Skip to content
2000
image of Amyloid-β Clearance with Monoclonal Antibodies: Transforming Alzheimer’s Treatment

Abstract

Alzheimer's disease (AD) is a progressive condition that causes the degeneration of nerve cells, leading to a decline in cognitive abilities and memory impairment, significantly affecting millions around the globe. The primary pathological feature of AD is the buildup of amyloid-β (Aβ) plaques in the brain, which has become a major target for therapeutic strategies. This thorough review examines the progress made in next-generation therapies that concentrate on monoclonal antibodies (mAbs) aimed at Aβ. We explore how these antibodies function, their effectiveness in clinical settings, and their safety profiles, specifically discussing notable mAbs, such as aducanumab, donanemab, lecanemab, This review also addresses the difficulties related to Aβ- targeted treatments. Furthermore, it examines the advancing field of biomarker development and tailored medicine strategies designed to improve the accuracy of AD treatment. By integrating the latest findings from clinical trials and new research, this review offers an in-depth evaluation of the possibilities and challenges associated with mAbs in modifying the progression of AD. Future considerations regarding combination therapies and novel drug delivery methods are also examined, emphasizing the necessity for ongoing research to achieve significant advancements in managing AD. Through this review, we seek to provide clinicians, researchers, and policymakers with insights into the current landscape and future directions of Aβ-targeted therapies, promoting a deeper understanding of their role in addressing AD.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037362037250205143911
2025-02-20
2025-05-16
Loading full text...

Full text loading...

References

  1. Breijyeh Z. Karaman R. Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules 2020 25 24 5789 10.3390/molecules25245789 33302541
    [Google Scholar]
  2. Hussain M.S. Altamimi A.S.A. Afzal M. Almalki W.H. Kazmi I. Alzarea S.I. Gupta G. Shahwan M. Kukreti N. Wong L.S. Kumarasamy V. Subramaniyan V. Kaempferol: Paving the path for advanced treatments in aging-related diseases. Exp. Gerontol. 2024 188 112389 10.1016/j.exger.2024.112389 38432575
    [Google Scholar]
  3. Scheltens P. Blennow K. Breteler M.M.B. Strooper d.B. Frisoni G.B. Salloway S. Flier d.v.W.M. Alzheimer’s disease. Lancet 2016 388 10043 505 517 10.1016/S0140‑6736(15)01124‑1 26921134
    [Google Scholar]
  4. Braak H. Tredici D.K. Alzheimer’s pathogenesis: Is there neuron-to-neuron propagation? Acta Neuropathol. 2011 121 5 589 595 10.1007/s00401‑011‑0825‑z 21516512
    [Google Scholar]
  5. Zhuo Y. Li W.S. Lu W. Li X. Ge L.T. Huang Y. Gao Q.T. Deng Y.J. Jiang X.C. Lan Z.W. Deng Q. Chen Y.H. Xiao Y. Lu S. Jiang F. Liu Z. Hu L. Liu Y. Ding Y. He Z.W. Tan D.A. Duan D. Lu M. TGF-β1 mediates hypoxia-preconditioned olfactory mucosa mesenchymal stem cells improved neural functional recovery in Parkinson’s disease models and patients. Mil. Med. Res. 2024 11 1 48 10.1186/s40779‑024‑00550‑7 39034405
    [Google Scholar]
  6. Braak H. Thal D.R. Ghebremedhin E. Tredici D.K. Stages of the pathologic process in Alzheimer disease: Age categories from 1 to 100 years. J. Neuropathol. Exp. Neurol. 2011 70 11 960 969 10.1097/NEN.0b013e318232a379 22002422
    [Google Scholar]
  7. Wang H. Shang Y. Wang E. Xu X. Zhang Q. Qian C. Yang Z. Wu S. Zhang T. MST1 mediates neuronal loss and cognitive deficits: A novel therapeutic target for Alzheimer’s disease. Prog. Neurobiol. 2022 214 102280 10.1016/j.pneurobio.2022.102280 35525373
    [Google Scholar]
