Skip to content
2000
image of A Study on the Rationality of Baicalein in the Treatment of Osteoporosis: A Narrative Review

Abstract

Baicalein (BN) is an active ingredient naturally present in Chinese herbs, such as , , and . It has a variety of pharmacological activities, including antioxidant, anti-inflammatory and antibacterial effects. Therefore, Baicalein (BN) is widely used in the field of medicine and is considered a potential natural medicine. Osteoporosis (OP) is a bone metabolic disease characterized by decreased bone mineral density and bone structure destruction, which is mainly caused by decreased bone formation and increased bone resorption. With the continuous development of molecular biology, the signaling pathways and gene targets of bone metabolism are also expanding. Recent studies have shown that baicalein may affect the function of osteoblasts, osteoclasts, and bone marrow mesenchymal stem cells through MAPK/ERK and MAPKs/NF-κB signaling pathways, so as to have a therapeutic effect on OP. However, the specific mechanism of baicalein in the treatment of OP is still unclear. This article reviews the literature, analyzes and summarizes the mechanism of action of baicalein, and discusses its potential in the prevention and treatment of OP, so as to provide a basis for the clinical application of baicalein.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037325783240912072039
2024-10-25
2025-01-22
Loading full text...

Full text loading...

References

  1. Zhang Y. Zhou Y. Song Z. Jin J. Tang J. Wang X. Huang J. Jin Q. A chemometrics approach comparing characteristics and free radical scavenging capacity of flax ( Linum usitatissimum L.) oils obtained from seeds and cakes with different extraction methods. J. Sci. Food Agric. 2021 101 13 5359 5367 10.1002/jsfa.11184 33650118
    [Google Scholar]
  2. Zhao X. Qu J. Liu X. Wang J. Ma X. Zhao X. Yang Q. Yan W. Zhao Z. Hui Y. Bai H. Zhang S. Baicalein suppress EMT of breast cancer by mediating tumor-associated macrophages polarization. Am. J. Cancer Res. 2018 8 8 1528 1540 30210921
    [Google Scholar]
  3. Tuli H.S. Aggarwal V. Kaur J. Aggarwal D. Parashar G. Parashar N.C. Tuorkey M. Kaur G. Savla R. Sak K. Kumar M. Baicalein: A metabolite with promising antineoplastic activity. Life Sci. 2020 259 118183 10.1016/j.lfs.2020.118183 32781058
    [Google Scholar]
  4. Zhang J. Yang W. Zhou Y.B. Xiang Y.X. Wang L.S. Hu W.K. Wang W.J. Baicalein inhibits osteosarcoma cell proliferation and invasion through the miR‑183/Ezrin pathway. Mol. Med. Rep. 2018 18 1 1104 1112 10.3892/mmr.2018.9036 29845278
    [Google Scholar]
  5. Yan W. Ma X. Zhao X. Zhang S. Baicalein induces apoptosis and autophagy of breast cancer cells via inhibiting PI3K/AKT pathway in vivo and vitro. Drug Des. Devel. Ther. 2018 12 3961 3972 10.2147/DDDT.S181939 30510404
    [Google Scholar]
  6. Serhan C.N. Savill J. CN Resolution of inflammation: the beginning programs the end. Nat. Immunol. 2005 6 12 1191 1197 10.1038/ni1276 16369558
    [Google Scholar]
  7. Rock K.L. Latz E. Ontiveros F. Kono H. The sterile inflammatory response. Annu. Rev. Immunol. 2010 28 1 321 342 10.1146/annurev‑immunol‑030409‑101311 20307211
    [Google Scholar]
  8. Patwardhan R.S. Sharma D. Thoh M. Checker R. Sandur S.K. Baicalein exhibits anti-inflammatory effects via inhibition of NF-κB transactivation. Biochem. Pharmacol. 2016 108 75 89 10.1016/j.bcp.2016.03.013 27019135
    [Google Scholar]
  9. Zhang X. Qin Y. Ruan W. Wan X. lv C. He L. Lu L. Guo X. Targeting inflammation‐associated AMPK //Mfn‐2/ MAPKs signaling pathways by baicalein exerts anti‐atherosclerotic action. Phytother. Res. 2021 35 8 4442 4455 10.1002/ptr.7149 34008261
