellular carcinoma.Nano Lett.20111172678268310.1021/nl200858y21644516
    [Google Scholar]
  47. MoraesJ. OhnoK. MaschmeyerT. PerrierS. Monodisperse, charge-stabilized, core–shell particles via silica-supported reversible addition–fragmentation chain transfer polymerization for cell imaging.Chem. Mater.201325173522352710.1021/cm401957m
    [Google Scholar]
  48. HanS. BouchardR. SokolovK.V. Molecular photoacoustic imaging with ultra-small gold nanoparticles.Biomed. Opt. Express20191073472348310.1364/BOE.10.00347231360601
    [Google Scholar]
  49. LiY. ZhangH. Fe3O4 -based nanotheranostics for magnetic resonance imaging-synergized multifunctional cancer management.Nanomedicine201914111493151210.2217/nnm‑2018‑034631215317
    [Google Scholar]
  50. WangT. HouY. BuB. Timely visualization of the collaterals formed during acute ischemic stroke with Fe3O4 nanoparticle-based MR imaging probe.Small20181423180057310.1002/smll.20180057329665290
    [Google Scholar]
  51. DeminA.M. PershinaA.G. MininA.S. [PMIDA-modified Fe3O4 magnetic nanoparticles: Synthesis and application for liver MRI.Langmuir201834113449345810.1021/acs.langmuir.7b0402329478322
    [Google Scholar]
  52. ChenL. XieJ. WuH. Improving sensitivity of magnetic resonance imaging by using a dual-targeted magnetic iron oxide nanoprobe.Colloids Surf. B Biointerfaces201816133934610.1016/j.colsurfb.2017.10.05929100127
    [Google Scholar]
  53. AbulrobA. CorlukaS. BlasiakB. LyP-1 conjugated nanoparticles for magnetic resonance imaging of triple negative breast cancer.Mol. Imaging Biol.201820342843510.1007/s11307‑017‑1140‑429101636
    [Google Scholar]
  54. GaoJ. LiL. LiuX. GuoR. ZhaoB. Contrast enhanced magnetic resonance imaging with a novel nano size contrast agent for the clinical diagnosis of patients with lung cancer.Exp. Ther. Med.20181565415542110.3892/etm.2018.611229904421
    [Google Scholar]
  55. ParamasivamG. PalemV.V. SundaramT. SundaramV. KishoreS.C. BellucciS. Nanomaterials: Synthesis and applications in theranostics.Nanomaterials20211112322810.3390/nano1112322834947577
    [Google Scholar]
  56. DaraioC. JinS. Synthesis and patterning methods for nanostructures useful for biological applications. In: Fundamental Biomedical Technologies.Springer: New York2012274410.1007/978‑0‑387‑31296‑5_2
    [Google Scholar]
  57. DeloguF. GorrasiG. SorrentinoA. Fabrication of polymer nanocomposites via ball milling: Present status and future perspectives.Prog. Mater. Sci.2017867512610.1016/j.pmatsci.2017.01.003
    [Google Scholar]
  58. SunJ.F. WangM.Z. ZhaoY.C. LiX.P. LiangB.Y. Synthesis of titanium nitride powders by reactive ball milling of titanium and urea.J. Alloys Compd.20094821-2L29L3110.1016/j.jallcom.2009.04.043
    [Google Scholar]
  59. PentimalliM. ImperiE. ZaccagniniA. PadellaF. Nanostructured metal hydride – Polymer composite as fixed bed for sorption technologies. Advantages of an innovative combined approach by high-energy ball milling and extrusion techniques.Renew. Energy2017110697810.1016/j.renene.2016.07.074
    [Google Scholar]
  60. BiS. XiaoB.L. JiZ.H. LiuB.S. LiuZ.Y. MaZ.Y. Dispersion and damage of carbon nanotubes in carbon nanotube/7055Al composites during high-energy ball milling process.Acta Metall Sin202134219620410.1007/s40195‑020‑01138‑5
    [Google Scholar]
  61. MaP.C. WangS.Q. KimJ.K. TangB.Z. In-situ amino functionalization of carbon nanotubes using ball milling.J. Nanosci. Nanotechnol.20099274975310.1166/jnn.2009.C01719441385
    [Google Scholar]
  62. GouJ. ZhugeJ. LiangF. Processing of polymer nanocomposites. In: Manufacturing techniques for polymer matrix composites (PMCs). Amsterdam.Elsevier: The Netherlands20129511910.1533/9780857096258.1.95
    [Google Scholar]
