Skip to content
2000
Volume 19, Issue 1
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

All over the world, cancer death and prevalence are increasing. Breast cancer (BC) is the major cause of cancer mortality (15%) which makes it the most common cancer in women. BC is defined as the furious progression and quick division of breast cells. Novel nanotechnology-based approaches helped in improving survival rate, metastatic BC is still facing obstacles to treat with an expected overall 23% survival rate. This paper represents epidemiology, classification (non-invasive, invasive and metastatic), risk factors (genetic and non-genetic) and treatment challenges of breast cancer in brief. This review paper focus on the importance of nanotechnology-based nanoformulations for treatment of BC. This review aims to deliver elementary insight and understanding of the novel nanoformulations in BC treatment and to explain to the readers for enduring designing novel nanomedicine. Later, we elaborate on several types of nanoformulations used in tumor therapeutics such as liposomes, dendrimers, polymeric nanomaterials and many others. Potential research opportunities for clinical application and current challenges related to nanoformulations utility for the treatment of BC are also highlighted in this review. The role of artificial intelligence is elaborated in detail. We also confer the existing challenges and perspectives of nanoformulations in effective tumor management, with emphasis on the various patented nanoformulations approved or progression of clinical trials retrieved from various search engines.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/1872210517666230731091046
2023-10-06
2024-12-26
Loading full text...

Full text loading...

References

  1. SamadiP. SakiS. DermaniF.K. PourjafarM. SaidijamM. Emerging ways to treat breast cancer: Will promises be met?Cell. Oncol.201841660562110.1007/s13402‑018‑0409‑130259416
    [Google Scholar]
  2. YouJ.S. JonesP.A. Cancer genetics and epigenetics: Two sides of the same coin?Cancer Cell201222192010.1016/j.ccr.2012.06.00822789535
    [Google Scholar]
  3. WHO.Available from: https://www.who.int/news-room/fact-sheets/detail/cancer
  4. OkuharaT. IshikawaH. UrakuboA. Cancer information needs according to cancer type: A content analysis of data from Japan’s largest cancer information website.Prev. Med. Rep.20181224525210.1016/j.pmedr.2018.10.01430377575
    [Google Scholar]
  5. Ovejero ParedesK. Díaz-GarcíaD. García-AlmodóvarV. Multifunctional silica-based nanoparticles with controlled release of organotin metallodrug for targeted theranosis of breast cancer.Cancers202012118710.3390/cancers1201018731940937
    [Google Scholar]
  6. Breast cancer.Available from: https://www.who.int/news-room/fact-sheets/detail/breast-cancer
  7. FengY. SpeziaM. HuangS. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis.Genes Dis.2018527710610.1016/j.gendis.2018.05.00130258937
    [Google Scholar]
  8. JahanS. KarimM.E. ChowdhuryE.H. Nanoparticles targeting receptors on breast cancer for efficient delivery of chemotherapeutics.Biomedicines20219211410.3390/biomedicines902011433530291
    [Google Scholar]
  9. TagdeP. TagdeP. TagdeS. Natural bioactive molecules: An alternative approach to the treatment and control of glioblastoma multiforme.Biomed. Pharmacother.202114111192810.1016/j.biopha.2021.11192834323701
    [Google Scholar]
  10. WuD. SiM. XueH.Y. WongH.L. Nanomedicine applications in the treatment of breast cancer: Current state of the art.Int. J. Nanomedicine2017125879589210.2147/IJN.S12343728860754
    [Google Scholar]
  11. WaksA.G. WinerE.P. Breast cancer treatment: A review.JAMA2019321328830010.1001/jama.2018.1932330667505
