Skip to content
2000
Volume 19, Issue 1
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

Background

The most difficult kind of cancer to treat is brain cancer, which causes around 3% of all cancer-related deaths. The targeted delivery is improved with the use of technologies based on nanotechnology that are both safe and efficient. Because of this, there is now a lot of research being done on brain cancer treatments based on nanoformulations.

Objective

In this review, the author's primary aim is to elucidate the various nanomedicine for brain cancer therapy. The authors focus primarily on the advancement of nanotechnology in treating brain cancer (BC). This review article gives readers an up-to-date look at publications on sophisticated nanosystems in treating BC, including quantum dots (QDs), nanoparticles (NPs), polymeric micelles (PMs), dendrimers, and solid lipid nanoparticles (SLNs), among others. This article offers insight into the use of various nanotechnology-based systems for therapy as well as their potential in the future. This article also emphasizes the drawbacks of nanotechnology-based methods. Future perspectives for treating brain cancer using proteomics and biomimetic nanosystems are briefly discussed.

Conclusion

In this review, we review several aspects of brain cancer therapy, including various nanomedicines, their challenges and future perspectives. Overall, this article gives a thorough overview of both the present state of brain cancer treatment options and the disease itself. Various patents granted for brain cancer are also discussed.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105244482231017102857
2023-11-03
2024-12-25
Loading full text...

Full text loading...

References

  1. KarathanasisE. GhaghadaK.B. Crossing the barrier: Treatment of brain tumors using nanochain particles.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20168567869510.1002/wnan.138726749497
    [Google Scholar]
  2. QueH. HongW. LanT. Tripterin liposome relieves severe acute respiratory syndrome as a potent COVID-19 treatment.Signal Transduct. Target. Ther.20227139910.1038/s41392‑022‑01283‑636566328
    [Google Scholar]
  3. YangS. WallachM. KrishnaA. KurmashevaR. SridharS. Recent developments in nanomedicine for pediatric cancer.J. Clin. Med.2021107143710.3390/jcm1007143733916177
    [Google Scholar]
  4. ChengZ. LiM. DeyR. ChenY. Nanomaterials for cancer therapy: Current progress and perspectives.J. Hematol. Oncol.20211418510.1186/s13045‑021‑01096‑034059100
    [Google Scholar]
  5. CernaT. StiborovaM. AdamV. KizekR. EckschlagerT. Nanocarrier drugs in the treatment of brain tumors.J. Cancer Metastasis Treat.201621040741610.20517/2394‑4722.2015.95
    [Google Scholar]
  6. DeslandF.A. HormigoA. The CNS and the brain tumor microenvironment: Implications for glioblastoma immunotherapy.Int. J. Mol. Sci.20202119735810.3390/ijms2119735833027976
    [Google Scholar]
  7. SharmaH.S. MuresanuD.F. CastellaniR.J. NozariA. LafuenteJ.V. TianZ.R. Pathophysiology of blood-brain barrier in brain tumor. Novel therapeutic advances using nanomedicine.In: International Review of Neurobiology. Bryukhovetskiy I.Academic Press, Massachusetts, US2020166
    [Google Scholar]
  8. VermaR. KaushikA. AlmeerR. RahmanM.H. Abdel-DaimM.M. KaushikD. Improved pharmacodynamic potential of rosuvastatin by self-nanoemulsifying drug delivery system: an in vitro and in vivo evaluation.Int. J. Nanomedicine20211690592410.2147/IJN.S28766533603359