    [Google Scholar]
  10. Wang W. Zhou P. Xu C. Zhou X. Hu W. Zhang J. Baicalein attenuates renal fibrosis by inhibiting inflammation via down-regulating NF-κB and MAPK signal pathways. J. Mol. Histol. 2015 46 3 283 290 10.1007/s10735‑015‑9621‑8 25981879
    [Google Scholar]
  11. Luo J. Kong J. Dong B. Huang H. Wang K. Hou C. Liang Y. Li B. Chen Y. Wu L. Baicalein attenuates the quorum sensing-controlled virulence factors of Pseudomonas aeruginosa and relieves the inflammatory response in P. aeruginosa-infected macrophages by downregulating the MAPK and NFκB signal-transduction pathways. Drug Des. Devel. Ther. 2016 10 183 203 10.2147/DDDT.S97221 26792984
    [Google Scholar]
  12. He X. Wei Z. Zhou E. Chen L. Kou J. Wang J. Yang Z. Baicalein attenuates inflammatory responses by suppressing TLR4 mediated NF-κB and MAPK signaling pathways in LPS-induced mastitis in mice. Int. Immunopharmacol. 2015 28 1 470 476 10.1016/j.intimp.2015.07.012 26202808
    [Google Scholar]
  13. Zhang X. Yang Y. Du L. Zhang W. Du G. Baicalein exerts anti-neuroinflammatory effects to protect against rotenone-induced brain injury in rats. Int. Immunopharmacol. 2017 50 38 47 10.1016/j.intimp.2017.06.007 28623717
    [Google Scholar]
  14. Li Y. Zhao J. Hölscher C. Therapeutic potential of baicalein in Alzheimer’s Disease and Parkinson’s Disease. CNS Drugs 2017 31 8 639 652 10.1007/s40263‑017‑0451‑y 28634902
    [Google Scholar]
  15. Jin H. Wang Q. Wu J. Han X. Qian T. Zhang Z. Wang J. Pan X. Wu A. Wang X. Baicalein inhibits the IL-1β-induced inflammatory response in nucleus pulposus cells and attenuates disc degeneration In vivo. Inflammation 2019 42 3 1032 1044 10.1007/s10753‑019‑00965‑8 30729381
    [Google Scholar]
  16. Costa T.J. Barros P.R. Arce C. Santos J.D. da Silva-Neto J. Egea G. Dantas A.P. Tostes R.C. Jiménez-Altayó F. The homeostatic role of hydrogen peroxide, superoxide anion and nitric oxide in the vasculature. Free Radic. Biol. Med. 2021 162 615 635 10.1016/j.freeradbiomed.2020.11.021 33248264
    [Google Scholar]
  17. Closa D. Folch-Puy E. Oxygen free radicals and the systemic inflammatory response. IUBMB Life 2004 56 4 185 191 10.1080/15216540410001701642 15230345
    [Google Scholar]
  18. Chao H.M. Chuang M.J. Liu J.H. Liu X.Q. Ho L.K. Pan W.H.T. Zhang X.M. Liu C.M. Tsai S.K. Kong C.W. Lee S.D. Chen M.M. Chao F.P. Baicalein protects against retinal ischemia by antioxidation, antiapoptosis, downregulation of HIF-1α, VEGF, and MMP-9 and upregulation of HO-1. J. Ocul. Pharmacol. Ther. 2013 29 6 539 549 10.1089/jop.2012.0179 23537149
    [Google Scholar]
  19. Dong Y.W. Proanthocyanidin B2 protects PC12 cells from H_2O_2 induced oxidative damage by regulating PI3K/Akt and Nrf2/HO-1 signaling pathways. Zhongguo Yaolixue Tongbao 2023 09 1654 1661
    [Google Scholar]
  20. Guo M.F. Method of shu, through regulating Nrf2 signaling pathways/HO - 1 suppress the astrocytes injury induced by lipopolysaccharide. Tissue Engin. Res. China 2021 25 31 5012 5017
    [Google Scholar]
  21. Wang Y. Yang C. Elsheikh N.A.H. Li C. Yang F. Wang G. Li L. HO-1 reduces heat stress-induced apoptosis in bovine granulosa cells by suppressing oxidative stress. Aging (Albany NY) 2019 11 15 5535 5547 10.18632/aging.102136 31404912
    [Google Scholar]
  22. Song L. Radix scutellariae, improve myocardial remodeling in mice by inhibiting oxidative stress and apoptosis of action research. Journal of Hubei University for Nationalities 2022 39 03 1 7 [Medical Edition].
