- Home
- A-Z Publications
- Current Protein and Peptide Science
- Fast Track Listing
Current Protein and Peptide Science - Online First
Description text for Online First listing goes here...
-
-
A Study on the Rationality of Baicalein in the Treatment of Osteoporosis: A Narrative Review
Authors: Qi Li, Xingyan Ma, Xiaodong Xu, Chengming Zhang and Weiguo WangAvailable online: 25 October 2024More LessBaicalein (BN) is an active ingredient naturally present in Chinese herbs, such as Scutellaria baicalein, Coptis chinensis, and Dendrobium officinale. It has a variety of pharmacological activities, including antioxidant, anti-inflammatory and antibacterial effects. Therefore, Baicalein (BN) is widely used in the field of medicine and is considered a potential natural medicine. Osteoporosis (OP) is a bone metabolic disease characterized by decreased bone mineral density and bone structure destruction, which is mainly caused by decreased bone formation and increased bone resorption. With the continuous development of molecular biology, the signaling pathways and gene targets of bone metabolism are also expanding. Recent studies have shown that baicalein may affect the function of osteoblasts, osteoclasts, and bone marrow mesenchymal stem cells through MAPK/ERK and MAPKs/NF-κB signaling pathways, so as to have a therapeutic effect on OP. However, the specific mechanism of baicalein in the treatment of OP is still unclear. This article reviews the literature, analyzes and summarizes the mechanism of action of baicalein, and discusses its potential in the prevention and treatment of OP, so as to provide a basis for the clinical application of baicalein.
-
-
-
Ferritin Hinders Ferroptosis in Non-Tumorous Diseases: Regulatory Mechanisms and Potential Consequences
Authors: Zhongcheng Xie, Qin Hou, Yinling He, Yushu Xie, Qinger Mo, Ziyi Wang, Ziye Zhao, Xi Chen, Tianhong Peng, Liang Li and Wei XieAvailable online: 04 September 2024More LessFerritin, as an iron storage protein, has the potential to inhibit ferroptosis by reducing excess intracellular free iron concentrations and lipid reactive oxygen species (ROS). An insufficient amount of ferritin is one of the conditions that can lead to ferroptosis through the Fenton reaction mediated by ferrous iron. Consequently, upregulation of ferritin at the transcriptional or posttranscriptional level may inhibit ferroptosis. In this review, we have discussed the essential role of ferritin in ferroptosis and the regulatory mechanism of ferroptosis in ferritin-deficient individuals. The description of the regulatory factors governing ferritin and its properties in regulating ferroptosis as underlying mechanisms for the pathologies of diseases will allow potential therapeutic approaches to be developed.
-