    [Google Scholar]
  9. PhoenixT.N. PatmoreD.M. BoopS. Medulloblastoma genotype dictates blood brain barrier phenotype.Cancer Cell201629450852210.1016/j.ccell.2016.03.00227050100
    [Google Scholar]
  10. FisusiF.A. SchätzleinA.G. UchegbuI.F. Nanomedicines in the treatment of brain tumors.Nanomedicine 201813657958310.2217/nnm‑2017‑037829376468
    [Google Scholar]
  11. CarneyC.P. PandeyN. KapurA. WoodworthG.F. WinklesJ.A. KimA.J. Harnessing nanomedicine for enhanced immunotherapy for breast cancer brain metastases.Drug Deliv. Transl. Res.20211162344237010.1007/s13346‑021‑01039‑934716900
    [Google Scholar]
  12. KhaitanD. ReddyP.L. NingarajN. Targeting brain tumors with nanomedicines: Overcoming blood brain barrier challenges.Curr. Clin. Pharmacol.201813211011910.2174/157488471366618041215015329651960
    [Google Scholar]
  13. NsairatH. KhaterD. OdehF. Lipid nanostructures for targeting brain cancer.Heliyon202179e0799410.1016/j.heliyon.2021.e0799434632135
    [Google Scholar]
  14. KishwarJ.S.K. BukhariS.S. ShamimM.S. Nanomedicine in the treatment of Glioblastoma.J. Pak. Med. Assoc.20217111267834783762
    [Google Scholar]
  15. LuY. LuoQ. JiaX. Multidisciplinary strategies to enhance therapeutic effects of flavonoids from Epimedii Folium: Integration of herbal medicine, enzyme engineering, and nanotechnology.J. Pharm. Anal.202313323925410.1016/j.jpha.2022.12.00137102112
    [Google Scholar]
  16. LiX. XingL. HuY. An RGD-modified hollow silica@Au core/shell nanoplatform for tumor combination therapy.Acta Biomater.20176227328310.1016/j.actbio.2017.08.02428823719
    [Google Scholar]
  17. LiX. HetjensL. WolterN. LiH. ShiX. PichA. Charge-reversible and biodegradable chitosan-based microgels for lysozyme-triggered release of vancomycin.J. Adv. Res.202343879610.1016/j.jare.2022.02.01436585117
    [Google Scholar]
  18. LiX. SunH. LiH. Multi-responsive biodegradable cationic nanogels for highly efficient treatment of tumors.Adv. Funct. Mater.20213126210022710.1002/adfm.202100227
    [Google Scholar]
  19. LiX. KongL. HuW. Safe and efficient 2D molybdenum disulfide platform for cooperative imaging-guided photothermal-selective chemotherapy: A preclinical study.J. Adv. Res.20223725526610.1016/j.jare.2021.08.00435499043
    [Google Scholar]
  20. VermaR. RaoL. NagpalD. Emerging nanotechnology-based therapeutics: A new insight into promising drug delivery system for lung cancer therapy.Recent Pat. Nanotechnol.20231710.2174/187221051766623061315484737537775
    [Google Scholar]
  21. RahamathullaM. BhosaleR.R. OsmaniR.A.M. Carbon nanotubes: Current perspectives on diverse applications in targeted drug delivery and therapies.Materials20211421670710.3390/ma1421670734772234
    [Google Scholar]
  22. LalatsaA. LeeV. MalkinsonJ.P. ZlohM. SchätzleinA.G. UchegbuI.F. A prodrug nanoparticle approach for the oral delivery of a hydrophilic peptide, leucine(5)-enkephalin, to the brain.Mol. Pharm.2012961665168010.1021/mp300009u22574705
    [Google Scholar]
  23. PurohitD. JalwalP. ManchandaD. Nanocapsules: An emerging drug delivery system.Recent Pat. Nanotechnol.202317319020710.2174/187221051666622021011325635142273
    [Google Scholar]
  24. SatapathyB.S. KumarL.A. PattnaikG. SwapnaS. MohantyD. Targeting to brain tumor: Nanocarrier-based drug delivery platforms, opportunities, and challenges.J. Pharm. Bioallied Sci.202113217217710.4103/jpbs.JPBS_239_2034349476