    [Google Scholar]
  23. Wang Y. Wei N. Li X. Preclinical Evidence and Possible Mechanisms of Baicalein for Rats and Mice With Parkinson’s Disease: A Systematic Review and Meta-Analysis. Front. Aging Neurosci. 2020 12 277 10.3389/fnagi.2020.00277 33101006
    [Google Scholar]
  24. Liu J.F. The research progress of radix scutellariae, nerve protection mechanism. Chinese Journal of Clinical Pharmacology 2019 35 21 2773 2776
    [Google Scholar]
  25. Sun J.F. He T. Radix scutellariae element of laryngeal cancer cell migration through Ezrin related signal transduction pathways, the influence of the invasion. Zhongguo Laonianxue Zazhi 2021 41 12 2595 2598
    [Google Scholar]
  26. Wang J. Baicalein-mediated autophagy inhibits the proliferation and migration of laryngeal cancer cells through miR-449a/HDAC1 axis. Chin. Med. J. (Engl.) 2023 2023 1 10
    [Google Scholar]
  27. Lu L.W. Research progress on anti-tumor mechanism of baicalein and its nano-delivery system. China's Pharmaceut. Ind. Mag. 2023 54 7 1052 1059
    [Google Scholar]
  28. Liu H. Dong Y. Gao Y. Du Z. Wang Y. Cheng P. Chen A. Huang H. The Fascinating Effects of Baicalein on Cancer: A Review. Int. J. Mol. Sci. 2016 17 10 1681 10.3390/ijms17101681 27735841
    [Google Scholar]
  29. Han S.E. Park C.H. Nam-Goong S. Kim Y. Kim E.S. Anticancer Effects of Baicalein in FRO Thyroid Cancer Cells Through the Up-regulation of ERK/p38 MAPK and Akt Pathway. In Vivo 2019 33 2 375 382 10.21873/invivo.11484 30804115
    [Google Scholar]
  30. Liu B. Ding L. Zhang L. Wang S. Wang Y. Wang B. Li L. Baicalein Induces Autophagy and Apoptosis through AMPK Pathway in Human Glioma Cells. Am. J. Chin. Med. 2019 47 6 1405 1418 10.1142/S0192415X19500721 31488033
    [Google Scholar]
  31. Deng X. Liu J. Liu L. Sun X. Huang J. Dong J. Drp1-mediated mitochondrial fission contributes to baicalein-induced apoptosis and autophagy in lung cancer via activation of AMPK signaling pathway. Int. J. Biol. Sci. 2020 16 8 1403 1416 10.7150/ijbs.41768 32210728
    [Google Scholar]
  32. Lalani S.S. Anasir M.I. Poh C.L. Antiviral activity of silymarin in comparison with baicalein against EV-A71. BMC Complementary Medicine and Therapies 2020 20 1 97 10.1186/s12906‑020‑2880‑2 32293397
    [Google Scholar]
  33. Low Z.X. OuYong B.M. Hassandarvish P. Poh C.L. Ramanathan B. Antiviral activity of silymarin and baicalein against dengue virus. Sci. Rep. 2021 11 1 21221 10.1038/s41598‑021‑98949‑y 34707245
    [Google Scholar]
  34. Zandi K. Musall K. Oo A. Cao D. Liang B. Hassandarvish P. Lan S. Slack R.L. Kirby K.A. Bassit L. Amblard F. Kim B. AbuBakar S. Sarafianos S.G. Schinazi R.F. Baicalein and Baicalin Inhibit SARS-CoV-2 RNA-Dependent-RNA Polymerase. Microorganisms 2021 9 5 893 10.3390/microorganisms9050893 33921971
    [Google Scholar]