  8. Høilund-Carlsen P.F. Alavi A. Castellani R.J. Neve R.L. Perry G. Revheim M.E. Barrio J.R. Alzheimer’s amyloid hypothesis and antibody therapy: Melting glaciers? Int. J. Mol. Sci. 2024 25 7 3892 10.3390/ijms25073892 38612701
    [Google Scholar]
  9. Hussain M.S. Moglad E. Afzal M. Sharma S. Gupta G. Sivaprasad G.V. Deorari M. Almalki W.H. Kazmi I. Alzarea S.I. Shahwan M. Pant K. Ali H. Singh S.K. Dua K. Subramaniyan V. Autophagy-associated non-coding RNAs: Unraveling their impact on Parkinson’s disease pathogenesis. CNS Neurosci. Ther. 2024 30 5 e14763 10.1111/cns.14763 38790149
    [Google Scholar]
  10. Selkoe D.J. Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 2016 8 6 595 608 10.15252/emmm.201606210 27025652
    [Google Scholar]
  11. Perez-Garmendia R. Gevorkian G. Pyroglutamate-modified amyloid beta peptides: Emerging targets for Alzheimer s disease immunotherapy. Curr. Neuropharmacol. 2013 11 5 491 498 10.2174/1570159X11311050004 24403873
    [Google Scholar]
  12. Wirths O. Zampar S. Weggen S. N-terminally truncated Aβ peptide variants in Alzheimer’s Disease. Brisbane, Australia Exon Publications 2019 107 122
    [Google Scholar]
  13. Skaper S.D. Alzheimer’s disease and amyloid: Culprit or coincidence? Int. Rev. Neurobiol. 2012 102 277 316 10.1016/B978‑0‑12‑386986‑9.00011‑9 22748834
    [Google Scholar]
  14. Chen Z.R. Huang J.B. Yang S.L. Hong F.F. Role of cholinergic signaling in Alzheimer’s disease. Molecules 2022 27 6 1816 10.3390/molecules27061816 35335180
    [Google Scholar]
  15. NICE Dementia: Assessment, management and support for people living with dementia and their carers. London National Institute for Health and Care Excellence 2018 1 6
    [Google Scholar]
  16. Thapa R. Goyal A. Gupta G. Bhat A.A. Singh S.K. Subramaniyan V. Sharma S. Prasher P. Jakhmola V. Singh S.K. Dua K. Recent developments in the role of protocatechuic acid in neurodegenerative disorders. EXCLI J. 2023 22 595 599 37636028
    [Google Scholar]
  17. Gupta M. Hussain M.S. Thapa R. Bhat A.A. Kumar N. Nurturing hope: Uncovering the potential of herbal remedies against amyotrophic lateral sclerosis. PharmaNutrition 2024 29 100406 10.1016/j.phanu.2024.100406
    [Google Scholar]
  18. Karran E. Strooper D.B. The amyloid cascade hypothesis: Are we poised for success or failure? J. Neurochem. 2016 139 S2 Suppl. 2 237 252 10.1111/jnc.13632 27255958
    [Google Scholar]
  19. Chen L. Ma Y. Ma X. Liu L. Jv X. Li A. Shen Q. Jia W. Qu L. Shi L. Xie J. TFEB regulates cellular labile iron and prevents ferroptosis in a TfR1-dependent manner. Free Radic. Biol. Med. 2023 208 445 457 10.1016/j.freeradbiomed.2023.09.004 37683766
    [Google Scholar]
  20. McShane R. Sastre A.A. Minakaran N. Memantine for dementia. Cochrane Database Syst. Rev. 2006 2 CD003154 16625572
    [Google Scholar]
  21. Wei X. Zhang J. Patterns and mechanisms of diminishing returns from beneficial mutations. Mol. Biol. Evol. 2019 36 5 1008 1021 10.1093/molbev/msz035 30903691
    [Google Scholar]
  22. Malve H. Management of Alzheimer’s Disease: Role of Existing Therapies, Traditional Medicines and New Treatment Targets. Indian J. Pharm. Sci. 2017 79
    [Google Scholar]
  23. Bhardwaj S. Kesari K.K. Rachamalla M. Mani S. Ashraf G.M. Jha S.K. Kumar P. Ambasta R.K. Dureja H. Devkota H.P. Gupta G. Chellappan D.K. Singh S.K. Dua K. Ruokolainen J. Kamal M.A. Ojha S. Jha N.K. CRISPR/Cas9 gene editing: New hope for Alzheimer’s disease therapeutics. J. Adv. Res. 2022 40 207 221 10.1016/j.jare.2021.07.001 36100328
    [Google Scholar]
  24. Ameen T.B. Kashif S.N. Abbas S.M.I. Babar K. Ali S.M.S. Raheem A. Unraveling Alzheimer’s: The promise of aducanumab, lecanemab, and donanemab. The Egyptian Journal of Neurology, Psychiatry. Neurosurg. Clin. N. Am. 2024 60 72
    [Google Scholar]