    [Google Scholar]
  25. YaoY. ZhouY. LiuL. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance.Front. Mol. Biosci.2020719310.3389/fmolb.2020.0019332974385
    [Google Scholar]
  26. LuY.J. S AT, Chuang CC, Chen JP. S AT, Chuang CC, Chen JP. Liposomal IR-780 as a highly stable nanotheranostic agent for improved photothermal/photodynamic therapy of brain tumors by convection-enhanced delivery.Cancers (Basel)20211315369010.3390/cancers1315369034359590
    [Google Scholar]
  27. BlancoE. ShenH. FerrariM. Principles of nanoparticle design for overcoming biological barriers to drug delivery.Nat. Biotechnol.201533994195110.1038/nbt.333026348965
    [Google Scholar]
  28. ShiJ. XiaoZ. KamalyN. FarokhzadO.C. Self-assembled targeted nanoparticles: Evolution of technologies and bench to bedside translation.Acc. Chem. Res.201144101123113410.1021/ar200054n21692448
    [Google Scholar]
  29. DawidczykC.M. RussellL.M. SearsonP.C. Nanomedicines for cancer therapy: State-of-the-art and limitations to pre-clinical studies that hinder future developments.Front Chem.201426910.3389/fchem.2014.0006925202689
    [Google Scholar]
  30. EdiriwickremaA. SaltzmanW.M. Nanotherapy for cancer: Targeting and multifunctionality in the future of cancer therapies.ACS Biomater. Sci. Eng.201512647810.1021/ab500084g25984571
    [Google Scholar]
  31. SenapatiS. MahantaA.K. KumarS. MaitiP. Controlled drug delivery vehicles for cancer treatment and their performance.Signal Transduct. Target. Ther.201831710.1038/s41392‑017‑0004‑329560283
    [Google Scholar]
  32. HuD ZhangZ LiW Promoting adsorption performance and mechanical strength in composite porous gel film.Int J Biol Macromol2022223Pt A11152510.1016/j.ijbiomac.2022.11.131
    [Google Scholar]
  33. HuD ZhangZ YuanL Load phycocyanin to achieve in vivo imaging of casein-porous starch microgels induced by ultra-high-pressure homogenization.Int J Biol Macromol2021193Pt A1273610.1016/j.ijbiomac.2021.10.127
    [Google Scholar]
  34. VermaR. MittalV. PandeyP. Exploring the role of self-nanoemulsifying systems in drug delivery: Challenges, issues, applications and recent advances.Curr. Drug Deliv.20232091241126110.2174/156720181966622051912500335598245
    [Google Scholar]
  35. ZottelA. Videtič PaskaA. JovčevskaI. Nanotechnology meets oncology: Nanomaterials in brain cancer research, diagnosis and therapy.Materials20191210158810.3390/ma1210158831096609
    [Google Scholar]
  36. WuJ. YuP. SushaA.S. Broadband efficiency enhancement in quantum dot solar cells coupled with multispiked plasmonic nanostars.Nano Energy20151382783510.1016/j.nanoen.2015.02.012
    [Google Scholar]
  37. WellerM. CloughesyT. PerryJ.R. WickW. Standards of care for treatment of recurrent glioblastoma—are we there yet?Neuro-oncol.201315142710.1093/neuonc/nos27323136223
    [Google Scholar]
  38. YoonH.M. KangM.S. ChoiG.E. Stimuli-responsive drug delivery of doxorubicin using magnetic nanoparticle conjugated poly(ethylene glycol)-g-chitosan copolymer.Int. J. Mol. Sci.202122231316910.3390/ijms22231316934884973
    [Google Scholar]
  39. YudintcevaN. LomertE. MikhailovaN. Targeting brain tumors with mesenchymal stem cells in the experimental model of the orthotopic glioblastoma in rats.Biomedicines2021911159210.3390/biomedicines911159234829821
    [Google Scholar]