  35. Mori M. Quaglio D. Calcaterra A. Ghirga F. Sorrentino L. Cammarone S. Fracella M. D’Auria A. Frasca F. Criscuolo E. Clementi N. Mancini N. Botta B. Antonelli G. Pierangeli A. Scagnolari C. Natural Flavonoid Derivatives Have Pan-Coronavirus Antiviral Activity Natural Flavonoid Derivatives Have Pan-Coronavirus Antiviral Activity. Microorganisms 2023 11 2 314 10.3390/microorganisms11020314 36838279
    [Google Scholar]
  36. Lani R. Hassandarvish P. Shu M.H. Phoon W.H. Chu J.J.H. Higgs S. Vanlandingham D. Abu Bakar S. Zandi K. Antiviral activity of selected flavonoids against Chikungunya virus. Antiviral Res. 2016 133 50 61 10.1016/j.antiviral.2016.07.009 27460167
    [Google Scholar]
  37. Wang R. Li J. Niu D.B. Xu F.Y. Zeng X.A. Protective effect of baicalein on DNA oxidative damage and its binding mechanism with DNA: An in vitro and molecular docking study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021 253 119605 10.1016/j.saa.2021.119605 33667888
    [Google Scholar]
  38. Tang D. Kang R. Berghe T.V. Vandenabeele P. Kroemer G. The molecular machinery of regulated cell death. Cell Res. 2019 29 5 347 364 10.1038/s41422‑019‑0164‑5 30948788
    [Google Scholar]
  39. Yang M. Li X. Li H. Zhang X. Liu X. Song Y. Baicalein inhibits RLS3-induced ferroptosis in melanocytes. Biochem. Biophys. Res. Commun. 2021 561 65 72 10.1016/j.bbrc.2021.05.010 34015760
    [Google Scholar]
  40. Zhao P. Sevoflurane induction of radix scutellariae element in the role and mechanism of dopamine neurons injury. Clin. med. res. pract. 2022 7 14 5 9
    [Google Scholar]
  41. Xie Y. Song X. Sun X. Huang J. Zhong M. Lotze M.T. Zeh H.J. III Kang R. Tang D. Identification of baicalein as a ferroptosis inhibitor by natural product library screening. Biochem. Biophys. Res. Commun. 2016 473 4 775 780 10.1016/j.bbrc.2016.03.052 27037021
    [Google Scholar]
  42. Yi Z.H. Li S.Q. Ke J.Y. Wang Y. Zhao M.Z. Li J. Li M.Q. Zhu Z.L. Baicalein Relieves Ferroptosis-Mediated Phagocytosis Inhibition of Macrophages in Ovarian Endometriosis. Curr. Issues Mol. Biol. 2022 44 12 6189 6204 10.3390/cimb44120422 36547083
    [Google Scholar]
  43. Li Q. Li Q.Q. Jia J.N. Sun Q.Y. Zhou H.H. Jin W.L. Mao X.Y. Baicalein Exerts Neuroprotective Effects in FeCl3-Induced Posttraumatic Epileptic Seizures via Suppressing Ferroptosis. Front. Pharmacol. 2019 10 638 10.3389/fphar.2019.00638 31231224
    [Google Scholar]
  44. Zhang W.D. Iron death regulation and control mechanism and traditional Chinese medicine (TCM) in osteoporosis intervention study. Zhongguo Guzhi Shusong Zazhi 2023 29 06 890 896
    [Google Scholar]
  45. Tian Y. Li X. Xie H. Wang X. Xie Y. Chen C. Chen D. Protective Mechanism of the Antioxidant Baicalein toward Hydroxyl Radical-Treated Bone Marrow-Derived Mesenchymal Stem Cells. Molecules 2018 23 1 223 10.3390/molecules23010223 29361712
    [Google Scholar]
  46. Zhu L. Liu Y.J. Shen H. Gu P.Q. Zhang L. Astragalus and Baicalein Regulate Inflammation of Mesenchymal Stem Cells (MSCs) by the Mitogen-Activated Protein Kinase (MAPK)/ERK Pathway. Med. Sci. Monit. 2017 23 3209 3216 10.12659/MSM.902441 28667247