  63. SainiN. PandeyP. ShirolkarM. KulkarniA. MohS.H. KulkarniA.A. Role of carbon nanostructures as Nano-theranostics against breast and brain cancer.Materials horizons. SonarA.N.P. BhardwajP. ChakravortyA. Springer: Singapore20231151117210.1007/978‑981‑19‑7188‑4_41
    [Google Scholar]
  64. PirasC.C. Fernández-PrietoS. De BorggraeveW.M. Ball milling: A green technology for the preparation and functionalisation of nanocellulose derivatives.Nanoscale Adv.20191393794710.1039/C8NA00238J36133214
    [Google Scholar]
  65. KarousisN. TagmatarchisN. TasisD. Current progress on the chemical modification of carbon nanotubes.Chem. Rev.201011095366539710.1021/cr100018g20545303
    [Google Scholar]
  66. KimS. SojoudiH. ZhaoH. Ultrathin high-resolution flexographic printing using nanoporous stamps.Sci. Adv.2016212e160166010.1126/sciadv.160166027957542
    [Google Scholar]
  67. LeeK.H. KimS.M. JeongH. JungG.Y. Spontaneous nanoscale polymer solution patterning using solvent evaporation driven double-dewetting edge lithography.Soft Matter20128246547110.1039/C1SM06431B
    [Google Scholar]
  68. JangJ.H. UllalC.K. MaldovanM. 3D micro-and nanostructures via interference lithography.Adv. Funct. Mater.200717163027304110.1002/adfm.200700140
    [Google Scholar]
  69. PimpinA. SrituravanichW. Review on micro-and nanolithography techniques and their applications.Eng. J.2012161375610.4186/ej.2012.16.1.37
    [Google Scholar]
  70. PaikS. KimG. ChangS. Near-field sub-diffraction photolithography with an elastomeric photomask.Nat. Commun.202011180510.1038/s41467‑020‑14439‑132041949
    [Google Scholar]
  71. del BarrioJ. Sánchez-SomolinosC. Light to shape the future: From photolithography to 4D printing.Adv. Opt. Mater.2019716190059810.1002/adom.201900598
    [Google Scholar]
  72. ShaD. HsiehL. ChenK. Wafer rework strategies at the photolithography stage.Int J Ind Eng Theor Appl Pract20018122130
    [Google Scholar]
  73. AltissimoM. AltissimoM. AltissimoM. E-beam lithography for micro-/nanofabrication.Biomicrofluidics20104202650310.1063/1.343758920697574
    [Google Scholar]
  74. FerreraJ.F.U. Nanometer-scale placement in electron-beam lithography.(PhD thesis) Cambridge, MA: Massachusetts Institute of Technology2000
    [Google Scholar]
  75. WhitesidesG.M. OstuniE. TakayamaS. JiangX. IngberD.E. Soft lithography in biology and biochemistry.Annu. Rev. Biomed. Eng.20013133537310.1146/annurev.bioeng.3.1.33511447067
    [Google Scholar]
  76. SahinO. AshokkumarM. AjayanP.M. 3 - Micro- and nanopatterning of biomaterial surfaces.In: Fundamental Biomaterials.Metals. Woodhead Publishing Series in Biomaterials20186778
    [Google Scholar]
  77. QuateC.F. Scanning probes as a lithography tool for nanostructures.Surf. Sci.19973861-325926410.1016/S0039‑6028(97)00305‑1
    [Google Scholar]
  78. ZhangK. FuQ. PanN. Direct writing of electronic devices on graphene oxide by catalytic scanning probe lithography.Nat. Commun.201231119410.1038/ncomms220023149739
    [Google Scholar]
  79. ZhaoC. LiuQ. CheungK.M. Narrower nanoribbon biosensors fabricated by chemical lift-off lithography show higher sensitivity.ACS Nano202115190491510.1021/acsnano.0c0750333337135
    [Google Scholar]
  80. SunL. YuanG. GaoL. Chemical vapour deposition.N Atl Rev Methods Primers20211120
    [Google Scholar]
  81. KoponenS.E. GordonP.G. BarryS.T. Principles of precursor design for vapour deposition methods.Polyhedron2016108596610.1016/j.poly.2015.08.024
    [Google Scholar]
  82. KaraF. ÖztürkB. Comparison and optimization of PVD and CVD method on surface roughness and flank wear in hard-machining of DIN 1.2738 mold steel.Sens. Rev.2019391243310.1108/SR‑12‑2017‑0266
    [Google Scholar]
