Skip to content
2000
Volume 19, Issue 1
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

Myocardial infarction (MI), commonly known as a heart attack, is a critical cardiovascular condition associated with high morbidity and mortality rates worldwide. Despite significant advancements in traditional treatment modalities, there remains a need for innovative approaches to improve the prognosis and treatment outcomes of MI. The emergence of nanotechnology has provided a promising avenue for revolutionizing the management of this life-threatening condition. This manuscript aims to explore the role of nanotechnology in the prognosis and treatment of myocardial infarctions. Nanotechnology offers unique advantages in the field of cardiovascular medicine, including targeted drug delivery, precise imaging and diagnosis, regenerative medicine approaches, biosensors and monitoring, and the integration of therapy and diagnostics (theragnostic). One of the key advantages of nanotechnology is the ability to deliver therapeutic agents directly to the affected site. Nanoparticles can be engineered to carry drugs specifically to damaged heart tissue, enhancing their efficacy while minimizing off-target effects. Additionally, nanoparticles can serve as contrast agents, facilitating high-resolution imaging and accurate diagnosis of infarcted heart tissue. Furthermore, nanotechnology-based regenerative approaches show promise in promoting tissue healing and regeneration after MI. Nanomaterials can provide scaffolding structures or release growth factors to stimulate the growth of new blood vessels and support tissue repair. This regenerative potential holds significant implications for restoring cardiac function and minimizing long-term complications. Nanotechnology also enables real-time monitoring of critical parameters within the heart, such as oxygen levels, pH, and electrical activity, through the utilization of nanoscale devices and sensors. This capability allows for the early detection of complications and facilitates timely interventions. Moreover, the integration of therapy and diagnostics through nanotechnology-based platforms, known as theragnostic, holds tremendous potential. Nanoparticles can simultaneously deliver therapeutic agents while providing imaging capabilities, enabling personalized treatment strategies tailored to individual patients. This manuscript will review the recent advancements, clinical trials, and patents in nanotechnology for the prognosis and treatment of myocardial infarctions. By leveraging nanotechnology's unique properties and applications, researchers and clinicians can develop innovative therapeutic approaches that enhance patient outcomes, improve prognosis, and ultimately revolutionize the management of myocardial infarctions.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/1872210517666230721123453
2023-10-09
2024-12-26
Loading full text...

Full text loading...

References

  1. JollyS.S. JamesS. DžavíkV. Thrombus aspiration in ST-segment–elevation myocardial infarction: An individual patient meta-analysis: Thrombectomy Trialists Collaboration.Circulation2017135214315210.1161/CIRCULATIONAHA.116.02537127941066
    [Google Scholar]
  2. Cardiovascular diseases (CVD). World Health Organization2009
    [Google Scholar]
  3. Juan-SalvadoresP. Jiménez DíazV.A. Iglesia CarreñoC. Coronary artery disease in very young patients: Analysis of risk factors and long-term follow-up.J. Cardiovasc. Dev. Dis.2022938210.3390/jcdd903008235323630
    [Google Scholar]
  4. VickersN.J. Animal communication.Curr. Biol.20172714R713R71510.1016/j.cub.2017.05.06428743020
    [Google Scholar]
  5. RentropK.P. FeitF. Reperfusion therapy for acute myocardial infarction: Concepts and controversies from inception to acceptance.Am. Heart J.2015170597198010.1016/j.ahj.2015.08.00526542507
    [Google Scholar]
  6. Martín GiménezV.M. KassuhaD.E. ManuchaW. Nanomedicine applied to cardiovascular diseases: Latest developments.Ther. Adv. Cardiovasc. Dis.201711413314210.1177/175394471769229328198204
    [Google Scholar]
  7. ThygesenK AlpertJS HarveyD White on behalf of the Joint ESC (Vol. 28, p. 2525). ACCF/AHA/WHF Task Force for the redefinition of myocardial infarction. Eur Heart J20072007
    [Google Scholar]
  8. MohanJ.C. NarulaJ. New universal definition of myocardial infarction: global implications, applicability, and need for flexibility.Glob. Heart20127437738010.1016/j.gheart.2012.10.00525689948
    [Google Scholar]
  9. BroughtonK.M. WangB.J. FirouziF. Mechanisms of cardiac repair and regeneration.Circ. Res.201812281151116310.1161/CIRCRESAHA.117.31258629650632
    [Google Scholar]
  10. HenryT.D. AnnexB.H. McKendallG.R. The VIVA trial.Circulation2003107101359136510.1161/01.CIR.0000061911.47710.8A12642354
    [Google Scholar]
  11. EckhouseS.R. PurcellB.P. McGarveyJ.R. Local hydrogel release of recombinant TIMP-3 attenuates adverse left ventricular remodeling after experimental myocardial infarction.Sci. Transl. Med.20146223223ra21-1