  25. Ishijima T. Nakajima K. Inflammatory cytokines TNFα, IL-1β, and IL-6 are induced in endotoxin- stimulated microglia through different signaling cascades. Sci. Prog. 2021 104 4 00368504211054985 10.1177/00368504211054985 34821182
    [Google Scholar]
  26. Yeung Y.T. Aziz F. Guerrero-Castilla A. Arguelles S. Signaling pathways in inflammation and anti-inflammatory therapies. Curr. Pharm. Des. 2018 24 14 1449 1484 10.2174/1381612824666180327165604 29589535
    [Google Scholar]
  27. Mané-Damas M. Molenaar P.C. Ulrichts P. Marcuse F. Baets D.M.H. Martinez-Martinez P. Losen M. Novel treatment strategies for acetylcholine receptor antibody-positive myasthenia gravis and related disorders. Autoimmun. Rev. 2022 21 7 103104 10.1016/j.autrev.2022.103104 35452851
    [Google Scholar]
  28. Almagro J.C. Daniels-Wells T.R. Perez-Tapia S.M. Penichet M.L. Progress and challenges in the design and clinical development of antibodies for cancer therapy. Front. Immunol. 2018 8 1751 10.3389/fimmu.2017.01751 29379493
    [Google Scholar]
  29. Stockwin L.H. Holmes S. Antibodies as therapeutic agents: Vive la renaissance! Expert Opin. Biol. Ther. 2003 3 7 1133 1152 10.1517/14712598.3.7.1133 14519077
    [Google Scholar]
  30. Luo H. Xiang Y. Qu X. Liu H. Liu C. Li G. Han L. Qin X. Apelin-13 suppresses neuroinflammation against cognitive deficit in a streptozotocin-induced rat model of alzheimer’s disease through activation of bdnf-trkb signaling pathway. Front. Pharmacol. 2019 10 395 10.3389/fphar.2019.00395 31040784
    [Google Scholar]
  31. Lee H.G. Casadesus G. Zhu X. Takeda A. Perry G. Smith M.A. Challenging the amyloid cascade hypothesis: Senile plaques and amyloid-β as protective adaptations to Alzheimer disease. Ann. N. Y. Acad. Sci. 2004 1019 1 1 4 10.1196/annals.1297.001 15246983
    [Google Scholar]
  32. Hussain M.S. Sharma S. Kumari A. Kamran A. Bahl G. Bisht A.S. Sultana A. Ashique S. Ramalingam P.S. Arumugam S. Role of long non-coding RNAs in neurofibromatosis and Schwannomatosis: Pathogenesis and therapeutic potential. Epigenomics 2024 16 23-24 1453 1464 10.1080/17501911.2024.2430170 39601046
    [Google Scholar]
  33. Kumar R. Singh A. Kapoor B. Hussain M.S. Singh S.K. Dua K. Nose to brain drug delivery through advanced drug delivery systems. Novel Drug Delivery Systems in the management of CNS Disorders. Elsevier 2025 105 119
    [Google Scholar]
  34. Tiwari M.K. Kepp K.P. β-Amyloid pathogenesis: Chemical properties versus cellular levels. Alzheimers Dement. 2016 12 2 184 194 10.1016/j.jalz.2015.06.1895 26225732
    [Google Scholar]
  35. Wisniewski T. Goñi F. Immunotherapy for Alzheimer’s disease. Biochem. Pharmacol. 2014 88 4 499 507 10.1016/j.bcp.2013.12.020 24412277
    [Google Scholar]
  36. Hussain M.S. Chaturvedi V. Goyal S. Singh S. Mir R.H. An update on the application of nano phytomedicine as an emerging therapeutic tool for neurodegenerative diseases. Curr. Bioact. Compd. 2024 20 5 e251023222648 10.2174/0115734072258656231013085318
    [Google Scholar]
  37. Wang H. Yan Z. Yang W. Liu R. Fan G. Gu Z. Tang Z. A strategy of monitoring acetylcholinesterase and screening of natural inhibitors from Uncaria for Alzheimer’s disease therapy based on near-infrared fluorescence probe. Sens. Actuators B Chem. 2025 424 136895 10.1016/j.snb.2024.136895
    [Google Scholar]
  38. Takahashi R.H. Nagao T. Gouras G.K. Plaque formation and the intraneuronal accumulation of β-amyloid in Alzheimer’s disease. Pathol. Int. 2017 67 4 185 193 10.1111/pin.12520 28261941
    [Google Scholar]
  39. Abeysinghe A.A.D.T. Deshapriya R.D.U.S. Udawatte C. Alzheimer’s disease; a review of the pathophysiological basis and therapeutic interventions. Life Sci. 2020 256 117996 10.1016/j.lfs.2020.117996 32585249
    [Google Scholar]