    [Google Scholar]
  12. BhattacharyyaG.S. DovalD.C. DesaiC.J. ChaturvediH. SharmaS. SomashekharS.P. Overview of breast cancer and implications of overtreatment of early-stage breast cancer: An indian perspective.JCO Glob. Oncol.20206678979810.1200/GO.20.0003332511068
    [Google Scholar]
  13. SungH. FerlayJ. SiegelR.L. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  14. BrayF. FerlayJ. LaversanneM. Cancer incidence in five continents: Inclusion criteria, highlights from Volume X and the global status of cancer registration.Int. J. Cancer201513792060207110.1002/ijc.2967026135522
    [Google Scholar]
  15. MariottoA.B. EtzioniR. HurlbertM. PenberthyL. MayerM. Estimation of the number of women living with metastatic breast cancer in the United States.Cancer Epidemiol. Biomarkers Prev.201726680981510.1158/1055‑9965.EPI‑16‑088928522448
    [Google Scholar]
  16. DayC.M. HickeyS.M. SongY. PlushS.E. GargS. Novel tamoxifen nanoformulations for improving breast cancer treatment: Old wine in new bottles.Molecules2020255118210.3390/molecules2505118232151063
    [Google Scholar]
  17. SinghV. KumarK. PurohitD. Exploration of therapeutic applicability and different signaling mechanism of various phytopharmacological agents for treatment of breast cancer.Biomed. Pharmacother.202113911158410.1016/j.biopha.2021.11158434243623
    [Google Scholar]
  18. HulkaB.S. Epidemiology of susceptibility to breast cancer.Prog. Clin. Biol. Res.19963951591748895988
    [Google Scholar]
  19. ColditzG.A. KaphingstK.A. HankinsonS.E. RosnerB. Family history and risk of breast cancer: Nurses’ health study.Breast Cancer Res. Treat.201213331097110410.1007/s10549‑012‑1985‑922350789
    [Google Scholar]
  20. AllisonK.H. Molecular pathology of breast cancer: What a pathologist needs to know.Am. J. Clin. Pathol.2012138677078010.1309/AJCPIV9IQ1MRQMOO23161709
    [Google Scholar]
  21. PolyakK. Breast cancer: Origins and evolution.J. Clin. Invest.2007117113155316310.1172/JCI3329517975657
    [Google Scholar]
  22. AbotalebM. KubatkaP. CaprndaM. Chemotherapeutic agents for the treatment of metastatic breast cancer: An update.Biomed. Pharmacother.201810145847710.1016/j.biopha.2018.02.10829501768
    [Google Scholar]
  23. LimB. WoodwardW.A. WangX. ReubenJ.M. UenoN.T. Inflammatory breast cancer biology: The tumour microenvironment is key.Nat. Rev. Cancer201818848549910.1038/s41568‑018‑0010‑y29703913
    [Google Scholar]
  24. KordeL.A. ZujewskiJ.A. KaminL. Multidisciplinary meeting on male breast cancer: Summary and research recommendations.J. Clin. Oncol.201028122114212210.1200/JCO.2009.25.572920308661
    [Google Scholar]
  25. Sheen-ChenS.M. ChenH.S. ChenW.J. EngH.L. SheenC.W. ChouF.F. Paget disease of the breast?an easily overlooked disease?J. Surg. Oncol.200176426126510.1002/jso.104311320517
    [Google Scholar]
  26. PalS.K. LauS.K. KruperL. Papillary carcinoma of the breast: An overview.Breast Cancer Res. Treat.2010122363764510.1007/s10549‑010‑0961‑520524058
    [Google Scholar]
  27. TseG.M.K. NiuY. ShiH.J. Phyllodes tumor of the breast: An update.Breast Cancer2010171293410.1007/s12282‑009‑0114‑z19434472
    [Google Scholar]
  28. CaoJ. WangJ. HeC. FangM. Angiosarcoma: A review of diagnosis and current treatment.Am. J. Cancer Res.20199112303231331815036
    [Google Scholar]
  29. DaiX. LiT. BaiZ. Breast cancer intrinsic subtype classification, clinical use and future trends.Am. J. Cancer Res.20155102929294326693050
    [Google Scholar]
  30. KarthikaC. HariB. ManoV. Curcumin as a great contributor for the treatment and mitigation of colorectal cancer.Exp. Gerontol.202115211143810.1016/j.exger.2021.11143834098006