    [Google Scholar]
  12. LeeK. SilvaE.A. MooneyD.J. Growth factor delivery-based tissue engineering: General approaches and a review of recent developments.J. R. Soc. Interface201185515317010.1098/rsif.2010.022320719768
    [Google Scholar]
  13. GeorgeT.A. HsuC.C. MeesonA. LundyD.J. Nanocarrier-based targeted therapies for myocardial infarction.Pharmaceutics202214593010.3390/pharmaceutics1405093035631516
    [Google Scholar]
  14. GaharwarA.K. SinghI. KhademhosseiniA. Engineered biomaterials for in situ tissue regeneration.Nat. Rev. Mater.20205968670510.1038/s41578‑020‑0209‑x
    [Google Scholar]
  15. SimW. BarnardR. BlaskovichM.A.T. ZioraZ. Antimicrobial silver in medicinal and consumer applications: A patent review of the past decade (2007–2017).Antibiotics2018749310.3390/antibiotics704009330373130
    [Google Scholar]
  16. SoaresS. SousaJ. PaisA. VitorinoC. Nanomedicine: Principles, properties, and regulatory issues.Front Chem.2018636010.3389/fchem.2018.0036030177965
    [Google Scholar]
  17. OdukY. ZhuW. KannappanR. VEGF nanoparticles repair the heart after myocardial infarction.Am. J. Physiol. Heart Circ. Physiol.20183142H278H28410.1152/ajpheart.00471.201729101176
    [Google Scholar]
  18. FanC. JoshiJ. LiF. Nanoparticle-mediated drug delivery for treatment of ischemic heart disease.Front. Bioeng. Biotechnol.2020868710.3389/fbioe.2020.0068732671049
    [Google Scholar]
  19. GuptaP. GarciaE. SarkarA. Nanoparticle-based treatment for cardiovascular diseases.Cardiovasc. Hematol. Disord. Drug Targets20191913344
    [Google Scholar]
  20. FornagueraC. García-CelmaM. Personalized nanomedicine: A revolution at the nanoscale.J. Pers. Med.2017741210.3390/jpm704001229023366
    [Google Scholar]
  21. SercombeL. VeeratiT. MoheimaniF. WuS.Y. SoodA.K. HuaS. Advances and challenges of liposome assisted drug delivery.Front. Pharmacol.2015628610.3389/fphar.2015.0028626648870
    [Google Scholar]
  22. RohdeL.E. ClausellN. RibeiroJ.P. Health outcomes in decompensated congestive heart failure: A comparison of tertiary hospitals in Brazil and United States.Int. J. Cardiol.20051021717710.1016/j.ijcard.2004.04.00615939101
    [Google Scholar]
  23. ZhangZ. RunaA. WuJ. ZhangH. LiX. HeZ. Bioresponsive nanogated ensemble based on structure-switchable aptamer directed assembly and disassembly of gold nanoparticles from mesoporous silica supports.Chin. Chem. Lett.201930377978210.1016/j.cclet.2018.10.019
    [Google Scholar]
  24. FanY. ChenC. HuangY. ZhangF. LinG. Study of the pH-sensitive mechanism of tumor-targeting liposomes.Colloids Surf. B Biointerfaces2017151192510.1016/j.colsurfb.2016.11.04227940165
    [Google Scholar]
  25. YuJ. LiW. YuD. Atrial natriuretic peptide modified oleate adenosine prodrug lipid nanocarriers for the treatment of myocardial infarction: in vitro and in vivo evaluation.Drug Des. Devel. Ther.2018121697170610.2147/DDDT.S16674929928113
    [Google Scholar]
  26. YellonD.M. HausenloyD.J. Myocardial reperfusion injury.N. Engl. J. Med.2007357111121113510.1056/NEJMra07166717855673
    [Google Scholar]
  27. KottenbergE. ThielmannM. BergmannL. Protection by remote ischemic preconditioning during coronary artery bypass graft surgery with isoflurane but not propofol - a clinical trial.Acta Anaesthesiol. Scand.2012561303810.1111/j.1399‑6576.2011.02585.x22103808
    [Google Scholar]
  28. BellR.M. YellonD.M. Atorvastatin, administered at the onset of reperfusion, and independent oflipid lowering, protects the myocardiumby up-regulating a pro-survival pathway.J. Am. Coll. Cardiol.200341350851510.1016/S0735‑1097(02)02816‑412575984
    [Google Scholar]
  29. AcharyaS. SahooS.K. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect.Adv. Drug Deliv. Rev.201163317018310.1016/j.addr.2010.10.00820965219
    [Google Scholar]
  30. NagaokaK. MatobaT. MaoY. A new therapeutic modality for acute myocardial infarction: Nanoparticle-mediated delivery of pitavastatin induces cardioprotection from ischemia-reperfusion injury via activation of PI3K/Akt pathway and anti-inflammation in a rat model.PLoS One2015107e013245110.1371/journal.pone.013245126167913
    [Google Scholar]
  31. TakahamaH. MinaminoT. AsanumaH. Prolonged targeting of ischemic/reperfused myocardium by liposomal adenosine augments cardioprotection in rats.J. Am. Coll. Cardiol.200953870971710.1016/j.jacc.2008.11.01419232905
    [Google Scholar]
  32. IjazI. GilaniE. NazirA. BukhariA. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles.Green Chem. Lett. Rev.202013322324510.1080/17518253.2020.1802517
    [Google Scholar]
  33. SwirskiF.K. NahrendorfM. Dispensable but not irrelevant.Science2009325594054955019644100
    [Google Scholar]
  34. TokutomeM. MatobaT. NakanoY. Peroxisome proliferator-activated receptor-gamma targeting nanomedicine promotes cardiac healing after acute myocardial infarction by skewing monocyte/macrophage polarization in preclinical animal models.Cardiovasc. Res.2019115241943110.1093/cvr/cvy20030084995
