Skip to content
2000
Volume 19, Issue 1
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

Introduction

Transistors are the fundamental electronic component integrated into electronic devices' chips Carbon Nano Tube (CNT) based field.

Methods

Effect Transistor (FET) is a promising component for next-generation transistor technologies; as it has high carrier mobility, device stability, and mechanical flexibility. Nevertheless, some shortcomings in the CNT FET's design prevent it from providing the best performance while preserving thermal stability.

Results

The structure and functionality of transistors with Double-Gate (DG) devices, which use carbon nanotubes as active channel regions, have been examined by the authors of this study. The DG CNT FET has been extensively simulated using an electronic device simulator with various device geometrics, including channel length, oxide thickness for its output, and transfer characteristics. In comparison to reported patents and published works, this demonstrates a significant improvement.

Conclusion

A new perspective on the DG CNT FET's device performance characteristics is provided by this research work, which can be scaled down to minimum channel length without Short Channel Effects (SCEs).

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/1872210517666230622123317
2023-09-19
2024-12-26
Loading full text...

Full text loading...

References

  1. ViranjayM. MOSFET Technologies for Double-Pole Four-Throw Radio-Frequency Switch (Analog Circuits and Signal Processing Book 122).2014th ed. Springer New York2013
    [Google Scholar]
  2. SedraA.S. SmithK.C. Microelectronic Circuits.International Sixth EditionOxford University Press2011
    [Google Scholar]
  3. UllmannB. GrasserT. Transformation: Nanotechnology—challenges in transistor design and future technologies.E&I Elektrotech. Inf. Tech.2017134734935410.1007/s00502‑017‑0534‑y
    [Google Scholar]
  4. MooreG.E. Cramming more components onto integrated circuits.Proc. IEEE1998861828510.1109/JPROC.1998.658762
    [Google Scholar]
  5. RoyK. PrasadS. Low-power CMOS VLSI circuit design.Wiley2000
    [Google Scholar]
  6. HaronN.Z. HamdiouiS. Why is CMOS scaling coming to an END? 2008 3rd International Design and Test Workshop. 20-22 December 2008; Monastir, Tunisia2009
    [Google Scholar]
  7. AmoosoltaniN. ZarifkarA. FarmaniA. Particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithms for a surface plasmon resonance-based gas sensor.J. Comput. Electron.20191841354136410.1007/s10825‑019‑01391‑7
    [Google Scholar]
  8. FarmaniA. MirA. Graphene sensor based on surface plasmon resonance for optical scan-ning.IEEE Photonics Technol. Lett.201931864364610.1109/LPT.2019.2904618
    [Google Scholar]
  9. FarmaniA. Graphene plasmonic: Switching applications.In: Handbook of Graphene.Physics, Chemistry, and Biology201945510.1002/9781119468455.ch33
    [Google Scholar]
  10. MatsumotoK. MaehashiK. OhnoY. InoueK. Recent advances in functional graphene biosensors.J. Phys. D Appl. Phys.201447909400510.1088/0022‑3727/47/9/094005
    [Google Scholar]
  11. ReddyM.N. PandaD.K. A comprehensive review on FinFET in terms of its device structure and performance matrices.Silicon20221418120151203010.1007/s12633‑022‑01929‑8
    [Google Scholar]
  12. BoukorttN.E.I. TruptiR.L. SalvatoreP. Effects of varying the fin width, fin height, gate dielectric material, and gate length on the DC and RF performance of a 14-nm SOI FinFET structure.Electronics 2022119117
    [Google Scholar]
  13. GowthamanN SrivastavaVM Parametric analysis of CSDG MOSFET with La2O3 gate oxide: Based on electrical field estimation.IEEE Access202191594213110.1109/ACCESS.2021.3131980
    [Google Scholar]