    [Google Scholar]
  31. KabirM.T. RahmanM.H. AkterR. Potential role of curcumin and its nanoformulations to treat various types of cancers.Biomolecules202111339210.3390/biom1103039233800000
    [Google Scholar]
  32. KamińskaM. CiszewskiT. Łopacka-SzatanK. MiotłaP. StarosławskaE. Breast cancer risk factors.Przegl. Menopauz.20153319620210.5114/pm.2015.5434626528110
    [Google Scholar]
  33. SingletaryS.E. Rating the risk factors for breast cancer.Ann. Surg.2003237447448210.1097/01.SLA.0000059969.64262.8712677142
    [Google Scholar]
  34. SchettiniF. PascualT. ConteB. HER2-enriched subtype and pathological complete response in HER2-positive breast cancer: A systematic review and meta-analysis.Cancer Treat. Rev.20208410196510.1016/j.ctrv.2020.10196532000054
    [Google Scholar]
  35. TranB. BedardP.L. Luminal-B breast cancer and novel therapeutic targets.Breast Cancer Res.201113622110.1186/bcr290422217398
    [Google Scholar]
  36. YersalO. BarutcaS. Biological subtypes of breast cancer: Prognostic and therapeutic implications.World J. Clin. Oncol.20145341242410.5306/wjco.v5.i3.41225114856
    [Google Scholar]
  37. HowellA. AndersonA.S. ClarkeR.B. Risk determination and prevention of breast cancer.Breast Cancer Res.201416544610.1186/s13058‑014‑0446‑225467785
    [Google Scholar]
  38. OzsoyA. BarcaN. Akdal DolekB. The relationship between breast cancer and risk factors: A single-center study.Eur. J. Breast Health201713314514910.5152/tjbh.2017.318028894854
    [Google Scholar]
  39. ThakurV. KuttyR.V. Recent advances in nanotheranostics for triple negative breast cancer treatment.J. Exp. Clin. Cancer Res.201938143010.1186/s13046‑019‑1443‑131661003
    [Google Scholar]
  40. GhoshS. JaviaA. ShettyS. Triple negative breast cancer and non-small cell lung cancer: Clinical challenges and nano-formulation approaches.J. Control. Release2021337275810.1016/j.jconrel.2021.07.01434273417
    [Google Scholar]
  41. GurunathanS. KangM.H. QasimM. KimJ.H. Nanoparticle-mediated combination therapy: Two-in-one approach for cancer.Int. J. Mol. Sci.20181910326410.3390/ijms19103264
    [Google Scholar]
  42. HeL. GuJ. LimL.Y. YuanZ. MoJ. Nanomedicine-mediated therapies to target breast cancer stem cells.Front. Pharmacol.2016731310.3389/fphar.2016.0031327679576
    [Google Scholar]
  43. ChienP.J. ShihY.L. ChengC.T. TuH.L. Chip assisted formation of phase-separated liposomes for reconstituting spatial protein–lipid interactions.Lab Chip202222132540254810.1039/D2LC00089J35667105
    [Google Scholar]
  44. NavyaP.N. KaphleA. SrinivasS.P. BhargavaS.K. RotelloV.M. DaimaH.K. Current trends and challenges in cancer management and therapy using designer nanomaterials.Nano Converg.2019612310.1186/s40580‑019‑0193‑231304563
    [Google Scholar]
  45. PereiraD.S.M. CardosoB.D. RodriguesA.R.O. Magnetoliposomes containing calcium ferrite nanoparticles for applications in breast cancer therapy.Pharmaceutics201911947710.3390/pharmaceutics1109047731540088
    [Google Scholar]
  46. PalazzoloS. HadlaM. Russo SpenaC. An effective multi-stage liposomal DNA origami nanosystem for in vivo cancer therapy.Cancers20191112199710.3390/cancers1112199731842277
    [Google Scholar]
  47. GheybiF. AlavizadehS. RezayatS. pH-sensitive PEGylated liposomal silybin: Synthesis, in vitro and in vivo anti-tumor evaluation.J. Pharm. Sci.2021110123919392810.1016/j.xphs.2021.08.015
    [Google Scholar]
  48. SuyamudC. PhetdeeC. JaimalaiT. PrangkioP. Silk Fibroin-coated liposomes as biomimetic nanocarrier for long-term release delivery system in cancer therapy.Molecules20212616493610.3390/molecules2616493634443524
    [Google Scholar]