    [Google Scholar]
  35. YehE.T.H. BickfordC.L. Cardiovascular complications of cancer therapy: Incidence, pathogenesis, diagnosis, and management.J. Am. Coll. Cardiol.200953242231224710.1016/j.jacc.2009.02.05019520246
    [Google Scholar]
  36. CourtiesG. HeidtT. SebasM. In vivo silencing of the transcription factor IRF5 reprograms the macrophage phenotype and improves infarct healing.J. Am. Coll. Cardiol.201463151556156610.1016/j.jacc.2013.11.02324361318
    [Google Scholar]
  37. RozenmanY. ZouX. NeuringerL. KantorH.L. The use of superparamagnetic ferrite particles in the detection of myocardial reperfusion.Proceedings of the International Society for Magnetic Resonance in Medicine Amsterdam1989673
    [Google Scholar]
  38. SosnovikD.E. SchellenbergerE.A. NahrendorfM. Magnetic resonance imaging of cardiomyocyte apoptosis with a novel magneto-optical nanoparticle.Magn. Reson. Med.200554371872410.1002/mrm.2061716086367
    [Google Scholar]
  39. NahrendorfM. SosnovikD.E. WatermanP. Dual channel optical tomographic imaging of leukocyte recruitment and protease activity in the healing myocardial infarct.Circ. Res.200710081218122510.1161/01.RES.0000265064.46075.3117379832
    [Google Scholar]
  40. LukyanovA.N. HartnerW.C. TorchilinV.P. Increased accumulation of PEG–PE micelles in the area of experimental myocardial infarction in rabbits.J. Control. Release200494118719310.1016/j.jconrel.2003.10.00814684282
    [Google Scholar]
  41. MajmudarM.D. KeliherE.J. HeidtT. Monocyte-directed RNAi targeting CCR2 improves infarct healing in atherosclerosis-prone mice.Circulation2013127202038204610.1161/CIRCULATIONAHA.112.00011623616627
    [Google Scholar]
  42. KimD. HongJ. MoonH.H. Anti-apoptotic cardioprotective effects of SHP-1 gene silencing against ischemia–reperfusion injury: Use of deoxycholic acid-modified low molecular weight polyethyleneimine as a cardiac siRNA-carrier.J. Control. Release2013168212513410.1016/j.jconrel.2013.02.03123500061
    [Google Scholar]
  43. YuanM.J. MaghsoudiT. WangT. Exosomes mediate intercellular communication after myocardial infarction.Int. J. Med. Sci.201613211311610.7150/ijms.1411226941569
    [Google Scholar]
  44. IchimuraK. MatobaT. NakanoK. A translational study of a new therapeutic approach for acute myocardial infarction: Nanoparticle-mediated delivery of pitavastatin into reperfused myocardium reduces ischemia-reperfusion injury in a preclinical porcine model.PLoS One2016119e016242510.1371/journal.pone.016242527603665
    [Google Scholar]
  45. AshtonJ.R. WestJ.L. BadeaC.T. In vivo small animal micro-CT using nanoparticle contrast agents.Front. Pharmacol.2015625610.3389/fphar.2015.0025626581654
    [Google Scholar]
  46. ChaponC. FranconiF. LemaireL. High field magnetic resonance imaging evaluation of superparamagnetic iron oxide nanoparticles in a permanent rat myocardial infarction.Invest. Radiol.200338314114610.1097/01.RLI.0000052979.96332.9012595793
    [Google Scholar]
  47. KraitchmanD.L. HeldmanA.W. AtalarE. In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction.Circulation2003107182290229310.1161/01.CIR.0000070931.62772.4E12732608
    [Google Scholar]
  48. AmsalemY. MardorY. FeinbergM.S. Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium.Circulation2007116S11I38I4510.1161/CIRCULATIONAHA.106.68023117846324
    [Google Scholar]
  49. AilawadiS. WangX. GuH. FanG.C. Pathologic function and therapeutic potential of exosomes in cardiovascular disease.Biochim. Biophys. Acta Mol. Basis Dis.20151852111110.1016/j.bbadis.2014.10.00825463630
    [Google Scholar]
  50. YangX. ZhaoY. SunL. QiH. GaoQ. ZhangC. Electrogenerated chemiluminescence biosensor array for the detection of multiple AMI biomarkers.Sens. Actuators B Chem.2018257606710.1016/j.snb.2017.10.108
    [Google Scholar]
  51. LiZ. ZhangJ. LiY. Carbon dots based photoelectrochemical sensors for ultrasensitive detection of glutathione and its applications in probing of myocardial infarction.Biosens. Bioelectron.20189925125810.1016/j.bios.2017.07.06528772228
    [Google Scholar]
  52. TangM. ZhouZ. ShangguanL. ZhaoF. LiuS. Electrochemiluminescent detection of cardiac troponin I by using soybean peroxidase labeled-antibody as signal amplifier.Talanta2018180475310.1016/j.talanta.2017.12.01529332832
    [Google Scholar]
  53. OhK.S. SongJ.Y. YoonS.J. ParkY. KimD. YukS.H. Temperature-induced gel formation of core/shell nanoparticles for the regeneration of ischemic heart.J. Control. Release2010146220721110.1016/j.jconrel.2010.04.01420417673
    [Google Scholar]
  54. KorkusuzH. UlbrichK. WelzelK. Transferrin-coated gadolinium nanoparticles as MRI contrast agent.Mol. Imaging Biol.201315214815410.1007/s11307‑012‑0579‑622811020
    [Google Scholar]