  40. MunteanuC.R. Gutiérrez-AsoreyP. Blanes-RodríguezM. Prediction of anti-glioblastoma drug-decorated nanoparticle delivery systems using molecular descriptors and machine learning.Int. J. Mol. Sci.202122211151910.3390/ijms22211151934768951
    [Google Scholar]
  41. WangX. ChenL. GeJ. Rational constructed ultra-small iron oxide nanoprobes manifesting high performance for T1-weighted magnetic resonance imaging of glioblastoma.Nanomaterials 20211110260110.3390/nano1110260134685042
    [Google Scholar]
  42. HussainT. ParanthamanS. RizviS.M.D. Fabrication and characterization of paclitaxel and resveratrol loaded soluplus polymeric nanoparticles for improved BBB penetration for glioma management.Polymers20211319321010.3390/polym1319321034641026
    [Google Scholar]
  43. LinX.M. ShiX.X. XiongL. Construction of IL-13 receptor α2-targeting resveratrol nanoparticles against glioblastoma cells: therapeutic efficacy and molecular effects.Int. J. Mol. Sci.202122191062210.3390/ijms22191062234638961
    [Google Scholar]
  44. LicoC. TannoB. MarchettiL. Tomato bushy stunt virus nanoparticles as a platform for drug delivery to Shh-dependent medulloblastoma.Int. J. Mol. Sci.202122191052310.3390/ijms22191052334638864
    [Google Scholar]
  45. KimH.S. LeeS.J. LeeD.Y. Milk protein-shelled gold nanoparticles with gastrointestinally active absorption for aurotherapy to brain tumor.Bioact. Mater.20228354810.1016/j.bioactmat.2021.06.02634541385
    [Google Scholar]
  46. Del GrossoA. GallianiM. AngellaL. Brain-targeted enzyme-loaded nanoparticles: A breach through the blood-brain barrier for enzyme replacement therapy in Krabbe disease.Sci. Adv.2019511eaax746210.1126/sciadv.aax746231799395
    [Google Scholar]
  47. RigonL. SalvalaioM. PederzoliF. Targeting brain disease in MPSII: Preclinical evaluation of IDS-loaded PLGA nanoparticles.Int. J. Mol. Sci.2019208201410.3390/ijms2008201431022913
    [Google Scholar]
  48. LiJ. ZengH. YouY. Active targeting of orthotopic glioma using biomimetic liposomes co-loaded elemene and cabazitaxel modified by transferritin.J. Nanobiotechnology202119128910.1186/s12951‑021‑01048‑334565383
    [Google Scholar]
  49. MoinA. RizviS.M.D. HussainT. Current status of brain tumor in the kingdom of Saudi Arabia and application of nanobiotechnology for its treatment: A comprehensive review.Life202111542110.3390/life1105042134063122
    [Google Scholar]
  50. AshrafzadehM.S. AkbarzadehA. HeydarinasabA. ArdjmandM. In vivo glioblastoma therapy using targeted liposomal cisplatin.Int. J. Nanomedicine2020157035704910.2147/IJN.S25590233061366
    [Google Scholar]
  51. HonariA. MerillatD.A. BellaryA. GhaderiM. SirsiS.R. Improving release of liposome-encapsulated drugs with focused ultrasound and vaporizable droplet-liposome nanoclusters.Pharmaceutics202113560910.3390/pharmaceutics1305060933922219
    [Google Scholar]
  52. XinX. LiuW. ZhangZ.A. Efficient anti-glioma therapy through the brain-targeted rvg15-modified liposomes loading paclitaxel-cholesterol complex.Int. J. Nanomedicine2021165755577610.2147/IJN.S31826634471351
    [Google Scholar]
  53. JoseG. LuY.J. HungJ.T. YuA.L. ChenJ.P. Co-delivery of CPT-11 and panobinostat with anti-GD2 antibody conjugated immunoliposomes for targeted combination chemotherapy.Cancers 20201211321110.3390/cancers1211321133142721
    [Google Scholar]