  49. Shokooh SaremiS. NikpoorA.R. SadriK. Development of a stable and high loaded liposomal formulation of lapatinib with enhanced therapeutic effects for breast cancer in combination with Caelyx®: In vitro and in vivo evaluations.Colloids Surf. B Biointerfaces202120711201210.1016/j.colsurfb.2021.11201234352656
    [Google Scholar]
  50. KimS. ShiY. KimJ.Y. ParkK. ChengJ.X. Overcoming the barriers in micellar drug delivery: Loading efficiency, in vivo stability, and micelle–cell interaction.Expert Opin. Drug Deliv.201071496210.1517/1742524090338044620017660
    [Google Scholar]
  51. SogaO. van NostrumC.F. FensM. Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery.J. Control. Release2005103234135310.1016/j.jconrel.2004.12.00915763618
    [Google Scholar]
  52. ZhongT. HeB. CaoH. Treating breast cancer metastasis with cabazitaxel-loaded polymeric micelles.Acta Pharmacol. Sin.201738692493010.1038/aps.2017.3628504249
    [Google Scholar]
  53. WangN. WangZ. NieS. Biodegradable polymeric micelles coencapsulating paclitaxel and honokiol: A strategy for breast cancer therapy in vitro and in vivo.Int. J. Nanomedicine2017121499151410.2147/IJN.S12484328260895
    [Google Scholar]
  54. GregoriouY. GregoriouG. YilmazV. Resveratrol loaded polymeric micelles for theranostic targeting of breast cancer cells.Nanotheranostics20215111312410.7150/ntno.5195533391978
    [Google Scholar]
  55. LiY. JinM. ShaoS. Small-sized polymeric micelles incorporating docetaxel suppress distant metastases in the clinically-relevant 4T1 mouse breast cancer model.BMC Cancer201414132910.1186/1471‑2407‑14‑32924885518
    [Google Scholar]
  56. GhaffariF. BahmanzadehM. Nili-AhmadabadiA. FirozianF. Cytotoxicity enhancement of paclitaxel by loading on stearate-g-dextran micelles on breast cancer cell line MCF-7.Asian Pac. J. Cancer Prev.20181992651265510.22034/APJCP.2018.19.9.265130256563
    [Google Scholar]
  57. ZuoR. ZhangJ. SongX. Encapsulating halofuginone hydrobromide in TPGS polymeric micelles enhances efficacy against triple-negative breast cancer cells.Int. J. Nanomedicine2021161587160010.2147/IJN.S28909633664573
    [Google Scholar]
  58. DayC.M. BarclayT.G. SongY. GargS. Swelling-controlled drug delivery systems. Biomaterials Science Series.London, UKThe Royal Society of Chemistry2018232264
    [Google Scholar]
  59. TruffiM. ColomboM. SorrentinoL. Multivalent exposure of trastuzumab on iron oxide nanoparticles improves antitumor potential and reduces resistance in HER2-positive breast cancer cells.Sci. Rep.201881656310.1038/s41598‑018‑24968‑x29700387
    [Google Scholar]
  60. HaggagY.A. IbrahimR.R. HafizA.A. Design, Formulation and in vivo evaluation of novel honokiol-loaded PEGylated PLGA nanocapsules for treatment of breast cancer.Int. J. Nanomedicine2020151625164210.2147/IJN.S24142832210557
    [Google Scholar]
  61. CéR. CoutoG.K. PachecoB.Z. Folic acid-doxorubicin polymeric nanocapsules: A promising formulation for the treatment of triple-negative breast cancer.Eur. J. Pharm. Sci.202116510594310.1016/j.ejps.2021.10594334260893
    [Google Scholar]
  62. NascimentoK. CopettiP.M. FernandesA. Phytochemical analysis and evaluation of the antioxidant and antiproliferative effects of Tucumã oil nanocapsules in breast adenocarcinoma cells (MCF-7).Nat. Prod. Res.202135122060206510.1080/14786419.2019.164846034096432
    [Google Scholar]
  63. KatiyarS.S. GhadiR. KushwahV. DoraC.P. JainS. Lipid and biosurfactant based core-shell-type nanocapsules having high drug loading of paclitaxel for improved breast cancer therapy.ACS Biomater. Sci. Eng.20206126760676910.1021/acsbiomaterials.0c0129033320604
    [Google Scholar]