  55. WangF. WenL. LiuJ. Albumin nanocomposites with MnO2/Gd2O3 motifs for precise MR imaging of acute myocardial infarction in rabbit models.Biomaterials202023011961410.1016/j.biomaterials.2019.11961431753475
    [Google Scholar]
  56. BrozP. Ben-HaimN. SantiniF. Nano imaging technologies: Polymer vesicles loaded with precipitated gadolinium nanoparticles: A novel target-specific contrast agent for magnetic resonance imaging.Eur. J. Nanomed.200922434810.1515/EJNM.2009.2.2.43
    [Google Scholar]
  57. NevesM.M.P.S. González-GarcíaM.B. Hernández-SantosD. Fanjul-BoladoP. Screen-printed electrochemical 96-well plate: A high-throughput platform for multiple analytical applications.Electroanalysis201426122764277210.1002/elan.201400388
    [Google Scholar]
  58. QureshiA. GurbuzY. NiaziJ.H. Biosensors for cardiac biomarkers detection: A review.Sens. Actuators B Chem.2012171-172627610.1016/j.snb.2012.05.077
    [Google Scholar]
  59. ZhangQ. PrabhuA. SanA. Al-SharabJ.F. LevonK. A polyaniline based ultrasensitive potentiometric immunosensor for cardiac troponin complex detection.Biosens. Bioelectron.20157210010610.1016/j.bios.2015.04.08425966464
    [Google Scholar]
  60. BrundageE.A. ShettigarV. LinY.H. Troponin I tyrosine phosphorylation: Novel regulator of cardiac function.Biophys. J.20191163114a10.1016/j.bpj.2018.11.646
    [Google Scholar]
  61. LiJ. LiuJ. ChenC. Remote control and modulation of cellular events by plasmonic gold nanoparticles: implications and opportunities for biomedical applications.ACS Nano20171132403240910.1021/acsnano.7b0120028300393
    [Google Scholar]
  62. ParkJ.E. KimM. HwangJ.H. NamJ.M. Golden opportunities: Plasmonic gold nanostructures for biomedical applications based on the second near‐infrared window.Small Methods201713160003210.1002/smtd.201600032
    [Google Scholar]
  63. LiuB. LiY. WanH. Diagnostics: High performance, multiplexed lung cancer biomarker detection on a plasmonic gold chip (Adv. Funct. Mater. 44/2016).Adv. Funct. Mater.201626447993310.1002/adfm.201670290
    [Google Scholar]
  64. SharifiM. AttarF. SabouryA.A. Plasmonic gold nanoparticles: Optical manipulation, imaging, drug delivery and therapy.J. Control. Release2019311-31217018910.1016/j.jconrel.2019.08.03231472191
    [Google Scholar]
  65. HuangY. HuangP. LinJ. Plasmonic gold nanovesicles for biomedical applications.Small Methods201933180039410.1002/smtd.201800394
    [Google Scholar]
  66. FalahatiM. AttarF. SharifiM. Gold nanomaterials as key suppliers in biological and chemical sensing, catalysis, and medicine.Biochim. Biophys. Acta, Gen. Subj.20201864112943510.1016/j.bbagen.2019.12943531526869
    [Google Scholar]
  67. YangY.N. LinH.I. WangJ.H. ShieshS.C. LeeG.B. An integrated microfluidic system for C-reactive protein measurement.Biosens. Bioelectron.200924103091309610.1016/j.bios.2009.03.03419403298
    [Google Scholar]
  68. McDonnellB. HeartyS. LeonardP. O’KennedyR. Cardiac biomarkers and the case for point-of-care testing.Clin. Biochem.2009427-854956110.1016/j.clinbiochem.2009.01.01919318022
    [Google Scholar]
  69. MairJ. Artner-DworzakE. LechleitnerP. Early diagnosis of acute myocardial infarction by a newly developed rapid immunoturbidimetric assay for myoglobin.Heart1992681146246810.1136/hrt.68.11.4621467029
    [Google Scholar]
  70. BertoncelloP. ForsterR.J. Nanostructured materials for electrochemiluminescence (ECL)-based detection methods: Recent advances and future perspectives.Biosens. Bioelectron.200924113191320010.1016/j.bios.2009.02.01319318243
    [Google Scholar]
  71. DellasC. PulsM. LankeitM. Elevated heart-type fatty acid-binding protein levels on admission predict an adverse outcome in normotensive patients with acute pulmonary embolism.J. Am. Coll. Cardiol.201055192150215710.1016/j.jacc.2009.10.07820447541
    [Google Scholar]
  72. PattersonC.C. SmithA.E. YarnellJ.W.G. RumleyA. Ben-ShlomoY. LoweG.D.O. The associations of interleukin-6 (IL-6) and downstream inflammatory markers with risk of cardiovascular disease: The caerphilly study.Atherosclerosis2010209255155710.1016/j.atherosclerosis.2009.09.03019836021
    [Google Scholar]
  73. LaiX.H. LiangR.L. LiuT.C. DongZ.N. WuY.S. LiL.H. A fluorescence immunochromatographic assay using europium (III) chelate microparticles for rapid, quantitative, and sensitive detection of creatine kinase MB.J. Fluoresc.201626398799610.1007/s10895‑016‑1786‑327034063
    [Google Scholar]
  74. CaiY. KangK. LiQ. WangY. HeX. Rapid and sensitive detection of cardiac troponin I for point-of-care tests based on red fluorescent microspheres.Molecules2018235110210.3390/molecules2305110229735888
    [Google Scholar]
  75. LahtinenS. LyytikäinenA. SirkkaN. PäkkiläH. SoukkaT. Improving the sensitivity of immunoassays by reducing non-specific binding of poly(acrylic acid) coated upconverting nanoparticles by adding free poly(acrylic acid).Mikrochim. Acta2018185422010.1007/s00604‑018‑2756‑z29594511
    [Google Scholar]