  54. Sahab-NegahS. AriakiaF. Jalili-NikM. Curcumin loaded in niosomal nanoparticles improved the anti-tumor effects of free curcumin on glioblastoma stem-like cells: An in vitro study.Mol. Neurobiol.20205783391341110.1007/s12035‑020‑01922‑532430842
    [Google Scholar]
  55. Grafals-RuizN. Rios-VicilC.I. Lozada-DelgadoE.L. Brain targeted gold liposomes improve RNAi delivery for glioblastoma.Int. J. Nanomedicine2020152809282810.2147/IJN.S24105532368056
    [Google Scholar]
  56. LinY.L. HuangX.F. ChangK.F. LiaoK.W. TsaiN.M. Encapsulated n-butylidenephthalide efficiently crosses the blood-brain barrier and suppresses growth of glioblastoma.Int. J. Nanomedicine20201574976010.2147/IJN.S23581532099363
    [Google Scholar]
  57. Ellert-MiklaszewskaA. OchockaN. MaleszewskaM. Efficient and innocuous delivery of small interfering RNA to microglia using an amphiphilic dendrimer nanovector.Nanomedicine201914182441245910.2217/nnm‑2019‑017631456476
    [Google Scholar]
  58. ZhanC. GuB. XieC. LiJ. LiuY. LuW. Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect.J. Control. Release2010143113614210.1016/j.jconrel.2009.12.02020056123
    [Google Scholar]
  59. OlsmanM. MühlenpfordtM. OlsenE.B. Acoustic Cluster Therapy (ACT®) enhances accumulation of polymeric micelles in the murine brain.J. Control. Release202133728529510.1016/j.jconrel.2021.07.01934274386
    [Google Scholar]
  60. SunP. XiaoY. DiQ. Transferrin receptor-targeted PEG-PLA polymeric micelles for chemotherapy against glioblastoma multiforme.Int. J. Nanomedicine2020156673668710.2147/IJN.S25745932982226
    [Google Scholar]
  61. RanD. ZhouJ. ChaiZ. All-stage precisional glioma targeted therapy enabled by a well-designed D-peptide.Theranostics20201094073408710.7150/thno.4138232226540
    [Google Scholar]
  62. ShamulJ.G. ShahS.R. KimJ. Verteporfin-loaded anisotropic poly(beta-amino ester)-based micelles demonstrate brain cancer-selective cytotoxicity and enhanced pharmacokinetics.Int. J. Nanomedicine201914100471006010.2147/IJN.S23116731920302
    [Google Scholar]
  63. TangX.J. HuangK.M. GuiH. Pluronic-based micelle encapsulation potentiates myricetin-induced cytotoxicity in human glioblastoma cells.Int. J. Nanomedicine2016114991500210.2147/IJN.S11430227757032
    [Google Scholar]
  64. ChenY. HuangY. LiuW. GaoF. FangX. c(RGDyK)-decorated Pluronic micelles for enhanced doxorubicin and paclitaxel delivery to brain glioma.Int. J. Nanomedicine2016111629164110.2147/IJN.S10416227143884
    [Google Scholar]
  65. MittalP. SaharanA. VermaR. Dendrimers: A new race of pharmaceutical nanocarriers.BioMed Res. Int.2021202111110.1155/2021/884403033644232
    [Google Scholar]
  66. PoldrackR.A. FarahM.J. Progress and challenges in probing the human brain.Nature2015526757337137910.1038/nature1569226469048
    [Google Scholar]
  67. MoscarielloP. NgD.Y.W. JansenM. WeilT. LuhmannH.J. HedrichJ. Brain delivery of multifunctional dendrimer protein bioconjugates.Adv. Sci.201855170089710.1002/advs.20170089729876217
    [Google Scholar]
  68. LiawK. ReddyR. SharmaA. Targeted systemic dendrimer delivery of CSF-1R inhibitor to tumor-associated macrophages improves outcomes in orthotopic glioblastoma.Bioeng. Transl. Med.202162e1020510.1002/btm2.1020534027092
    [Google Scholar]
  69. LiuC. ZhaoZ. GaoH. Enhanced blood-brain-barrier penetrability and tumor-targeting efficiency by peptide-functionalized poly(amidoamine) dendrimer for the therapy of gliomas.Nanotheranostics20193431133010.7150/ntno.3895431687320