  83. MüllerR. GelmeO. ScholzJ.P. Epitaxial ZnO layer growth on Si (111) substrates with an intermediate aln nucleation layer by methane-based chemical vapor deposition.Cryst. Growth Des.20202096170618510.1021/acs.cgd.0c00907
    [Google Scholar]
  84. MochalovL. LogunovA. KitnisA. VorotyntsevV. Plasma-chemistry of arsenic selenide films: Relationship between film properties and plasma power.Plasma Chem. Plasma Process.202040140742110.1007/s11090‑019‑10035‑4
    [Google Scholar]
  85. LeeJ.I. HwangN.M. Generation of negative-charge carriers in the gas phase and their contribution to the growth of carbon nanotubes during hot-filament chemical vapor deposition.Carbon200846121588159210.1016/j.carbon.2008.07.006
    [Google Scholar]
  86. KimH.Y. KimD.S. HwangN.M. Comparison of diamond nanoparticles captured on the floating and grounded membranes in the hot filament chemical vapor deposition process.RSC Advances202111105651565710.1039/D0RA09649K35423076
    [Google Scholar]
  87. PrawerS. NugentK.W. JamiesonD.N. OrwaJ.O. BursillL.A. PengJ.L. The Raman spectrum of nanocrystalline diamond.Chem. Phys. Lett.20003321-2939710.1016/S0009‑2614(00)01236‑7
    [Google Scholar]
  88. Fox-RabinovichG.S. GershmanI.S. VeldhuisS. Thin-film PVD coating metamaterials exhibiting similarities to natural processes under extreme tribological conditions.Nanomaterials2020109172010.3390/nano1009172032872654
    [Google Scholar]
  89. El-EskandaranyM.S. Al-SalemS.M. AliN. Top-down reactive approach for the synthesis of disordered zrn nanocrystalline bulk material from solid waste.Nanomaterials 2020109182610.3390/nano1009182632933163
    [Google Scholar]
  90. VenablesJ. SpillerG. Nucleation and growth of thin films.Surf Mob Solid Mater198386341404
    [Google Scholar]
  91. OluwatosinA.O. TitilayoA.E. PhilipO.O. AkinlabiS. UchennaU.A. Overview of thin film deposition techniques.AIMS Mater. Sci.20196217419910.3934/matersci.2019.2.174
    [Google Scholar]
  92. KnotekO. LöfflerF. KrämerG. Process and advantage of multicomponent and multilayer PVD coatings.Surf. Coat. Tech.1993591-3142010.1016/0257‑8972(93)90048‑S
    [Google Scholar]
  93. MattoxD.M. Physical vapor deposition (PVD) processes.Met. Finish.199997141743010.1016/S0026‑0576(99)80043‑9
    [Google Scholar]
  94. AndhareD.D. JadhavS.A. KhedkarM.V. SomvanshiS.B. MoreS.D. JadhavK.M. Structural and chemical properties of ZnFe2O4 nanoparticles synthesised by chemical co-precipitation technique.J. Phys. Conf. Ser.20201644101201410.1088/1742‑6596/1644/1/012014
    [Google Scholar]
  95. AnbarasuM. AnandanM. ChinnasamyE. GopinathV. BalamuruganK. Synthesis and characterization of polyethylene glycol (PEG) coated Fe3O4 nanoparticles by chemical co-precipitation method for biomedical applications.Spectrochim. Acta A Mol. Biomol. Spectrosc.201513553653910.1016/j.saa.2014.07.05925123943
    [Google Scholar]
  96. GnanaprakashG. MahadevanS. JayakumarT. KalyanasundaramP. PhilipJ. RajB. Effect of initial pH and temperature of iron salt solutions on formation of magnetite nanoparticles.Mater. Chem. Phys.2007103116817510.1016/j.matchemphys.2007.02.011
    [Google Scholar]
  97. BloemenM. BrullotW. LuongT.T. GeukensN. GilsA. VerbiestT. Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications.J. Nanopart. Res.2012149110010.1007/s11051‑012‑1100‑523024598
    [Google Scholar]
  98. TangY. ZhaoJ. ZhouJ. ZengY. ZhangW. ShiB. Highly efficient removal of Cr(III)-poly(acrylic acid) complex by coprecipitation with polyvalent metal ions: Performance, mechanism, and validation.Water Res.202017811580710.1016/j.watres.2020.11580732361347
    [Google Scholar]
  99. OthmanM.R. HelwaniZ. Martunus, Fernando WJN. Synthetic hydrotalcites from different routes and their application as catalysts and gas adsorbents: A review.Appl. Organomet. Chem.200923933534610.1002/aoc.1517