  76. GongX. ZhangB. PiaoJ. High sensitive and multiple detection of acute myocardial infarction biomarkers based on a dual-readout immunochromatography test strip.Nanomedicine20181441257126610.1016/j.nano.2018.02.01329604349
    [Google Scholar]
  77. AdhikariJ. KeasberryN.A. MahadiA.H. YoshikawaH. TamiyaE. AhmedM.U. An ultra-sensitive label-free electrochemiluminescence CKMB immunosensor using a novel nanocomposite-modified printed electrode.RSC Advances2019959342833429210.1039/C9RA05016G35529968
    [Google Scholar]
  78. WuY.W. YehY.T. WuC.C. HuangC.L. ChangY.Y. WuC.C. Clinical feasibility of biofunctionalized magnetic nanoparticles for detecting multiple cardiac biomarkers in emergency chest pain patients.Zhonghua Minguo Xinzangxue Hui Zazhi202036664965933235422
    [Google Scholar]
  79. RivasG.A. RodríguezM.C. RubianesM.D. Carbon nanotubes-based electrochemical (bio)sensors for biomarkers.Appl. Mater. Today2017956658810.1016/j.apmt.2017.10.005
    [Google Scholar]
  80. HasanzadehM. ShadjouN. EskandaniM. de la GuardiaM. OmidiniaE. Electrochemical nano-immunosensing of effective cardiac biomarkers for acute myocardial infarction.Trends Analyt. Chem.201349203010.1016/j.trac.2013.04.009
    [Google Scholar]
  81. MoreiraF.T.C. DutraR.A.F. NoronhaJ.P.C. SalesM.G.F. Electrochemical biosensor based on biomimetic material for myoglobin detection.Electrochim. Acta201310748148710.1016/j.electacta.2013.06.061
    [Google Scholar]
  82. DanilaD. JohnsonE. KeeP. CT imaging of myocardial scars with collagen-targeting gold nanoparticles.Nanomedicine2013971067107610.1016/j.nano.2013.03.00923563046
    [Google Scholar]
  83. BejaranoJ. Navarro-MarquezM. Morales-ZavalaF. Nanoparticles for diagnosis and therapy of atherosclerosis and myocardial infarction: evolution toward prospective theranostic approaches.Theranostics20188174710473210.7150/thno.2628430279733
    [Google Scholar]
  84. CormodeD.P. Si-MohamedS. Bar-NessD. Multicolor spectral photon-counting computed tomography: In vivo dual contrast imaging with a high count rate scanner.Sci. Rep.201771478410.1038/s41598‑017‑04659‑928684756
    [Google Scholar]
  85. HyafilF. CornilyJ.C. FeigJ.E. Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography.Nat. Med.200713563664110.1038/nm157117417649
    [Google Scholar]
  86. NiN.C. JinC.S. CuiL. Non-invasive macrophage tracking using novel polysome nanoparticles in the post-myocardial infarction murine heart.Mol. Imaging Biol.201618455756810.1007/s11307‑015‑0922‑926728161
    [Google Scholar]
  87. SawallS. FrankeD. KirchherrA. In vivo quantification of myocardial infarction in mice using micro-CT and a novel blood pool agent.Contrast Media Mol. Imaging201720171710.1155/2017/261704729114173
    [Google Scholar]
  88. MajorosI. BakerJ.R.Jr Dendrimer-based nanomedicine.Pan Stanford Publishing2008
    [Google Scholar]
  89. KeliherE.J. YooJ. NahrendorfM. 89Zr-labeled dextran nanoparticles allow in vivo macrophage imaging.Bioconjug. Chem.201122122383238910.1021/bc200405d22035047
    [Google Scholar]
  90. PanD. WilliamsT.A. SenpanA. Detecting vascular biosignatures with a colloidal, radio-opaque polymeric nanoparticle.J. Am. Chem. Soc.200913142155221552710.1021/ja906797z19795893
    [Google Scholar]
  91. AlmutairiA. RossinR. ShokeenM. Biodegradable dendritic positron-emitting nanoprobes for the noninvasive imaging of angiogenesis.Proc. Natl. Acad. Sci.2009106368569010.1073/pnas.081175710619129498
    [Google Scholar]
  92. FaircloughM. PrenantC. EllisB. A new technique for the radiolabelling of mixed leukocytes with zirconium-89 for inflammation imaging with positron emission tomography.J. Labelled Comp. Radiopharm.201659727027610.1002/jlcr.339227061114
    [Google Scholar]
  93. KeliherE.J. YeY.X. WojtkiewiczG.R. Polyglucose nanoparticles with renal elimination and macrophage avidity facilitate PET imaging in ischaemic heart disease.Nat. Commun.2017811406410.1038/ncomms1406428091604
    [Google Scholar]
  94. HajipourM.J. MehraniM. AbbasiS.H. Nanoscale technologies for prevention and treatment of heart failure: challenges and opportunities.Chem. Rev.201911921113521139010.1021/acs.chemrev.8b0032331490059
    [Google Scholar]
  95. LozanoO. Torres-QuintanillaA. García-RivasG. Nanomedicine for the cardiac myocyte: Where are we?J. Control. Release201827114916510.1016/j.jconrel.2017.12.01829273321
    [Google Scholar]
  96. YajimaS. MiyagawaS. FukushimaS. Prostacyclin analog–loaded nanoparticles attenuate myocardial ischemia/reperfusion injury in rats.JACC Basic Transl. Sci.20194331833110.1016/j.jacbts.2018.12.00631312756
    [Google Scholar]
  97. LiL. WangY. GuoR. Ginsenoside Rg3-loaded, reactive oxygen species-responsive polymeric nanoparticles for alleviating myocardial ischemia-reperfusion injury.J. Control. Release202031725927210.1016/j.jconrel.2019.11.03231783047
    [Google Scholar]