    [Google Scholar]
  70. ZarebkohanA. NajafiF. MoghimiH.R. HemmatiM. DeevbandM.R. KazemiB. SRL-coated PAMAM dendrimer nano-carrier for targeted gene delivery to the glioma cells and competitive inhibition by lactoferrin.Iran. J. Pharm. Res.201615462964028243262
    [Google Scholar]
  71. DeviS. KumarM. TiwariA. Quantum dots: An emerging approach for cancer therapy.Front. Mater.2022879844010.3389/fmats.2021.798440
    [Google Scholar]
  72. PeriniG. PalmieriV. CiascaG. Enhanced chemotherapy for glioblastoma multiforme mediated by functionalized graphene quantum dots.Materials20201318413910.3390/ma1318413932957607
    [Google Scholar]
  73. LiL. ChenY. XuG. In vivo comparison of the biodistribution and toxicity of InP/ZnS quantum dots with different surface modifications.Int. J. Nanomedicine2020151951196510.2147/IJN.S24133232256071
    [Google Scholar]
  74. KaushikN.K. KaushikN. WahabR. Cold atmospheric plasma and gold quantum dots exert dual cytotoxicity mediated by the cell receptor-activated apoptotic pathway in glioblastoma cells.Cancers (Basel)202012245710.3390/cancers1202045732079108
    [Google Scholar]
  75. CarvalhoI.C. MansurA.A.P. CarvalhoS.M. FlorentinoR.M. MansurH.S. L-cysteine and poly-L-arginine grafted carboxymethyl cellulose/Ag-In-S quantum dot fluorescent nanohybrids for in vitro bioimaging of brain cancer cells.Int. J. Biol. Macromol.201913373975310.1016/j.ijbiomac.2019.04.14031022489
    [Google Scholar]
  76. HettiarachchiS.D. GrahamR.M. MintzK.J. Triple conjugated carbon dots as a nano-drug delivery model for glioblastoma brain tumors.Nanoscale201911136192620510.1039/C8NR08970A30874284
    [Google Scholar]
  77. AroraD. BhattS. KumarM. QbD-based rivastigmine tartrate-loaded solid lipid nanoparticles for enhanced intranasal delivery to the brain for Alzheimer’s therapeutics.Front. Aging Neurosci.20221496024610.3389/fnagi.2022.96024636034142
    [Google Scholar]
  78. MinochaN. SharmaN. VermaR. KaushikD. PandeyP. Solid lipid nanoparticles: Peculiar strategy to deliver bio-proactive molecules.Recent Pat. Nanotechnol.202217322824210.2174/187221051666622031714335135301957
    [Google Scholar]
  79. Sonali , Viswanadh MK, Singh RP, et al. Nanotheranostics: Emerging strategies for early diagnosis and therapy of brain cancer.Nanotheranostics 201821708610.7150/ntno.2163829291164
    [Google Scholar]
  80. WangL. WangX. ShenL. Paclitaxel and naringenin-loaded solid lipid nanoparticles surface modified with cyclic peptides with improved tumor targeting ability in glioblastoma multiforme.Biomed. Pharmacother.202113811146110.1016/j.biopha.2021.11146133706131
    [Google Scholar]
  81. GrilloneA. BattagliniM. MoscatoS. Nutlin-loaded magnetic solid lipid nanoparticles for targeted glioblastoma treatment.Nanomedicine201914672775210.2217/nnm‑2018‑043630574827
    [Google Scholar]
  82. ChirioD. GallarateM. PeiraE. Positive-charged solid lipid nanoparticles as paclitaxel drug delivery system in glioblastoma treatment.Eur. J. Pharm. Biopharm.201488374675810.1016/j.ejpb.2014.10.01725445304
    [Google Scholar]
  83. JainK.K. Nanomedicine: Application of nanobiotechnology in medical practice.Med. Princ. Pract.20081728910110.1159/00011296118287791
    [Google Scholar]
  84. Ryman-RasmussenJ.P. RiviereJ.E. Monteiro-RiviereN.A. Penetration of intact skin by quantum dots with diverse physicochemical properties.Toxicol. Sci.200691115916510.1093/toxsci/kfj12216443688