    [Google Scholar]
  47. Chen J.G. Baicalein promotes the homing of bone marrow mesenchymal stem cells and participates in the treatment of ulcerative colitis. Pract. Med. Clinic 2018 21 08 871 875
    [Google Scholar]
  48. Fluoride treatment of osteoporosis in the future, calcium supplements in the basic research and clinical application of -- '96 national 1996: the first seminar on calcium in taiyuan in Shanxi Province of China. 1996
    [Google Scholar]
  49. Jin X.Q. Xu H. Shi H. Zhang J. Zhang H. Fluoride-induced oxidative stress of osteoblasts and protective effects of baicalein against fluoride toxicity. Biol. Trace Elem. Res. 2007 116 1 81 89 10.1007/BF02685921 17634630
    [Google Scholar]
  50. Li S.F. Tang J.J. Chen J. Zhang P. Wang T. Chen T.Y. Yan B. Huang B. Wang L. Huang M.J. Zhang Z.M. Jin D.D. Regulation of bone formation by baicalein via the mTORC1 pathway. Drug Des. Devel. Ther. 2015 9 5169 5183 26392752
    [Google Scholar]
  51. Chen L.J. Hu B.B. Shi X.L. Ren M.M. Yu W.B. Cen S.D. Hu R.D. Deng H. Baicalein enhances the osteogenic differentiation of human periodontal ligament cells by activating the Wnt/β-catenin signaling pathway. Arch. Oral Biol. 2017 78 100 108 10.1016/j.archoralbio.2017.01.019 28222387
    [Google Scholar]
  52. Tian X. Jiang H. Chen Y. Ao X. Chen C. Zhang W. He F. Liao X. Jiang X. Li T. Zhang Z. Zhang X. Baicalein Accelerates Tendon-Bone Healing via Activation of Wnt/ β -Catenin Signaling Pathway in Rats. BioMed Res. Int. 2018 2018 1 9 10.1155/2018/3849760 29693006
    [Google Scholar]
  53. Wang K. Kong X. Du M. Yu W. Wang Z. Xu B. Yang J. Xu J. Liu Z. Cheng Y. Gan J. Novel Soy Peptide CBP: Stimulation of Osteoblast Differentiation via TβRI-p38-MAPK-Depending RUNX2 Activation. Nutrients 2022 14 9 1940 10.3390/nu14091940 35565907
    [Google Scholar]
  54. Xie B. Zeng Z. Liao S. Zhou C. Wu L. Xu D. Kaempferol Ameliorates the Inhibitory Activity of Dexamethasone in the Osteogenesis of MC3T3-E1 Cells by JNK and p38-MAPK Pathways. Front. Pharmacol. 2021 12 739326 10.3389/fphar.2021.739326 34675808
    [Google Scholar]
  55. Zhang N. Cui M. Liu X. Yu L. Zhao X. Cao L. Ji Y. IL‑17F promotes osteoblastic osteogenesis via the MAPK/ERK1/2 signaling pathway. Exp. Ther. Med. 2021 22 4 1052 10.3892/etm.2021.10486 34434266
    [Google Scholar]
  56. Kim A.R. Lim Y.J. Jang W.G. Zingerone stimulates osteoblast differentiation by increasing Smad1 /5/9‐mediated HO ‐1 expression in MC3T3‐E1 cells and primary mouse calvarial cells. Clin. Exp. Pharmacol. Physiol. 2022 49 10 1050 1058 10.1111/1440‑1681.13681 35639082
    [Google Scholar]
  57. Xu T. Lin B. Huang C. Sun J. Tan K. Ma R. Huang Y. Weng S. Fang W. Chen W. Bai B. Targeted activation of Nrf2/ HO ‐1 pathway by Corynoline alleviates osteoporosis development. Food Sci. Nutr. 2023 11 4 2036 2048 10.1002/fsn3.3239 37051369
    [Google Scholar]