  98. ChengY. LiuD. ZhangC. Mitochondria-targeted antioxidant delivery for precise treatment of myocardial ischemia–reperfusion injury through a multistage continuous targeted strategy.Nanomedicine20191623624910.1016/j.nano.2018.12.01430639669
    [Google Scholar]
  99. JiangD. NiD. RosenkransZ.T. HuangP. YanX. CaiW. Nanozyme: new horizons for responsive biomedical applications.Chem. Soc. Rev.201948143683370410.1039/C8CS00718G31119258
    [Google Scholar]
  100. CadenasS. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection.Free Radic. Biol. Med.2018117768910.1016/j.freeradbiomed.2018.01.02429373843
    [Google Scholar]
  101. YuL. YangG. ZhangX. Megakaryocytic leukemia 1 bridge epigenetic activation of NADPH oxidase in macrophages to cardiac ischemia-reperfusion injury.Circulation2018138242820283610.1161/CIRCULATIONAHA.118.03537730018168
    [Google Scholar]
  102. KongP. ShindeA.V. SuY. Opposing actions of fibroblast and cardiomyocyte Smad3 signaling in the infarcted myocardium.Circulation2018137770772410.1161/CIRCULATIONAHA.117.02962229229611
    [Google Scholar]
  103. MatsushimaS. KurodaJ. AgoT. ZhaiP. SadoshimaJ. Broad suppression of NADPH oxidase activity exacerbates ischemia/reperfusion injury via disturbance of cell metabolism.Circulation2012126S21
    [Google Scholar]
  104. GriendlingK.K. SorescuD. Ushio-FukaiM. NAD(P)H oxidase: Role in cardiovascular biology and disease.Circ. Res.200086549450110.1161/01.RES.86.5.49410720409
    [Google Scholar]
  105. WangH. WanK. ShiX. Recent advances in enzyme research.Adv. Mater.20193145180536810.1002/adma.201805368
    [Google Scholar]
  106. CaiX. YangC. ShaoL. Targeting NOX 4 by petunidin improves anoxia/reoxygenation-induced myocardium injury.Eur. J. Pharmacol.202088817341410.1016/j.ejphar.2020.17341432828742
    [Google Scholar]
  107. SiuK.L. LotzC. PingP. CaiH. Netrin-1 abrogates ischemia/reperfusion-induced cardiac mitochondrial dysfunction via nitric oxide-dependent attenuation of NOX4 activation and recoupling of NOS.J. Mol. Cell. Cardiol.20157817418510.1016/j.yjmcc.2014.07.00525066694
    [Google Scholar]
  108. LeeD. BaeS. KeQ. Hydrogen peroxide-responsive copolyoxalate nanoparticles for detection and therapy of ischemia–reperfusion injury.J. Control. Release201317231102111010.1016/j.jconrel.2013.09.02024096013
    [Google Scholar]
  109. SaravanakumarG. KimJ. KimW.J. Reactive oxygen species responsive drug delivery systems: Promises and challenges.Adv. Sci.201741160012410.1002/advs.20160012428105390
    [Google Scholar]
  110. IdéeJ.M. PortM. DencausseA. LancelotE. CorotC. Involvement of gadolinium chelates in the mechanism of nephrogenic systemic fibrosis: An update.Radiol. Clin. North Am.2009475855869vii.10.1016/j.rcl.2009.06.00619744600
    [Google Scholar]
  111. PanD. CaruthersS.D. SenpanA. SchmiederA.H. WicklineS.A. LanzaG.M. Revisiting an old friend: Manganese-based MRI contrast agents.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20113216217310.1002/wnan.11620860051
    [Google Scholar]
  112. WolfG.L. BaumL. Cardiovascular toxicity and tissue proton T1 response to manganese injection in the dog and rabbit.AJR Am. J. Roentgenol.1983141119319710.2214/ajr.141.1.1936305179
    [Google Scholar]
  113. HuangH. YueT. XuK. GolzarianJ. YuJ. HuangJ. Fabrication and evaluation of tumor-targeted positive MRI contrast agent based on ultrasmall MnO nanoparticles.Colloids Surf. B Biointerfaces201513114815410.1016/j.colsurfb.2015.04.04725982318
    [Google Scholar]
  114. ChenN. ShaoC. LiS. Cy5.5 conjugated MnO nanoparticles for magnetic resonance/near-infrared fluorescence dual-modal imaging of brain gliomas.J. Colloid Interface Sci.2015457273410.1016/j.jcis.2015.06.04626151564
    [Google Scholar]
  115. ZhengY.Y. ZhangH.H. YanX.X. Protective effect of low dose gadolinium chloride against isoproterenol-induced myocardial injury in rat.Apoptosis20152091164117510.1007/s10495‑015‑1147‑826089194
    [Google Scholar]
  116. MiuraT. TannoM. The mPTP and its regulatory proteins: Final common targets of signalling pathways for protection against necrosis.Cardiovasc. Res.201294218118910.1093/cvr/cvr30222072634
    [Google Scholar]
  117. LiH. LiaoY. GaoL. Coronary serum exosomes derived from patients with myocardial ischemia regulate angiogenesis through the miR-939-mediated nitric oxide signaling pathway.Theranostics2018882079209310.7150/thno.2189529721064
    [Google Scholar]
  118. ChengM. YangJ. ZhaoX. Circulating myocardial microRNAs from infarcted hearts are carried in exosomes and mobilise bone marrow progenitor cells.Nat. Commun.201910195910.1038/s41467‑019‑08895‑730814518
    [Google Scholar]
  119. LiuS. ChenX. BaoL. Treatment of infarcted heart tissue via the capture and local delivery of circulating exosomes through antibody-conjugated magnetic nanoparticles.Nat. Biomed. Eng.20204111063107510.1038/s41551‑020‑00637‑133159193
    [Google Scholar]
  120. ChenG.H. XuJ. YangY.J. Exosomes: promising sacks for treating ischemic heart disease?Am. J. Physiol. Heart Circ. Physiol.20173133H508H52310.1152/ajpheart.00213.201728646026