  64. ZhangJ. LuN. WengL. General and facile syntheses of hybridized deformable hollow mesoporous organosilica nanocapsules for drug delivery.J. Colloid Interface Sci.202158371472110.1016/j.jcis.2020.09.06033075604
    [Google Scholar]
  65. VasconcelosA.G. ValimM.O. AmorimA.G.N. Cytotoxic activity of poly-ɛ-caprolactone lipid-core nanocapsules loaded with lycopene-rich extract from red guava (Psidium guajava L.) on breast cancer cells.Food Res. Int.202013610954810.1016/j.foodres.2020.10954832846600
    [Google Scholar]
  66. MoslahW. Aissaoui-ZidD. AboudouS. Strengthening anti-glioblastoma effect by multi-branched dendrimers design of a scorpion venom tetrapeptide.Molecules202227380610.3390/molecules2703080635164071
    [Google Scholar]
  67. MittalP. SaharanA. VermaR. Dendrimers: A new race of pharmaceutical nanocarriers.BioMed Res. Int.2021202111110.1155/2021/884403033644232
    [Google Scholar]
  68. KulhariH. PoojaD. ShrivastavaS. Trastuzumab-grafted PAMAM dendrimers for the selective delivery of anticancer drugs to HER2-positive breast cancer.Sci. Rep.2016612317910.1038/srep2317927052896
    [Google Scholar]
  69. AleanizyF.S. AlqahtaniF.Y. SetóS. Trastuzumab targeted neratinib loaded poly-amidoamine dendrimer nanocapsules for breast cancer therapy.Int. J. Nanomedicine2020155433544310.2147/IJN.S25689832801698
    [Google Scholar]
  70. SalimiM. SarkarS. HashemiM. SaberR. Treatment of breast cancer-bearing BALB/c mice with magnetic hyperthermia using dendrimer functionalized iron-oxide nanoparticles.Nanomaterials20201011231010.3390/nano1011231033266461
    [Google Scholar]
  71. ZhangJ. LiuD. ZhangM. The cellular uptake mechanism, intracellular transportation, and exocytosis of polyamidoamine dendrimers in multidrug-resistant breast cancer cells.Int. J. Nanomedicine2016113677369010.2147/IJN.S10641827536106
    [Google Scholar]
  72. VermaR. KaushikA. AlmeerR. RahmanM.H. Abdel-DaimM.M. KaushikD. Improved pharmacodynamic potential of rosuvastatin by self-nanoemulsifying drug delivery system: An in vitro and in vivo evaluation.Int. J. Nanomedicine20211690592410.2147/IJN.S28766533603359
    [Google Scholar]
  73. VermaR. KaushikD. Development, optimization, characterization and impact of in vitro lipolysis on drug release of telmisartan loaded SMEDDS.Drug Deliv. Lett.20199433034010.2174/2210303109666190614120556
    [Google Scholar]
  74. ElnaggarY. Abdallah, Gohar EY, Elsheikh. Nanoemulsion liquid preconcentrates for raloxifene hydrochloride: Optimization and in vivo appraisal.Int. J. Nanomedicine201273787380210.2147/IJN.S3318622888234
    [Google Scholar]
  75. KaziM.A. NasrF. NomanO. AlharbiA. AlqahtaniM.S. AlanaziF.K. Development, characterization optimization, and assessment of curcumin-loaded bioactive self-nanoemulsifying formulations and their inhibitory effects on human breast cancer MCF-7 cells.Pharmaceutics20201211110710.3390/pharmaceutics1211110733217989
    [Google Scholar]
  76. LuL. LiuY. ZhangZ. Pomegranate seed oil exerts synergistic effects with trans-resveratrol in a self-nanoemulsifying drug delivery system.Biol. Pharm. Bull.201538101658166210.1248/bpb.b15‑0037126424027
    [Google Scholar]
  77. TebaH.E. KhalilI.A. El SorogyH.M. Novel cubosome based system for ocular delivery of acetazolamide.Drug Deliv.20212812177218610.1080/10717544.2021.198909034662264
    [Google Scholar]
  78. SaberM.M. Al-mahallawiA.M. StorkB. Metformin dampens cisplatin cytotoxicity on leukemia cells after incorporation into cubosomal nanoformulation.Biomed. Pharmacother.202114311214010.1016/j.biopha.2021.11214034649331
    [Google Scholar]
  79. MehannaM.M. SarieddineR. AlwattarJ.K. ChouaibR. Gali-MuhtasibH. Anticancer activity of thymoquinone cubic phase nanoparticles against human breast cancer: Formulation, cytotoxicity and subcellular localization.Int. J. Nanomedicine2020159557957010.2147/IJN.S26379733293807