  14. GowthamanN. SrivastavaV.M. Mathematical modeling of drain current estimation in a CSDG MOSFET, based on La2O3 oxide layer with fabrication—a nanomaterial approach.Nanomaterials20221219337410.3390/nano1219337436234508
    [Google Scholar]
  15. PucknellD.A. EshraghianK. Basic VLSI Design.3rd edPrentice Hall India Learning Private Limited1995595
    [Google Scholar]
  16. ShimohigashiK. SekiK. Low-voltage ULSI design.IEEE J. Solid-State Circuits199328440841310.1109/4.210022
    [Google Scholar]
  17. SonkusareR.S. RathodS.S. Analysis of multifin n-FinFET for analog performance at 30 nm gate length.2016 International Conference on Communication and Electronics Systems (ICCES)21-22 October 2016. 2016; Coimbatore, India.20161710.1109/CESYS.2016.7889956
    [Google Scholar]
  18. ChenT.C. Overcoming research challenges for CMOS scaling: Industry directions. 2006 8th International Conference on Solid- State and Integrated Circuit Technology Proceedings.21-22 October 2016; Coimbatore, India.20064710.1109/ICSICT.2006.306040
    [Google Scholar]
  19. The international roadmap for devices and systems.2022https://irds.ieee.org/images/files/pdf/2022/2022IRDS_ES.pdf
    [Google Scholar]
  20. CarballoJ. ChanW.J. GarginiP.A. KahngA.B. NathS. ITRS 2.0: Toward a re-framing of the semiconductor technology roadmap. 2014 IEEE 32nd International Conference on Computer Design (ICCD).19-22 October 2014; Seoul, Korea (South).201410.1109/ICCD.2014.6974673
    [Google Scholar]
  21. ZeitzoffP.M. HuffH.R. MOSFET scaling trends, challenges, and key associated metrology issues through the end of the roadmap.AIP Conference Proceedings. Am Ins Phy20057881203213
    [Google Scholar]
  22. VenkatesanR. Joseph DanielR. ShanmugarajaP. Optimization of CNT and TFT parameters for maximum transconductance and safe temperature operation of carbon nanotube thin-film transistors (CNT-TFTs) Employed in Flat Panel Displays.Trans Electr Electron2021221475610.1007/s42341‑020‑00216‑w
    [Google Scholar]
  23. DürkopT. GettyS.A. CobasE. FuhrerM.S. Extraordinary mobility in semiconducting carbon nanotubes.Nano Lett.200441353910.1021/nl034841q
    [Google Scholar]
  24. MoorthyV.M. SugantharathnamM. RathnasamiJ.D. PattanS. Design and characterisation of graphene‐based nano‐photodiode array device for photo‐stimulation of subretinal implant.Micro & Nano Lett.201914111131113510.1049/mnl.2019.0030
    [Google Scholar]
  25. MoorthyV.M. SrivastavaV.M. Device modeling of organic photovoltaic cells with traditional and inverted cells using s-SWCNT:C60 as active layer.Nanomaterials20221216284410.3390/nano1216284436014708
    [Google Scholar]
  26. MoorthyV.M. SrivastavaV.M. Device modelling and optimization of planar heteroJunction based organic solar cell (by Varying the Device Dimensions and Material Parameters).Nanomaterials20221217303110.3390/nano1217303136080068
    [Google Scholar]
  27. PengL-M. ZhangZ. QiuC. Carbon nanotube digital electronics.Nat. Electron.201921149950510.1038/s41928‑019‑0330‑2
    [Google Scholar]
  28. MeyyappanM.V. ParthasarathyV. DanielR.J. Bio‐interface behaviour of graphene and semiconducting SWCNT:C 60 blend based nano photodiode for subretinal implant.Biosurf. Biotribol.202062535810.1049/bsbt.2019.0045
    [Google Scholar]
  29. AvourisP. Molecular electronics with carbon nanotubes.Acc. Chem. Res.200235121026103410.1021/ar010152e12484790
    [Google Scholar]
  30. AppenzellerJ. LinY.M. KnochJ. ChenZ. AvourisP. Comparing carbon nanotube transistors - the ideal choice: A novel tunneling device design.IEEE Trans. Electron Dev.200552122568257610.1109/TED.2005.859654
    [Google Scholar]
  31. BariS.M.K. BiswasS. ArifuzzmanA.K.M. AhmadH.M.N. HasanN.M.A. Performance analysis of dynamic threshold-voltage CNTFET for high-speed multi-level voltage detector.2012 UKSim 14th International Conference on Computer Modelling and Simulation.28-30 March 2012; Cambridge, UK201210.1109/UKSim.2012.98