    [Google Scholar]
  121. XuJ.Y. ChenG.H. YangY.J. Exosomes: A rising star in failing hearts.Front. Physiol.2017849410.3389/fphys.2017.0049428751864
    [Google Scholar]
  122. Ozaki TanS.J. FlorianoJ.F. NicastroL. EmanueliC. CatapanoF. Novel applications of mesenchymal stem cell-derived exosomes for myocardial infarction therapeutics.Biomolecules202010570710.3390/biom1005070732370160
    [Google Scholar]
  123. ChengC.J. TietjenG.T. Saucier-SawyerJ.K. SaltzmanW.M. A holistic approach to targeting disease with polymeric nanoparticles.Nat. Rev. Drug Discov.201514423924710.1038/nrd450325598505
    [Google Scholar]
  124. ChangM.Y. YangY.J. ChangC.H. Functionalized nanoparticles provide early cardioprotection after acute myocardial infarction.J. Control. Release2013170228729410.1016/j.jconrel.2013.04.02223665256
    [Google Scholar]
  125. RodnessJ. MihicA. MiyagiY. WuJ. WeiselR.D. LiR.K. VEGF-loaded microsphere patch for local protein delivery to the ischemic heart.Acta Biomater.20164516918110.1016/j.actbio.2016.09.00927619839
    [Google Scholar]
  126. QuadrosH.C. SantosL.M.F. MeiraC.S. Development and in vitro characterization of polymeric nanoparticles containing recombinant adrenomedullin-2 intended for therapeutic angiogenesis.Int. J. Pharm.202057611899710.1016/j.ijpharm.2019.11899731893542
    [Google Scholar]
  127. HuangZ. SongY. PangZ. Targeted delivery of thymosin beta 4 to the injured myocardium using CREKA-conjugated nanoparticles.Int. J. Nanomedicine2017123023303610.2147/IJN.S13194928442910
    [Google Scholar]
  128. HuangZ. SongY. PangZ. Fibrin‐targeting delivery: A novel platform for cardiac regenerative medicine.J. Cell. Mol. Med.201620122410241310.1111/jcmm.1291227469290
    [Google Scholar]
  129. ZhangB. WangH. ShenS. Fibrin-targeting peptide CREKA-conjugated multi-walled carbon nanotubes for self-amplified photothermal therapy of tumor.Biomaterials201679465510.1016/j.biomaterials.2015.11.06126695116
    [Google Scholar]
  130. SumayaW. WallentinL. JamesS.K. Fibrin clot properties independently predict adverse clinical outcome following acute coronary syndrome: a PLATO substudy.Eur. Heart J.201839131078108510.1093/eurheartj/ehy01329390064
    [Google Scholar]
  131. ChengK. ShenD. HensleyM.T. Magnetic antibody-linked nanomatchmakers for therapeutic cell targeting.Nat. Commun.201451488010.1038/ncomms588025205020
    [Google Scholar]
  132. QinJ. PengZ. LiB. Gold nanorods as a theranostic platform for in vitro and in vivo imaging and photothermal therapy of inflammatory macrophages.Nanoscale2015733139911400110.1039/C5NR02521D26228112
    [Google Scholar]
  133. AmaniH. HabibeyR. HajmiresmailS.J. LatifiS. Pazoki-ToroudiH. AkhavanO. Antioxidant nanomaterials in advanced diagnoses and treatments of ischemia reperfusion injuries.J. Mater. Chem. B Mater. Biol. Med.20175489452947610.1039/C7TB01689A32264560
    [Google Scholar]
  134. WagnerV. DullaartA. BockA.K. ZweckA. The emerging nanomedicine landscape.Nat. Biotechnol.200624101211121710.1038/nbt1006‑121117033654
    [Google Scholar]
  135. WuT. TangM. Review of the effects of manufactured nanoparticles on mammalian target organs.J. Appl. Toxicol.2018381254010.1002/jat.349928799656
    [Google Scholar]
  136. DvirT. TimkoB.P. BrighamM.D. Nanowired three-dimensional cardiac patches.Nat. Nanotechnol.201161172072510.1038/nnano.2011.16021946708
    [Google Scholar]
  137. ShevachM. FleischerS. ShapiraA. DvirT. Gold nanoparticle-decellularized matrix hybrids for cardiac tissue engineering.Nano Lett.201414105792579610.1021/nl502673m25176294
    [Google Scholar]
  138. PicardF.J. BergeronM.G. Rapid molecular theranostics in infectious diseases.Drug Discov. Today20027211092110110.1016/S1359‑6446(02)02497‑212546841
    [Google Scholar]
  139. KimDH Kshitiz , Smith RR, et al. Nanopatterned cardiac cell patches promote stem cell niche formation and myocardial regeneration.Integr. Biol.2012491019103310.1039/c2ib20067h22890784
    [Google Scholar]
  140. PaulA. HasanA. KindiH.A. Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair.ACS Nano2014888050806210.1021/nn502078724988275
    [Google Scholar]
  141. YouJ.O. RafatM. YeG.J.C. AugusteD.T. Nanoengineering the heart: Conductive scaffolds enhance connexin 43 expression.Nano Lett.20111193643364810.1021/nl201514a21800912
    [Google Scholar]
  142. MooneyE. MackleJ.N. BlondD.J.P. The electrical stimulation of carbon nanotubes to provide a cardiomimetic cue to MSCs.Biomaterials201233266132613910.1016/j.biomaterials.2012.05.03222681974
    [Google Scholar]
  143. RabaanA.A. BukhamsinR. AlSaihatiH. Recent trends and developments in multifunctional nanoparticles for cancer theranostics.Molecules20222724865910.3390/molecules2724865936557793
    [Google Scholar]
  144. PryjmakováJ. KaimlováM. HubáčekT. ŠvorčíkV. SiegelJ. Nanostructured materials for artificial tissue replacements.Int. J. Mol. Sci.2020217252110.3390/ijms2107252132260477