    [Google Scholar]
  85. XiaT. KovochichM. BrantJ. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm.Nano Lett.2006681794180710.1021/nl061025k16895376
    [Google Scholar]
  86. PennA. MurphyG. BarkerS. HenkW. PennL. Combustion-derived ultrafine particles transport organic toxicants to target respiratory cells.Environ. Health Perspect.2005113895696310.1289/ehp.766116079063
    [Google Scholar]
  87. VallhovH. QinJ. JohanssonS.M. The importance of an endotoxin-free environment during the production of nanoparticles used in medical applications.Nano Lett.2006681682168610.1021/nl060860z16895356
    [Google Scholar]
  88. BertrandN. WuJ. XuX. KamalyN. FarokhzadO.C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology.Adv. Drug Deliv. Rev.20146622510.1016/j.addr.2013.11.00924270007
    [Google Scholar]
  89. DuttaD. HeoI. CleversH. Disease modeling in stem cell-derived 3D organoid systems.Trends Mol. Med.201723539341010.1016/j.molmed.2017.02.00728341301
    [Google Scholar]
  90. BleijsM. van de WeteringM. CleversH. DrostJ. Xenograft and organoid model systems in cancer research.EMBO J.20193815e10165410.15252/embj.201910165431282586
    [Google Scholar]
  91. Espacenet: free access to over 140 million patent documents.Available from: https://worldwide.espacenet.com/publicationDetails/biblio?II=0&ND=3&adjacent=true&locale=en_EP&FT=D&date=20220901&CC=TW&NR=202233250A&KC=A
  92. Maintenance news :Espacenet outages.Available from: https://worldwide.espacenet.com/publicationDetails/biblio?CC=KR&NR=20210105819A&KC=A&FT=D&ND=4&date=20210827&DB=EPODOC&locale=en_EP
    [Google Scholar]
  93. Available from: https://worldwide.espacenet.com/publicationDetails/biblio?CC=TW&NR=202106339A&KC=A&FT=D&ND=3&date=20210216&DB=EPODOC&locale=en_EP
  94. Available from: https://worldwide.espacenet.com/publicationDetails/biblio?CC=CN&NR=109771661A&KC=A&FT=D&ND=3&date=20190521&DB=EPODOC&locale=en_EP
  95. Available from: https://worldwide.espacenet.com/publicationDetails/biblio?CC=US&NR=2020038452A1&KC=A1&FT=D&ND=3&date=20200206&DB=EPODOC&locale=en_EP
  96. DokyoungK. HyoY. KimR. HyungK. Compositions and methods for treating brain cancer.US Patent 20220323432A12014
  97. ZhongZ ZhangJ JiangY MengF Compositions and methods for treating brain cancer.CN Paten 107998082A2014
  98. GuanY WangX DuS. Cure for cancer. CN Patent 110522720B2003
  99. EstherH.C. SangsooK. AntoninaR. Targeted liposomes.US Patent 20210205456A12021
    [Google Scholar]
  100. ChenH LiangK LuoY ZhangQ Blood brain barrier crossing and in-situ brain glioma targeting nano diagnosis and treatment agent material and preparation method thereof.CN Patent 111110871B2020
    [Google Scholar]
  101. Ann-MarieB. SurajD. Amy-LeeB. Nanoparticles for active agent delivery to brain cancers.US Patent 20200016277A12018
    [Google Scholar]
  102. WangY. Brain-targeting nano delivery system and preparation method thereof.CN Patent 112675312A2020
    [Google Scholar]
  103. Oxcetitinib brain-targeted drug delivery system and application thereof in resisting lung cancer brain metastasis tumor. CN Patent 109771661B2019
  104. A nanoformulation for glioma treatment and process for its preparation thereof.WO Patent 2022208546A12022
  105. Phenanthroindolizidine alkaloid derivative nano self-emulsifying composition and preparation method thereof.CN Patent 112353759A2019