    [Google Scholar]
  80. AgrawalM. SarafS. PradhanM. Design and optimization of curcumin loaded nano lipid carrier system using Box-Behnken design.Biomed. Pharmacother.202114111191910.1016/j.biopha.2021.11191934328108
    [Google Scholar]
  81. MakeenH.A. MohanS. Al-KasimM.A. Preparation, characterization, and anti-cancer activity of nanostructured lipid carriers containing imatinib.Pharmaceutics2021137108610.3390/pharmaceutics1307108634371776
    [Google Scholar]
  82. KebebeD. WuY. ZhangB. Dimeric c(RGD) peptide conjugated nanostructured lipid carriers for efficient delivery of Gambogic acid to breast cancer.Int. J. Nanomedicine2019146179619510.2147/IJN.S20242431447559
    [Google Scholar]
  83. OngY.S. Saiful YazanL. NgW.K. Thymoquinone loaded in nanostructured lipid carrier showed enhanced anticancer activity in 4T1 tumor-bearing mice.Nanomedicine (Lond.)20191411151310.2217/nnm‑2017‑032230028248
    [Google Scholar]
  84. LiX. JiaX. NiuH. Nanostructured lipid carriers co-delivering lapachone and doxorubicin for overcoming multidrug resistance in breast cancer therapy.Int. J. Nanomedicine2018134107411910.2147/IJN.S16392930034236
    [Google Scholar]
  85. FernandesR.S. SilvaJ.O. SeabraH.A. α- Tocopherol succinate loaded nano-structed lipid carriers improves antitumor activity of doxorubicin in breast cancer models in vivo.Biomed. Pharmacother.20181031348135410.1016/j.biopha.2018.04.13929864917
    [Google Scholar]
  86. SabzichiM. MohammadianJ. Yari KhosroushahiA. BazzazR. HamishehkarH. Folate-targeted nanostructured lipid carriers (NLCs) enhance (letrozol) efficacy in MCF-7 breast cancer cells.Asian Pac. J. Cancer Prev.201617125185518810.22034/APJCP.2016.17.12.518528124885
    [Google Scholar]
  87. DanilukK. KutwinM. GrodzikM. Use of selected carbon nanoparticles as melittin carriers for MCF-7 and MDA-MB-231 human breast cancer cells.Materials20191319010.3390/ma1301009031878020
    [Google Scholar]
  88. ZhuH. ZhouB. ChanL. DuY. ChenT. Transferrin-functionalized nanographene oxide for delivery of platinum complexes to enhance cancer-cell selectivity and apoptosis-inducing efficacy.Int. J. Nanomedicine2017125023503810.2147/IJN.S13920728761342
    [Google Scholar]
  89. DanZ. CaoH. HeX. A pH-responsive host-guest nanosystem loading succinobucol suppresses lung metastasis of breast cancer.Theranostics20166343544510.7150/thno.1389626909117
    [Google Scholar]
  90. ZhangX. GuoP. Multifunctional RNA nanoparticles and methods for treating cancer and therapeutic resistant cancer.US 111101822021
  91. KurzrockR. LiL. MehtaK. Liposomal curcumin for treatment of cancer.US 92831852016
  92. SachdevaM. PatelK. RishiA. Self-emulsifying formulation of CARP-1 functional mimetics.US 102200252019
  93. AhmadA. AliS.M. AhmadM.U. SheikhS. AhmadI. Endoxifen compositions and methods.US 93331902016
  94. HusseiniG. Al-SayahM. ElsadigA. Systems and methods for targeted breast cancer therapies.US 108641612020
  95. ZhuD. ChenG. liposomal pharmaceutical formulations.US 107368452020
  96. MassadehS. AlaamerryM. Method for delivering pharmaceutical nanoparticles to cancer cells.US 107097952020
    [Google Scholar]
  97. DesaiN.P. Soon-ShiongP. Breast cancer therapy based on hormone receptor status with nanoparticles comprising taxane.US 106824202020
    [Google Scholar]
  98. ArinzehT.L. RameshwarP. GuiroK.T. 3-D in vitro model for breast cancer dormancy. US 101975632019
  99. HaickH. HakimM. Volatile organic compounds as diagnostic markers for various types of cancer.US 95517122017
    [Google Scholar]
  100. KoshelevaO.K. LaiP. ChenN.G. HsaioM. ChenC. Nanoparticle-assisted ultrasound for breast cancer therapy.US 94274662016