  40. Liu Y. Yin H. Liu X. Zhang L. Wu D. Shi Y. Chen Y. Zhou X. Alcohol use disorder and time perception: The mediating role of attention and working memory. Addict. Biol. 2024 29 2 e13367 10.1111/adb.13367 38380757
    [Google Scholar]
  41. Li H. Tan Y. Cheng X. Zhang Z. Huang J. Hui S. Zhu L. Liu Y. Zhao D. Liu Z. Peng W. Untargeted metabolomics analysis of the hippocampus and cerebral cortex identified the neuroprotective mechanisms of Bushen Tiansui formula in an aβ25-35-induced rat model of Alzheimer’s disease. Front. Pharmacol. 2022 13 990307 10.3389/fphar.2022.990307 36339577
    [Google Scholar]
  42. Mattson M.P. Pathways towards and away from Alzheimer's disease. Nature. 2004 430 7000 631 639
    [Google Scholar]
  43. Glabe CC Amyloid accumulation and pathogensis of Alzheimer’s disease: Significance of monomeric, oligomeric and fibrillar Aβ. Subcell Biochem. 2005 38 167 177 10.1007/0‑387‑23226‑5_8
    [Google Scholar]
  44. Hussain M.S. Gupta G. Samuel V.P. Almalki W.H. Kazmi I. Alzarea S.I. Saleem S. Khan R. Altwaijry N. Patel S. Patel A. Singh S.K. Dua K. Immunopathology of herpes simplex virus-associated neuroinflammation: Unveiling the mysteries. Rev. Med. Virol. 2024 34 1 e2491 10.1002/rmv.2491 37985599
    [Google Scholar]
  45. Uppal J. Chawla A. Rehman R. Hussain M.S. Maqbool M. Chawla P.A. Novel drug delivery systems in treating epilepsy: An update. New York Academic Press 2025 10.1016/B978‑0‑443‑13474‑6.00019‑6
    [Google Scholar]
  46. Chen G. Xu T. Yan Y. Zhou Y. Jiang Y. Melcher K. Xu H.E. Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin. 2017 38 9 1205 1235 10.1038/aps.2017.28 28713158
    [Google Scholar]
  47. Penke B. Bogár F. Fülöp L. β-Amyloid and the pathomechanisms of Alzheimer’s disease: A comprehensive view. Molecules 2017 22 10 1692 10.3390/molecules22101692 28994715
    [Google Scholar]
  48. Madhu P. Mukhopadhyay S. Distinct types of amyloid-β oligomers displaying diverse neurotoxicity mechanisms in Alzheimer’s disease. J. Cell. Biochem. 2021 122 11 1594 1608 10.1002/jcb.30141 34494298
    [Google Scholar]
  49. Zhang C. Ge H. Zhang S. Liu D. Jiang Z. Lan C. Li L. Feng H. Hu R. Hematoma evacuation via image-guided para-corticospinal tract approach in patients with spontaneous intracerebral hemorrhage. Neurol. Ther. 2021 10 2 1001 1013 10.1007/s40120‑021‑00279‑8 34515953
    [Google Scholar]
  50. Kent S.A. Spires-Jones T.L. Durrant C.S. The physiological roles of tau and Aβ: Implications for Alzheimer’s disease pathology and therapeutics. Acta Neuropathol. 2020 140 4 417 447 10.1007/s00401‑020‑02196‑w 32728795
    [Google Scholar]
  51. Lu Q.Q. Chen Y.M. Liu H.R. Yan J.Y. Cui P.W. Zhang Q.F. Gao X.H. Feng X. Liu Y.Z. Nitrogen-containing flavonoid and their analogs with diverse B-ring in acetylcholinesterase and butyrylcholinesterase inhibition. Drug Dev. Res. 2020 81 8 1037 1047 10.1002/ddr.21726 32754990
    [Google Scholar]
  52. Zhang H. Wang L. Wang X. Deng L. He B. Yi X. Li J. Mangiferin alleviated poststroke cognitive impairment by modulating lipid metabolism in cerebral ischemia/reperfusion rats. Eur. J. Pharmacol. 2024 977 176724 10.1016/j.ejphar.2024.176724 38851559
    [Google Scholar]
  53. Karran E. Mercken M. Strooper B.D. The amyloid cascade hypothesis for Alzheimer’s disease: An appraisal for the development of therapeutics. Nat. Rev. Drug Discov. 2011 10 9 698 712 10.1038/nrd3505 21852788
    [Google Scholar]
  54. Duan W.W. Yang L.T. Liu J. Dai Z.Y. Wang Z.Y. Zhang H. Zhang X. Liang X.S. Luo P. Zhang J. Liu Z.Q. Zhang N. Mo H.Y. Qu C.R. Xia Z.W. Cheng Q. A TGF -β signaling-related lncRNA signature for prediction of glioma prognosis, immune microenvironment, and immunotherapy response. CNS Neurosci. Ther. 2024 30 4 e14489 10.1111/cns.14489 37850692
    [Google Scholar]