  106. JiY. WangY. ShenD. KangQ. ChenL. Mucin corona delays intracellular trafficking and alleviates cytotoxicity of nanoplastic-benzopyrene combined contaminant.J. Hazard. Mater.202140612430610.1016/j.jhazmat.2020.12430633109409
    [Google Scholar]
  107. SebakA.A. GomaaI.E.O. ElMeshadA.N. Distinct proteins in protein corona of nanoparticles represent a promising venue for endogenous targeting—part I: In vitro release and intracellular uptake perspective.Int. J. Nanomedicine2020158845886210.2147/IJN.S27371333204091
    [Google Scholar]
  108. VromanL. AdamsA.L. FischerG.C. MunozP.C. Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces.Blood198055115615910.1182/blood.V55.1.156.1567350935
    [Google Scholar]
  109. RishaY. MinicZ. GhobadlooS.M. BerezovskiM.V. The proteomic analysis of breast cell line exosomes reveals disease patterns and potential biomarkers.Sci. Rep.20201011357210.1038/s41598‑020‑70393‑432782317
    [Google Scholar]
  110. ElzekM.A. RodlandK.D. Proteomics of ovarian cancer: Functional insights and clinical applications.Cancer Metastasis Rev.2015341839610.1007/s10555‑014‑9547‑825736266
    [Google Scholar]
  111. PederzoliF. TosiG. VandelliM.A. BellettiD. ForniF. RuoziB. Protein corona and nanoparticles: How can we investigate on?Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.201796e146710.1002/wnan.146728296346
    [Google Scholar]
  112. ZanganehS. SpitlerR. ErfanzadehM. AlkilanyA.M. MahmoudiM. Protein corona: Opportunities and challenges.Int. J. Biochem. Cell Biol.20167514314710.1016/j.biocel.2016.01.00526783938
    [Google Scholar]
  113. MoyanoD.F. SahaK. PrakashG. Fabrication of corona-free nanoparticles with tunable hydrophobicity.ACS Nano2014876748675510.1021/nn500647824971670
    [Google Scholar]
  114. LesniakA. SalvatiA. Santos-MartinezM.J. RadomskiM.W. DawsonK.A. ÅbergC. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency.J. Am. Chem. Soc.201313541438144410.1021/ja309812z23301582
    [Google Scholar]
  115. XueJ. ZhaoZ. ZhangL. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence.Nat. Nanotechnol.201712769270010.1038/nnano.2017.5428650441
    [Google Scholar]
  116. HuQ. SunW. QianC. WangC. BombaH.N. GuZ. Anticancer platelet-mimicking nanovehicles.Adv. Mater.201527447043705010.1002/adma.20150332326416431
    [Google Scholar]
  117. FangR.H. KrollA.V. GaoW. ZhangL. Cell membrane coating nanotechnology.Adv. Mater.20183023170675910.1002/adma.20170675929582476
    [Google Scholar]
  118. ZouY. LiuY. YangZ. Effective and targeted human orthotopic glioblastoma xenograft therapy via a multifunctional biomimetic nanomedicine.Adv. Mater.20183051180371710.1002/adma.20180371730328157
    [Google Scholar]
  119. YangJ. ShiZ. LiuR. WuY. ZhangX. Combined-therapeutic strategies synergistically potentiate glioblastoma multiforme treatment via nanotechnology.Theranostics20201073223323910.7150/thno.4029832194864
    [Google Scholar]
  120. SunX. WangC. GaoM. HuA. LiuZ. Remotely controlled red blood cell carriers for cancer targeting and near-infrared light-triggered drug release in combined photothermal-chemotherapy.Adv. Funct. Mater.201525162386239410.1002/adfm.201500061
    [Google Scholar]
/content/journals/nanotec/10.2174/0118722105244482231017102857
Loading
/content/journals/nanotec/10.2174/0118722105244482231017102857
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test