    [Google Scholar]
  101. HuR. WangJ. JiaoY. LiangH. DingD. Fulvestrant nanosphere/microsphere and preparative method and use thereof.US 89566592015
    [Google Scholar]
  102. MendelsohnA. DuongA. FischerK. RoordaW. Polymeric stabilizing formulations.US 110215762021
    [Google Scholar]
  103. ManiamG. MaiC.W. ZulkefeliM. DufèsC. TanD.M.Y. FuJ.Y. Challenges and opportunities of nanotechnology as delivery platform for tocotrienols in cancer therapy.Front. Pharmacol.20189135810.3389/fphar.2018.0135830534071
    [Google Scholar]
  104. Izak-NauE. HukA. ReidyB. Impact of storage conditions and storage time on silver nanoparticles’ physicochemical properties and implications for their biological effects.RSC Advances20155102841728418510.1039/C5RA10187E
    [Google Scholar]
  105. LuM. OzcelikA. GrigsbyC.L. Microfluidic hydrodynamic focusing for synthesis of nanomaterials.Nano Today201611677879210.1016/j.nantod.2016.10.00630337950
    [Google Scholar]
  106. JiZ. WangX. ZhangH. Designed synthesis of CeO2 nanorods and nanowires for studying toxicological effects of high aspect ratio nanomaterials.ACS Nano2012665366538010.1021/nn301211422564147
    [Google Scholar]
  107. RafiyathS.M. RasulM. LeeB. WeiG. LambaG. LiuD. Comparison of safety and toxicity of liposomal doxorubicin vs. conventional anthracyclines: A meta-analysis.Exp. Hematol. Oncol.2012111010.1186/2162‑3619‑1‑1023210520
    [Google Scholar]
  108. SzebeniJ. Complement activation-related pseudoallergy: A stress reaction in blood triggered by nanomedicines and biologicals.Mol. Immunol.201461216317310.1016/j.molimm.2014.06.03825124145
    [Google Scholar]
  109. VentolaC.L. Progress in nanomedicine: Approved and investigational nanodrugs.P&T2017421274275529234213
    [Google Scholar]
  110. RuoziB. BellettiD. SharmaH.S. PLGA nanoparticles loadedcerebrolysin: Studies on their preparation andinvestigation of the effect of storage and serumstability with reference to traumatic braininjury.Mol. Neurobiol.201552289991210.1007/s12035‑015‑9235‑x26108180
    [Google Scholar]
  111. KumarG.P. RajeshwarraoP. Nonionic surfactant vesicular systems for effective drug delivery—an overview.Acta Pharm. Sin. B20111420821910.1016/j.apsb.2011.09.002
    [Google Scholar]
  112. PrabhakarU. MaedaH. JainR.K. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology.Cancer Res.20137382412241710.1158/0008‑5472.CAN‑12‑456123423979
    [Google Scholar]
  113. WilhelmS. TavaresA.J. DaiQ. Analysis of nanoparticle delivery to tumours.Nat. Rev. Mater.2016151601410.1038/natrevmats.2016.14
    [Google Scholar]
  114. BaldeshwilerA.M. History of FDA good laboratory practices.Qual. Assur. J.20037315716110.1002/qaj.228
    [Google Scholar]
  115. SanhaiW.R. SpiegelJ. FerrariM. A critical path approach to advance nanoengineered medical products.Drug Discov. Today. Technol.200742354110.1016/j.ddtec.2007.10.00324980838
    [Google Scholar]
  116. RamanathanR.K. KornR.L. RaghunandN. Correlation between ferumoxytol uptake in tumor lesions by MRI and response to nanoliposomal irinotecan in patients with advanced solid tumors: A pilot study.Clin. Cancer Res.201723143638364810.1158/1078‑0432.CCR‑16‑199028159813
    [Google Scholar]
  117. LiuH. CuiG. LuoY. Artificial intelligence-based breast cancer diagnosis using ultrasound images and grid-based deep feature generator.Int. J. Gen. Med.2022152271228210.2147/IJGM.S34749135256855
    [Google Scholar]
  118. VobugariN. RajaV. SethiU. GandhiK. RajaK. SuraniS.R. Advancements in oncology with artificial intelligence: A review article.Cancers 2022145134910.3390/cancers1405134935267657
    [Google Scholar]