  58. Kim M.H. Ryu S.Y. Bae M.A. Choi J.S. Min Y.K. Kim S.H. Baicalein inhibits osteoclast differentiation and induces mature osteoclast apoptosis. Food Chem. Toxicol. 2008 46 11 3375 3382 10.1016/j.fct.2008.08.016 18786594
    [Google Scholar]
  59. Bi L. Liu H. Wu R. To investigate the effect of baicalein on osteoclast formation and alveolar bone resorption through Nrf2/NF-κB/NFATc1 signaling pathway in rats with periodontal disease. Med. Guangxi 2021 43 05 600 606
    [Google Scholar]
  60. Lee K. Chung Y.H. Ahn H. Kim H. Rho J. Jeong D. Selective Regulation of MAPK Signaling Mediates RANKL-dependent Osteoclast Differentiation. Int. J. Biol. Sci. 2016 12 2 235 245 10.7150/ijbs.13814 26884720
    [Google Scholar]
  61. Lu L. Rao L. Jia H. Chen J. Lu X. Yang G. Li Q. Lee K.K.H. Yang L. Baicalin positively regulates osteoclast function by activating MAPK/Mitf signalling. J. Cell. Mol. Med. 2017 21 7 1361 1372 10.1111/jcmm.13066 28158928
    [Google Scholar]
  62. Yu L. Jia D. Feng K. Sun X. Xu W. Ding L. Xin H. Qin L. Han T. A natural compound (LCA) isolated from Litsea cubeba inhibits RANKL-induced osteoclast differentiation by suppressing Akt and MAPK pathways in mouse bone marrow macrophages. J. Ethnopharmacol. 2020 257 112873 10.1016/j.jep.2020.112873 32298753
    [Google Scholar]
  63. Zhu J. Zhang M. Liu X.L. Yin Z.G. Han X.X. Wang H.J. Zhou Y. Hyperoside suppresses osteoclasts differentiation and function through downregulating TRAF6/p38 MAPK signaling pathway. J. Asian Nat. Prod. Res. 2022 24 12 1157 1168 10.1080/10286020.2022.2056028 35435096
    [Google Scholar]
  64. Tai T.W. Su F.C. Chen C.Y. Jou I.M. Lin C.F. Activation of p38 MAPK-regulated Bcl-xL signaling increases survival against zoledronic acid-induced apoptosis in osteoclast precursors. Bone 2014 67 166 174 10.1016/j.bone.2014.07.003 25016096
    [Google Scholar]
  65. Deepak V. Kasonga A. Kruger M.C. Coetzee M. Inhibitory effects of eugenol on RANKL-induced osteoclast formation via attenuation of NF- κ B and MAPK pathways. Connect. Tissue Res. 2015 56 3 195 203 10.3109/03008207.2014.989320 25405641
    [Google Scholar]
  66. Zhao H. Liu X. Zou H. Dai N. Yao L. Gao Q. Liu W. Gu J. Yuan Y. Bian J. Liu Z. Osteoprotegerin induces podosome disassembly in osteoclasts through calcium, ERK, and p38 MAPK signaling pathways. Cytokine 2015 71 2 199 206 10.1016/j.cyto.2014.10.007 25461399
    [Google Scholar]
  67. Xu S. Cao X. Yu Z. He W. Pang Y. Lin W. Chen Z. Guo W. Lu X. Lin C. Nicorandil Inhibits Osteoclast Formation Base on NF-κB and p-38 MAPK Signaling Pathways and Relieves Ovariectomy-Induced Bone Loss. Front. Pharmacol. 2021 12 726361 10.3389/fphar.2021.726361 34566650
    [Google Scholar]
  68. Shan H. Research progress and clinical pharmacology of baicalein. Clin. Pharmacol. Therap. China 2020 25 06 701 708
    [Google Scholar]
  69. Li M. Shi A. Pang H. Xue W. Li Y. Cao G. Yan B. Dong F. Li K. Xiao W. He G. Du G. Hu X. Safety, tolerability, and pharmacokinetics of a single ascending dose of baicalein chewable tablets in healthy subjects. J. Ethnopharmacol. 2014 156 210 215 10.1016/j.jep.2014.08.031 25219601