  55. Risacher S.L. Saykin A.J. Neuroimaging and other biomarkers for Alzheimer’s disease: The changing landscape of early detection. Annu. Rev. Clin. Psychol. 2013 9 1 621 648 10.1146/annurev‑clinpsy‑050212‑185535 23297785
    [Google Scholar]
  56. Kamenetz F. Tomita T. Hsieh H. Seabrook G. Borchelt D. Iwatsubo T. Sisodia S. Malinow R. APP processing and synaptic function. Neuron 2003 37 6 925 937 10.1016/S0896‑6273(03)00124‑7 12670422
    [Google Scholar]
  57. Masters C.L. Cappai R. Barnham K.J. Villemagne V.L. Molecular mechanisms for Alzheimer’s disease: Implications for neuroimaging and therapeutics. J. Neurochem. 2006 97 6 1700 1725 10.1111/j.1471‑4159.2006.03989.x 16805778
    [Google Scholar]
  58. Albrecht S. Bourdeau M. Bennett D. Mufson E.J. Bhattacharjee M. LeBlanc A.C. Activation of caspase-6 in aging and mild cognitive impairment. Am. J. Pathol. 2007 170 4 1200 1209 10.2353/ajpath.2007.060974 17392160
    [Google Scholar]
  59. Lan Z. Tan F. He J. Liu J. Lu M. Hu Z. Zhuo Y. Liu J. Tang X. Jiang Z. Lian A. Chen Y. Huang Y. Curcumin-primed olfactory mucosa-derived mesenchymal stem cells mitigate cerebral ischemia/reperfusion injury-induced neuronal PANoptosis by modulating microglial polarization. Phytomedicine 2024 129 155635 10.1016/j.phymed.2024.155635 38701541
    [Google Scholar]
  60. Moore K.J. Khoury E.J. Medeiros L.A. Terada K. Geula C. Luster A.D. Freeman M.W. A CD36-initiated signaling cascade mediates inflammatory effects of β-amyloid. J. Biol. Chem. 2002 277 49 47373 47379 10.1074/jbc.M208788200 12239221
    [Google Scholar]
  61. Wyss-Coray T. Mucke L. Inflammation in neurodegenerative disease--a double-edged sword. Neuron 2002 35 3 419 432 10.1016/S0896‑6273(02)00794‑8 12165466
    [Google Scholar]
  62. Cappai R White AR Amyloid β. Int. J. Biochem. Cell. Biol. 1999 31 9 885 889 10.1016/S1357‑2725(99)00027‑8
    [Google Scholar]
  63. Zhu X. Yu G. Lv Y. Yang N. Zhao Y. Li F. Zhao J. Chen Z. Lai Y. Chen L. Wang X. Xiao J. Cai Y. Feng Y. Ding J. Gao W. Zhou K. Xu H. Neuregulin-1, a member of the epidermal growth factor family, mitigates STING-mediated pyroptosis and necroptosis in ischaemic flaps. Burns Trauma 2024 12 tkae035 10.1093/burnst/tkae035 38855574
    [Google Scholar]
  64. Shi M. Chu F. Zhu F. Zhu J. Impact of anti-amyloid-β Monoclonal antibodies on the pathology and clinical profile of Alzheimer’s disease: A focus on aducanumab and lecanemab. Front. Aging Neurosci. 2022 14 870517 10.3389/fnagi.2022.870517 35493943
    [Google Scholar]
  65. Rygiel K. Novel strategies for Alzheimer’s disease treatment: An overview of anti-amyloid beta monoclonal antibodies. Indian J. Pharmacol. 2016 48 6 629 636 10.4103/0253‑7613.194867 28066098
    [Google Scholar]
  66. Dyck v.C.H. Anti-Amyloid-β monoclonal antibodies for alzheimer’s disease: Pitfalls and promise. Biol. Psychiatry 2018 83 4 311 319 10.1016/j.biopsych.2017.08.010 28967385
    [Google Scholar]
  67. Lao K. Zhang R. Luan J. Zhang Y. Gou X. Therapeutic strategies targeting amyloid-β receptors and transporters in alzheimer’s disease. J. Alzheimers Dis. 2021 79 4 1429 1442 10.3233/JAD‑200851 33459712
    [Google Scholar]
  68. Pinheiro L. Faustino C. Therapeutic strategies targeting amyloid-β in Alzheimer’s disease. Curr. Alzheimer Res. 2019 16 5 418 452 10.2174/1567205016666190321163438 30907320
    [Google Scholar]
  69. Cummings J. Anti-amyloid monoclonal antibodies are transformative treatments that redefine Alzheimer’s disease therapeutics. Drugs 2023 83 7 569 576 10.1007/s40265‑023‑01858‑9 37060386
    [Google Scholar]
  70. Söderberg L. Johannesson M. Nygren P. Laudon H. Eriksson F. Osswald G. Möller C. Lannfelt L. Lecanemab, aducanumab, and gantenerumab — binding profiles to different forms of amyloid-beta might explain efficacy and side effects in clinical trials for Alzheimer’s disease. Neurotherapeutics 2023 20 1 195 206 10.1007/s13311‑022‑01308‑6 36253511