    [Google Scholar]
  145. TipaC. CidadeM.T. BorgesJ.P. CostaL.C. SilvaJ.C. SoaresP.I.P. Clay-based nanocomposite hydrogels for biomedical applications: A review.Nanomaterials20221219330810.3390/nano1219330836234440
    [Google Scholar]
  146. MariniM. Ibba-ManneschiL. ManettiM. Cardiac telocyte-derived exosomes and their possible implications in cardiovascular pathophysiology.Adv. Exp. Med. Biol.2017998237254
    [Google Scholar]
  147. KhanS. HasanA. AttarF. Gold nanoparticle-based platforms for diagnosis and treatment of myocardial infarction.ACS Biomaterials Science & Engineering202061264606477
    [Google Scholar]
  148. MoonJ. KwakJ.I. AnY.J. The effects of silver nanomaterial shape and size on toxicity to Caenorhabditis elegans in soil media.Chemosphere2019215505610.1016/j.chemosphere.2018.09.17730312916
    [Google Scholar]
  149. WangT. JiJ. JiS. HeX. LingW. YangL. Targeting transfection of tissue-type plasminogen activator gene to prevent thrombosis and vascular anastomotic restenosis after coronary bypass.Redai Yixue Zazhi2012125623625
    [Google Scholar]
  150. ChenC.C. ChenY.Y. YehC.C. Alginate-capped silver nanoparticles as a potent anti-mycobacterial agent against Mycobacterium tuberculosis.Front. Pharmacol.20211274649610.3389/fphar.2021.74649634899300
    [Google Scholar]
  151. El-ShenawyN.S. Al-HarbiM.S. Al hamayani FFE. Hormonal and organ-specific dysfunction induced by the interaction between titanium dioxide nanoparticles and salicylic acid in male mice.J. Basic Clin. Physiol. Pharmacol.201627442543510.1515/jbcpp‑2015‑012427054601
    [Google Scholar]
  152. KumariM. SinghS.P. ChindeS. RahmanM.F. MahboobM. GroverP. Toxicity study of cerium oxide nanoparticles in human neuroblastoma cells.Int. J. Toxicol.2014332869710.1177/109158181452230524510415
    [Google Scholar]
  153. LinW. HuangY. ZhouX.D. MaY. Toxicity of cerium oxide nanoparticles in human lung cancer cells.Int. J. Toxicol.200625645145710.1080/1091581060095954317132603
    [Google Scholar]
  154. TeodoroJ.S. SilvaR. VarelaA.T. Low-dose, subchronic exposure to silver nanoparticles causes mitochondrial alterations in Sprague–Dawley rats.Nanomedicine 201611111359137510.2217/nnm‑2016‑004927171910
    [Google Scholar]
  155. SiddiqiN.J. AbdelhalimM.A.K. El-AnsaryA.K. AlhomidaA.S. OngW.Y. Identification of potential biomarkers of gold nanoparticle toxicity in rat brains.J. Neuroinflammation20129165610.1186/1742‑2094‑9‑12322691312
    [Google Scholar]
  156. RadomskaA. LeszczyszynJ. RadomskiM. The nanopharmacology and nanotoxicology of nanomaterials: New opportunities and challenges.Adv. Clin. Exp. Med.201625115116210.17219/acem/6087926935510
    [Google Scholar]
  157. SagerH.B. HeidtT. HulsmansM. Targeting interleukin-1β reduces leukocyte production after acute myocardial infarction.Circulation2015132201880189010.1161/CIRCULATIONAHA.115.01616026358260
    [Google Scholar]
  158. NakashiroS. MatobaT. UmezuR. Pioglitazone-incorporated nanoparticles prevent plaque destabilization and rupture by regulating monocyte/macrophage differentiation in ApoE−/− mice.Arterioscler. Thromb. Vasc. Biol.201636349150010.1161/ATVBAHA.115.30705726821947
    [Google Scholar]
  159. TearneyG.J. WaxmanS. ShishkovM. Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging.JACC Cardiovasc. Imaging20081675276110.1016/j.jcmg.2008.06.00719356512
    [Google Scholar]
  160. JiJ. YangJ.A. HeX. LingW.P. ChenX.L. Cardiac-targeting transfection of tissue-type plasminogen activator gene to prevent the graft thrombosis and vascular anastomotic restenosis after coronary bypass.Thromb. Res.2014134244044810.1016/j.thromres.2014.04.01824968958
    [Google Scholar]
  161. PanH. PalekarR. HouK. Anti-JNK2 peptide–siRNA nanostructures improve plaque endothelium and reduce thrombotic risk in atherosclerotic mice.Int. J. Nanomedicine2018135187520510.2147/IJN.S16855630233180
    [Google Scholar]
  162. AnselmoA.C. MitragotriS. Nanoparticles in the clinic.Bioeng. Transl. Med.201611102910.1002/btm2.1000329313004
    [Google Scholar]
  163. MuzykantovV.R. Targeted drug delivery to endothelial adhesion molecules.Int. Sch. Res. Notices201320131916254
    [Google Scholar]
  164. (a FriasJ.C. WilliamsK.J. FisherE.A. FayadZ.A. Recombinant HDL-like nanoparticles: A specific contrast agent for MRI of atherosclerotic plaques.J. Am. Chem. Soc.200412650163161631710.1021/ja044911a15600321
    [Google Scholar]
  165. (b GettsD. Immune-modifying nanoparticles for the treatment of inflammatory diseases.US Patent 9913883B22018
  166. (c MousaS.A. DavisF.B. DavisP.J. Nanoparticle and polymer formulations for thyroid hormone analogs, antagonists, and formulations thereof.US Patent 9579300B22017
/content/journals/nanotec/10.2174/1872210517666230721123453
Loading
/content/journals/nanotec/10.2174/1872210517666230721123453
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test