    [Google Scholar]
  100. HuY. LiQ. LeeB. JunY.S. Aluminum affects heterogeneous Fe(III) (Hydr)oxide nucleation, growth, and ostwald ripening.Environ. Sci. Technol.201448129930610.1021/es403777w24289329
    [Google Scholar]
  101. LiJ. SunX. LiuS. LiX. LiJ.G. HuoD. A homogeneous co-precipitation method to synthesize highly sinterability YAG powders for transparent ceramics.Ceram. Int.20154123283328710.1016/j.ceramint.2014.10.076
    [Google Scholar]
  102. MalekiH. HaselpourM. FathiR. The effect of calcination conditions on structural and magnetic behavior of bismuth ferrite synthesized by co-precipitation method.J. Mater. Sci. Mater. Electron.20182954320432610.1007/s10854‑017‑8379‑z
    [Google Scholar]
  103. RaneA.V. KannyK. AbithaV. ThomasS. Methods for synthesis of nanoparticles and fabrication of nanocomposites.In: Synthesis of inorganic nanomaterials.Elsevier Amsterdam, The Netherlands201812113910.1016/B978‑0‑08‑101975‑7.00005‑1
    [Google Scholar]
  104. KickelbickG. Introduction to hybrid materials.Hybrid Mater.200712
    [Google Scholar]
  105. HakimS.H. ShanksB.H. A comparative study of macroporous metal oxides synthesized via a unified approach.Chem. Mater.200921102027203810.1021/cm801691g
    [Google Scholar]
  106. RahmanI.A. PadavettanV. Synthesis of silica nanoparticles by sol-gel: Size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review.J. Nanomater.2012201213242410.1155/2012/132424
    [Google Scholar]
  107. KwiatkowskiK.C. LukehartC.M. Nanocomposites prepared by sol-gel methods: Synthesis and characterization.In: Nanostructured materials and nanotechnology.Amsterdam, The NetherlandsElsevier2002579110.1016/B978‑012513920‑5/50004‑4
    [Google Scholar]
  108. TillotsonT.M. GashA.E. SimpsonR.L. HrubeshL.W. SatcherJ.H.Jr PocoJ.F. Nanostructured energetic materials using sol–gel methodologies.J. Non-Cryst. Solids20012851-333834510.1016/S0022‑3093(01)00477‑X
    [Google Scholar]
  109. KievitF.M. ZhangM. Cancer nanotheranostics: Improving imaging and therapy by targeted delivery across biological barriers.Adv. Mater.20112336H217H24710.1002/adma.20110231321842473
    [Google Scholar]
  110. RuanS. HeQ. GaoH. Matrix metalloproteinase triggered size-shrinkable gelatin-gold fabricated nanoparticles for tumor microenvironment sensitive penetration and diagnosis of glioma.Nanoscale20157219487949610.1039/C5NR01408E25909483
    [Google Scholar]
  111. DuboisB. FeldmanH.H. JacovaC. Advancing research diagnostic criteria for Alzheimer’s disease: The IWG-2 criteria.Lancet Neurol.201413661462910.1016/S1474‑4422(14)70090‑024849862
    [Google Scholar]
  112. PotschkaH. Targeting the brain–surmounting or by passing the blood-brain barrier.Drug Delivery. Schäfer-KortingM. Springer Berlin, Heidelberg2010411431
    [Google Scholar]
  113. DuZ. LiM. RenJ. QuX. Current strategies for modulating Aβ aggregation with multifunctional agents.Acc. Chem. Res.202154921722184
    [Google Scholar]
  114. GuptaA.S. Nanomedicine approaches in vascular disease: A review.Nanomedicine20117676377910.1016/j.nano.2011.04.00121601009
    [Google Scholar]
  115. McCarthyJ.R. KorngoldE. WeisslederR. JafferF.A. A light-activated theranostic nanoagent for targeted macrophage ablation in inflammatory atherosclerosis.Small20106182041204910.1002/smll.20100059620721949
    [Google Scholar]
  116. MyersonJ.W. HeL. AllenJ.S. Thrombin-inhibiting nanoparticles rapidly constitute versatile and detectable anticlotting surfaces.Nanotechnology2014253939510110.1088/0957‑4484/25/39/39510125200815
    [Google Scholar]