    [Google Scholar]
  71. Weinberg M.S. Principe J.L. Chen A. Chung S.Y. Arnold S.E. Stern T.A. Screening, assessment, and pharmacologic treatment of mild cognitive impairment and early Alzheimer’s disease. Prim. Care Companion CNS Disord. 2023 25 6 25 10.4088/PCC.23f03544 38055874
    [Google Scholar]
  72. Wang L. Li X. Deng Z. Cai Q. Lei P. Xu H. Zhu S. Zhou T. Luo R. Zhang C. Yin Y. Zhang S. Wu N. Feng H. Hu R. Neuroendoscopic parafascicular evacuation of spontaneous intracerebral hemorrhage (nesich technique): A multicenter technical experience with preliminary findings. Neurol. Ther. 2024 13 4 1259 1271 10.1007/s40120‑024‑00642‑5 38914793
    [Google Scholar]
  73. Loeffler D.A. Antibody-mediated clearance of brain amyloid-β: Mechanisms of action, effects of natural and monoclonal anti-aβ antibodies, and downstream effects. J. Alzheimers Dis. Rep. 2023 7 1 873 899 10.3233/ADR‑230025 37662616
    [Google Scholar]
  74. Ross E.L. Weinberg M.S. Arnold S.E. Cost-effectiveness of aducanumab and donanemab for early Alzheimer disease in the US. JAMA Neurol. 2022 79 5 478 487 10.1001/jamaneurol.2022.0315 35344024
    [Google Scholar]
  75. Haeberlein B.S. Aisen P.S. Barkhof F. Chalkias S. Chen T. Cohen S. Dent G. Hansson O. Harrison K. Hehn v.C. Iwatsubo T. Mallinckrodt C. Mummery C.J. Muralidharan K.K. Nestorov I. Nisenbaum L. Rajagovindan R. Skordos L. Tian Y. Dyck v.C.H. Vellas B. Wu S. Zhu Y. Sandrock A. Two randomized phase 3 studies of aducanumab in early alzheimer’s disease. J. Prev. Alzheimers Dis. 2022 9 2 197 210 35542991
    [Google Scholar]
  76. Dhillon S. Aducanumab: First approval. Drugs 2021 81 12 1437 1443 10.1007/s40265‑021‑01569‑z 34324167
    [Google Scholar]
  77. Song Z. Jiang Z. Zhang Z. Wang Y. Chen Y. Tang X. Li H. Evolving brain network dynamics in early childhood: Insights from modular graph metrics. Neuroimage 2024 297 120740 10.1016/j.neuroimage.2024.120740 39047590
    [Google Scholar]
  78. Song C. Shi J. Zhang P. Zhang Y. Xu J. Zhao L. Zhang R. Wang H. Chen H. Immunotherapy for Alzheimer’s disease: Targeting β-amyloid and beyond. Transl. Neurodegener. 2022 11 1 18 10.1186/s40035‑022‑00292‑3 35300725
    [Google Scholar]
  79. Sevigny J. Chiao P. Bussière T. Weinreb P.H. Williams L. Maier M. Dunstan R. Salloway S. Chen T. Ling Y. O’Gorman J. Qian F. Arastu M. Li M. Chollate S. Brennan M.S. Quintero-Monzon O. Scannevin R.H. Arnold H.M. Engber T. Rhodes K. Ferrero J. Hang Y. Mikulskis A. Grimm J. Hock C. Nitsch R.M. Sandrock A. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 2016 537 7618 50 56 10.1038/nature19323 27582220
    [Google Scholar]
  80. Cartwright H. Biogen idec expands its neurology pipeline by acquiring three programmes from neurimmune. Pharm. Deals Review. 2011 2011 1 10.3833/pdr.v2011i1.1421
    [Google Scholar]
  81. Frost C.V. Zacharias M. From monomer to fibril: Abeta-amyloid binding to Aducanumab antibody studied by molecular dynamics simulation. Proteins 2020 88 12 1592 1606 10.1002/prot.25978 32666627
    [Google Scholar]
  82. Arndt J.W. Qian F. Smith B.A. Quan C. Kilambi K.P. Bush M.W. Walz T. Pepinsky R.B. Bussière T. Hamann S. Cameron T.O. Weinreb P.H. Structural and kinetic basis for the selectivity of aducanumab for aggregated forms of amyloid-β. Sci. Rep. 2018 8 1 6412 10.1038/s41598‑018‑24501‑0 29686315
    [Google Scholar]
  83. Xi X Li J Wang Z Tian H Yang T. The effect of high-order interactions on the functional brain networks of boys with ADHD. Europ. Phy. J. Spec. Top. 2024 1 13 10.1140/epjs/s11734‑024‑01161‑y
    [Google Scholar]
  84. Haddad H.W. Malone G.W. Comardelle N.J. Degueure A.E. Kaye A.M. Kaye A.D. Aducanumab, a novel anti-amyloid monoclonal antibody, for the treatment of Alzheimer’s disease: A comprehensive review. Health Psychol. Res. 2022 10 1 31925 10.52965/001c.31925 35928986