    [Google Scholar]
  70. Dong R. Li L. Gao H. Lou K. Luo H. Hao S. Yuan J. Liu Z. Safety, tolerability, pharmacokinetics, and food effect of baicalein tablets in healthy Chinese subjects: A single-center, randomized, double-blind, placebo-controlled, single-dose phase I study. J. Ethnopharmacol. 2021 274 114052 10.1016/j.jep.2021.114052 33753147
    [Google Scholar]
  71. Pang H. Xue W. Shi A. Li M. Li Y. Cao G. Yan B. Dong F. Xiao W. He G. Du G. Hu X. Cheng G. Multiple-Ascending-Dose Pharmacokinetics and Safety Evaluation of Baicalein Chewable Tablets in Healthy Chinese Volunteers. Clin. Drug Investig. 2016 36 9 713 724 10.1007/s40261‑016‑0418‑7 27352310
    [Google Scholar]
  72. Li L. Gao H. Lou K. Luo H. Hao S. Yuan J. Liu Z. Dong R. Safety, tolerability, and pharmacokinetics of oral baicalein tablets in healthy Chinese subjects: A single‐center, randomized, double‐blind, placebo‐controlled multiple‐ascending‐dose study. Clin. Transl. Sci. 2021 14 5 2017 2024 10.1111/cts.13063 34156161
    [Google Scholar]
  73. Ou Z.C. Efficacy and safety evaluation of baicalein in cosmetics. Nat. Prod. Res. Develop. 2016 28 12 2006 2010
    [Google Scholar]
  74. Kim T.W. Song I.B. Lee H.K. Kim M.S. Ham S.H. Cho J.H. Lim J.H. Yun H.I. Assessment of dermal safety of Scutellaria baicalensis aqueous extract topical application on skin hypersensitivity. Planta Med. 2013 79 11 959 962 10.1055/s‑0032‑1328714 23818268
    [Google Scholar]
  75. Yang L. Aronsohn A. Hart J. Jensen D. Herbal hepatoxicity from Chinese skullcap: A case report. World J. Hepatol. 2012 4 7 231 233 10.4254/wjh.v4.i7.231 22855699
    [Google Scholar]
  76. Linnebur S.A. Rapacchietta O.C. Vejar M. Hepatotoxicity associated with chinese skullcap contained in Move Free Advanced dietary supplement: two case reports and review of the literature. Pharmacotherapy 2010 30 7 750 10.1592/phco.30.7.750
    [Google Scholar]
  77. Dong Y. Sui L. Yang F. Ren X. Xing Y. Xiu Z. Reducing the intestinal side effects of acarbose by baicalein through the regulation of gut microbiota: An in vitro study. Food Chem. 2022 394 133561 10.1016/j.foodchem.2022.133561 35763904
    [Google Scholar]
  78. Chinese Medical Association Basic guidelines for primary osteoporosis (practice edition, 2019). Chinese J. Gen. Pract. 2020 19 4 316 323
    [Google Scholar]
  79. Wang T. Liu Q. Tjhioe W. Zhao J. Lu A. Zhang G. Tan R.X. Zhou M. Xu J. Feng H.T. Therapeutic potential and outlook of alternative medicine for osteoporosis. Curr. Drug Targets 2017 18 9 1051 1068 28325144
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037325783240912072039
Loading
/content/journals/cpps/10.2174/0113892037325783240912072039
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: bone marrow mesenchymal stem cells ; Baicalein ; osteoclasts ; osteoblasts ; osteoporosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test