  117. LiY. LiY. JiW. Positively charged polyprodrug amphiphiles with enhanced drug loading and reactive oxygen species-responsive release ability for traceable synergistic therapy.J. Am. Chem. Soc.2018140114164417110.1021/jacs.8b0164129486118
    [Google Scholar]
  118. FangJ-Y. WenC-J. ZhangL.W. Al-SuwayehS.A. YenT-C. Theranostic liposomes loaded with quantum dots and apomorphine for brain targeting and bioimaging.Int. J. Nanomedicine201271599161110.2147/IJN.S2936922619515
    [Google Scholar]
  119. SonaliS.R.P. SinghR.P. SharmaG. RGD-TPGS decorated theranostic liposomes for brain targeted delivery.Colloids Surf. B Biointerfaces201614712914110.1016/j.colsurfb.2016.07.05827497076
    [Google Scholar]
  120. SonaliS.R.P. SinghR.P. SinghN. Transferrin liposomes of docetaxel for brain-targeted cancer applications: Formulation and brain theranostics.Drug Deliv.20162341261127110.3109/10717544.2016.116287826961144
    [Google Scholar]
  121. BernalG.M. LaRiviereM.J. MansourN. Convection-enhanced delivery and in vivo imaging of polymeric nanoparticles for the treatment of malignant glioma.Nanomedicine201410114915710.1016/j.nano.2013.07.00323891990
    [Google Scholar]
  122. ShazeebM.S. FeulaG. BogdanovA.Jr Liposome-encapsulated superoxide dismutase mimetic: Theranostic potential of an MR detectable and neuroprotective agent.Contrast Media Mol. Imaging20149322122810.1002/cmmi.155924700749
    [Google Scholar]
  123. StephenZ.R. KievitF.M. VeisehO. Redox-responsive magnetic nanoparticle for targeted convection-enhanced delivery of O6-benzylguanine to brain tumors.ACS Nano2014810103831039510.1021/nn503735w25247850
    [Google Scholar]
  124. ZhangC. WanX. ZhengX. Dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer’s disease mice.Biomaterials201435145646510.1016/j.biomaterials.2013.09.06324099709
    [Google Scholar]
  125. ZhangR. LiY. HuB. LuZ. ZhangJ. ZhangX. Traceable nanoparticle delivery of small interfering RNA and retinoic acid with temporally release ability to control neural stem cell differentiation for Alzheimer’s disease therapy.Adv. Mater.201628306345635210.1002/adma.20160055427168033
    [Google Scholar]
  126. Nanogen Pharmaceuticals Hillstream Biopharma Nanogen Pharmaceuticals Hillstream Biopharma. Polymeric nanoparticles and a process of preparation thereof.US Patent US11246904B2,2021
    [Google Scholar]
  127. Sanford Burnham Presbys Sanford Burnham Presbys.2016Available from: https://www.sbpdiscovery.org/
  128. University of California. Sequential targeting in crosslinking Nano-theranostics for treating brain tumors.Patent CA3164919A12020
  129. Iowa State University Research Foundation ISURF. Nano-theranostics for Parkinson’s disease.Patent US20200255507A12020
    [Google Scholar]
  130. Virginia Common wealth University Johns Hopkins University.. Cancer imaging with therapy: Ttheranostics.Patent US20200384135A12019
  131. Council of Scientific and Industrial Research CSIR National Chemical Laboratory. Biodegradable nano-theranostic composite and process of preparation thereof.Patent US10945957B22018
  132. PrasadSKR A biodegradable Nano-theranostic composite and process of preparation thereof. Patent WO2018146700A12018
  133. Duke University Duke University. Nanostars and nanoconstructs for detection, imaging, and therapy.Patent US9987358B22017
  134. Michigan State University MSU, functionalized magnetic particle compositions and related methods.Patent US20210164970A12017
  135. Nanotheranostics Inc. Preparation of stable copper(II) hydroxide.US Patent US20190152796A12017
  136. Bostan University. Theranostics composition and use thereof.US Patent US10568970B22016
/content/journals/nanotec/10.2174/1872210517666230718115651
Loading
/content/journals/nanotec/10.2174/1872210517666230718115651
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test