  119. DuR. ChenY. LiT. ShiL. FeiZ. LiY. Discrimination of breast cancer based on ultrasound images and convolutional neural network.J. Oncol.202220221910.1155/2022/773358335345516
    [Google Scholar]
  120. QiX. ZhangL. ChenY. Automated diagnosis of breast ultrasonography images using deep neural networks.Med. Image Anal.20195218519810.1016/j.media.2018.12.00630594771
    [Google Scholar]
  121. EroğluY. YildirimM. ÇinarA. Convolutional neural networks based classification of breast ultrasonography images by hybrid method with respect to benign, malignant, and normal using mRMR.Comput. Biol. Med.202113310440710.1016/j.compbiomed.2021.10440733901712
    [Google Scholar]
  122. NugrohoH.A. SaharM. ArdiyantoI. IndrastutiR. ChoridahL. Classification of breast ultrasound images based on posterior feature.1st International Conference on Biomedical Engineering (IBIOMED)05-06 October 2016; Yogyakarta, Indonesia.20161410.1109/IBIOMED.2016.7869825
    [Google Scholar]
  123. BabaghorbaniP. ParvanehS. GhassemiA. ManshaiK. Sonography images for breast cancer texture classification in diagnosis of malignant or benign tumors.4th International Conference on Bioinformatics and Biomedical Engineering18-20 June 2010; Chengdu, China.20101410.1109/ICBBE.2010.5516073
    [Google Scholar]
  124. TanT. PlatelB. MusR. TabarL. MannR.M. KarssemeijerN. Computer-aided detection of cancer in automated 3-D breast ultrasound.IEEE Trans. Med. Imaging20133291698170610.1109/TMI.2013.226338923693128
    [Google Scholar]
  125. LiaoW.X. HeP. HaoJ. Automatic identification of breast ultrasound image based on supervised block-based region segmentation algorithm and features combination migration deep learning model.IEEE J. Biomed. Health Inform.202024498499310.1109/JBHI.2019.296082131869809
    [Google Scholar]
  126. LiuX. ShiJ. ZhouS. LuM. An iterated Laplacian based semi-supervised dimensionality reduction for classification of breast cancer on ultrasound images.Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.20144679468210.1109/EMBC.2014.6944668
    [Google Scholar]
  127. TakemuraA. ShimizuA. HamamotoK. Discrimination of breast tumors in ultrasonic images using an ensemble classifier based on the AdaBoost algorithm with feature selection.IEEE Trans. Med. Imaging201029359860910.1109/TMI.2009.202263020199907
    [Google Scholar]
  128. JooS. YangY.S. MoonW.K. KimH.C. Computer-aided diagnosis of solid breast nodules: Use of an artificial neural network based on multiple sonographic features.IEEE Trans. Med. Imaging200423101292130010.1109/TMI.2004.83461715493696
    [Google Scholar]
  129. LiangG. FanW. LuoH. ZhuX. The emerging roles of artificial intelligence in cancer drug development and precision therapy.Biomed. Pharmacother.202012811025510.1016/j.biopha.2020.11025532446113
    [Google Scholar]
  130. NakhjavaniM. HardinghamJ.E. PalethorpeH.M. PriceT.J. TownsendA.R. Druggable molecular targets for the treatment of triple negative breast cancer.J. Breast Cancer201922334136110.4048/jbc.2019.22.e3931598336
    [Google Scholar]
  131. DongJ. LiB. LinD. ZhouQ. HuangD. Advances in targeted therapy and immunotherapy for non-small cell lung cancer based on accurate molecular typing.Front. Pharmacol.20191023010.3389/fphar.2019.0023030930778
    [Google Scholar]
  132. Beltrán-GraciaE. López-CamachoA. Higuera-CiaparaI. Velázquez-FernándezJ.B. Vallejo-CardonaA.A. Nanomedicine review: Clinical developments in liposomal applications.Cancer Nanotechnol.20191011110.1186/s12645‑019‑0055‑y
    [Google Scholar]
/content/journals/nanotec/10.2174/1872210517666230731091046
Loading
/content/journals/nanotec/10.2174/1872210517666230731091046
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test