    [Google Scholar]
  85. Bastrup J. Hansen K.H. Poulsen T.B.G. Kastaniegaard K. Asuni A.A. Christensen S. Belling D. Helboe L. Stensballe A. Volbracht C. Anti-Aβ antibody aducanumab regulates the proteome of senile plaques and closely surrounding tissue in a transgenic mouse model of Alzheimer’s disease. J. Alzheimers Dis. 2021 79 1 249 265 10.3233/JAD‑200715 33252074
    [Google Scholar]
  86. Vaz M. Silva V. Monteiro C. Silvestre S. Role of aducanumab in the treatment of Alzheimer’s disease: Challenges and opportunities. Clin. Interv. Aging 2022 17 797 810 10.2147/CIA.S325026 35611326
    [Google Scholar]
  87. Brockmann R. Nixon J. Love B.L. Yunusa I. Impacts of FDA approval and Medicare restriction on antiamyloid therapies for Alzheimer’s disease: Patient outcomes, healthcare costs, and drug development. Lancet Reg. Health Am. 2023 20 100467 10.1016/j.lana.2023.100467 36908502
    [Google Scholar]
  88. Rashad A. Rasool A. Shaheryar M. Sarfraz A. Sarfraz Z. Robles-Velasco K. Donanemab for Alzheimer’s Disease: A Systematic Review of Clinical Trials. Basel, Switzerland Healthcare 2022 11
    [Google Scholar]
  89. Bayer T.A. Pyroglutamate Aβ cascade as drug target in Alzheimer’s disease. Mol. Psychiatry 2022 27 4 1880 1885 10.1038/s41380‑021‑01409‑2 34880449
    [Google Scholar]
  90. Frost J.L. Liu B. Kleinschmidt M. Schilling S. Demuth H.U. Lemere C.A. Passive immunization against pyroglutamate-3 amyloid-β reduces plaque burden in Alzheimer-like transgenic mice: A pilot study. Neurodegener. Dis. 2012 10 1-4 265 270 10.1159/000335913 22343072
    [Google Scholar]
  91. Villain N. Planche V. Levy R. High-clearance anti-amyloid immunotherapies in Alzheimer’s disease. Part 1: Meta-analysis and review of efficacy and safety data, and medico-economical aspects. Rev. Neurol. 2022 178 10 1011 1030 10.1016/j.neurol.2022.06.012 36184326
    [Google Scholar]
  92. DeMattos R.B. Lu J. Tang Y. Racke M.M. DeLong C.A. Tzaferis J.A. Hole J.T. Forster B.M. McDonnell P.C. Liu F. Kinley R.D. Jordan W.H. Hutton M.L. A plaque-specific antibody clears existing β-amyloid plaques in Alzheimer’s disease mice. Neuron 2012 76 5 908 920 10.1016/j.neuron.2012.10.029 23217740
    [Google Scholar]
  93. Bouter Y. Liekefeld H. Pichlo S. Westhoff A.C. Fenn L. Bakrania P. Bayer T.A. Donanemab detects a minor fraction of amyloid-β plaques in post-mortem brain tissue of patients with Alzheimer’s disease and Down syndrome. Acta Neuropathol. 2022 143 5 601 603 10.1007/s00401‑022‑02418‑3 35429251
    [Google Scholar]
  94. Meglio M. Donanemab Shows Greater Ability to Clear Amyloid Plaque Than Aducanumab. Neurology Live. Neurology Live NA- NA 2022
    [Google Scholar]
  95. Lowe SL Willis BA Hawdon A Natanegara F Chua L Foster J Donanemab (LY3002813) dose-escalation study in Alzheimer's disease. Alzheimer's & dementia (New York, N Y). 2021 e12112
    [Google Scholar]
  96. Lowe S.L. Evans D.C. Shcherbinin S. Cheng Y.J. Willis B.A. Gueorguieva I. Lo A.C. Fleisher A.S. Dage J.L. Ardayfio P. Aguiar G. Ishibai M. Takaichi G. Chua L. Mullins G. Sims J.R. Donanemab (LY3002813) phase 1b study in alzheimer’s disease: Rapid and sustained reduction of brain amyloid measured by florbetapir f18 imaging. J. Prev. Alzheimers Dis. 2021 8 4 414 424 34585215
    [Google Scholar]