    [Google Scholar]
  32. MoorthyV.M. Joseph DanielR. ShanmugarajaP. Modelling, simulation and analysis of nano photo diode arrays using cnt’s and graphene nano materials for sub-retinal implant.IOP Conf Ser Mater Sci Eng20211225012010113
    [Google Scholar]
  33. FranklinA.D. ChenZ. Length scaling of carbon nanotube transistors.Nat. Nanotechnol.201051285886210.1038/nnano.2010.22021102468
    [Google Scholar]
  34. RahmanA. Jing Guo DattaS. LundstromM.S. Theory of ballistic nanotransistors.IEEE Trans. Electron Dev.20035091853186410.1109/TED.2003.815366
    [Google Scholar]
  35. BishopM.D. HillsG. SrimaniT. Fabrication of carbon nanotube field-effect transistors in commercial silicon manufacturing facilities.Nat. Electron.20203849250110.1038/s41928‑020‑0419‑7
    [Google Scholar]
  36. ChopadeS.S. ManeS. PadoleD. Design of DG-CNFET for reduction of short channel effect over DG MOSFET at 20 nm.2013 IEEE International Conference of IEEE Region 10 (TENCON 2013).22-25 October 2013; Xi'an, China.2013
    [Google Scholar]
  37. MoorthyV.M. SrivastavaV.M. (Digital Presentation) effect of active layer thickness on organic thin-film transistors.ECS Trans.2022109611512110.1149/10906.0115ecst
    [Google Scholar]
  38. YangX. MohanramK. Modeling and performance investigation of the double-gate carbon nanotube transistor.IEEE Electron Device Lett.201132323123310.1109/LED.2010.2095826
    [Google Scholar]
  39. XuL. QiuC. PengL. ZhangZ. Suppression of leakage current in carbon nanotube field-effect transistors.Nano Res.202114497698110.1007/s12274‑020‑3135‑8
    [Google Scholar]
  40. BalaS. KhoslaM. Design and simulation of nanoscale double-gate TFET/tunnel CNTFET.J. Semicond.201839404400110.1088/1674‑4926/39/4/044001
    [Google Scholar]
  41. OroujiA.A. ArefiniaZ. Detailed simulation study of a dual material gate carbon nanotube field-effect transistor.Physica E200941455255710.1016/j.physe.2008.10.005
    [Google Scholar]
  42. KumarS.S. ChaudhuryS. Analysis of different parameters of channel material and temperature on threshold voltage of CNTFET.Mater. Sci. Semicond. Process.20153143143810.1016/j.mssp.2014.12.013
    [Google Scholar]
  43. LiowT.Y. Carrier transport characteristics of sub-30 nm strained n-channel finFETs featuring silicon-carbon source/drain regions and methods for further performance enhancement.2006 International Electron Devices Meeting11-13 December 2006San Francisco, CA, USA20061410.1109/IEDM.2006.346815
    [Google Scholar]
  44. FrankD.J. LauxS. FischettiM. Monte Carlo simulation of a 30 nm dual-gate MOSFET: How short can Si go? 1992 International Technical Digest on Electron Devices Meeting. 13-16 December 1992; San Francisco, CA, USA.199210.1109/IEDM.1992.307422
    [Google Scholar]
  45. IrshadA.M. SaahiraA.N. Quantum dots and their applications in television display technologies.WJARR20221603997100010.30574/wjarr.2022.16.3.1455
    [Google Scholar]
  46. AhamedM.I. KumarK.S. Modelling of electronic and optical properties of Cu 2 SnS 3 quantum dots for optoelectronics applications.Mater. Sci. Pol.201937110811510.2478/msp‑2018‑0103
    [Google Scholar]
  47. PesetskiAA ZhangH AdamJD PrzybyszJ MurduckJ GoldsteinN BaumgardnerJ Carbon nanotube field effect transistor.Patent EP2038933A22009
    [Google Scholar]
  48. BertinC MeinholdM KonsekS RueckesT GuoF. Hybrid carbon nanotube FET(CNFET)-FET static RAM (SRAM) and method of making same.Patent US20060237857A12009
    [Google Scholar]
/content/journals/nanotec/10.2174/1872210517666230622123317
Loading
/content/journals/nanotec/10.2174/1872210517666230622123317
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test