  97. Sims J.R. Zimmer J.A. Evans C.D. Lu M. Ardayfio P. Sparks J. Wessels A.M. Shcherbinin S. Wang H. Nery N.E.S. Collins E.C. Solomon P. Salloway S. Apostolova L.G. Hansson O. Ritchie C. Brooks D.A. Mintun M. Skovronsky D.M. Abreu R. Agarwal P. Aggarwal P. Agronin M. Allen A. Altamirano D. Alva G. Andersen J. Anderson A. Anderson D. Arnold J. Asada T. Aso Y. Atit V. Ayala R. Badruddoja M. Badzio-jagiello H. Bajacek M. Barton D. Bear D. Benjamin S. Bergeron R. Bhatia P. Black S. Block A. Bolouri M. Bond W. Bouthillier J. Brangman S. Brew B. Brisbin S. Brisken T. Brodtmann A. Brody M. Brosch J. Brown C. Brownstone P. Bukowczan S. Burns J. Cabrera A. Capote H. Carrasco A. Yepez C.J. Chavez E. Chertkow H. Chyrchel-paszkiewicz U. Ciabarra A. Clemmons E. Cohen D. Cohen R. Cohen I. Concha M. Costell B. Crimmins D. Cruz-pagan Y. Cueli A. Cupelo R. Czarnecki M. Darby D. Dautzenberg P. Deyn D.P. Gandara L.D.J. Deck K. Dibenedetto D. Dibuono M. Dinnerstein E. Dirican A. Dixit S. Dobryniewski J. Drake R. Drysdale P. Duara R. Duffy J. Ellenbogen A. Faradji V. Feinberg M. Feldman R. Fishman S. Flitman S. Forchetti C. Fraga I. Frank A. Frishberg B. Fujigasaki H. Fukase H. Fumero I. Furihata K. Galloway C. Gandhi R. George K. Germain M. Gitelman D. Goetsch N. Goldfarb D. Goldstein M. Goldstick L. Rojas G.Y. Goodman I. Greeley D. Griffin C. Grigsby E. Grosz D. Hafner K. Hart D. Henein S. Herskowitz B. Higashi S. Higashi Y. Ho G. Hodgson J. Hohenberg M. Hollenbeck L. Holub R. Hori T. Hort J. Ilkowski J. Ingram K.J. Isaac M. Ishikawa M. Janu L. Johnston M. Julio W. Justiz W. Kaga T. Kakigi T. Kalafer M. Kamijo M. Kaplan J. Karathanos M. Katayama S. Kaul S. Keegan A. Kerwin D. Khan U. Khan A. Kimura N. Kirk G. Klodowska G. Kowa H. Kutz C. Kwentus J. Lai R. Lall A. Lawrence M. Lee E. Leon R. Linker G. Lisewski P. Liss J. Liu C. Losk S. Lukaszyk E. Lynch J. Macfarlane S. Macsweeney J. Mannering N. Markovic O. Marks D. Masdeu J. Matsui Y. Matsuishi K. Mcallister P. Mcconnehey B. Mcelveen A. Mcgill L. Mecca A. Mega M. Mensah J. Mickielewicz A. Minaeian A. Mocherla B. Murphy C. Murphy P. Nagashima H. Nair A. Nair M. Nardandrea J. Nash M. Nasreddine Z. Nishida Y. Norton J. Nunez L. Ochiai J. Ohkubo T. Okamura Y. Okorie E. Olivera E. O’mahony J. Omidvar O. Ortiz-Cruz D. Osowa A. Papka M. Parker A. Patel P. Patel A. Patel M. Patry C. Peckham E. Pfeffer M. Pietras A. Plopper M. Porsteinsson A. Robitaille P.R. Prins N. Puente O. Ratajczak M. Rhee M. Ritter A. Rodriguez R. Ables R.L. Rojas J. Ross J. Royer P. Rubin J. Russell D. Rutgers S.M. Rutrick S. Sadowski M. Safirstein B. Sagisaka T. Scharre D. Schneider L. Schreiber C. Schrift M. Schulz P. Schwartz H. Schwartzbard J. Scott J. Selem L. Sethi P. Sha S. Sharlin K. Sharma S. Shiovitz T. Shiwach R. Sladek M. Sloan B. Smith A. Solomon P. Sorial E. Sosa E. Stedman M. Steen S. Stein L. Stolyar A. Stoukides J. Sudoh S. Sutton J. Syed J. Szigeti K. Tachibana H. Takahashi Y. Tateno A. Taylor J.D. Taylor K. Tcheremissine O. Thebaud A. Thein S. Thurman L. Toenjes S. Toji H. Toma M. Tran D. Trueba P. Tsujimoto M. Turner R. Uchiyama A. Ussorowska D. Vaishnavi S. Valor E. Vandersluis J. Vasquez A. Velez J. Verghese C. Vodickova-borzova K. Watson D. Weidman D. Weisman D. White A. Willingham K. Winkel I. Winner P. Winston J. Wolff A. Yagi H. Yamamoto H. Yathiraj S. Yoshiyama Y. Zboch M. TRAILBLAZER-ALZ 2 Investigators Donanemab in early symptomatic Alzheimer disease. JAMA 2023 330 6 512 527 10.1001/jama.2023.13239 37459141
    [Google Scholar]
  98. Gueorguieva I. Willis B.A. Chua L. Chow K. Ernest C.S. Shcherbinin S. Ardayfio P. Mullins G.R. Sims J.R. Donanemab population pharmacokinetics, amyloid plaque reduction, and safety in participants with Alzheimer’s disease. Clin. Pharmacol. Ther. 2023 113 6 1258 1267 10.1002/cpt.2875 36805552
    [Google Scholar]
  99. Nilsberth C. Westlind-Danielsson A. Eckman C.B. Condron M.M. Axelman K. Forsell C. Stenh C. Luthman J. Teplow D.B. Younkin S.G. Näslund J. Lannfelt L. The ‘Arctic’ APP mutation (E693G) causes Alzheimer’s disease by enhanced Aβ protofibril formation. Nat. Neurosci. 2001 4 9 887 893 10.1038/nn0901‑887 11528419
    [Google Scholar]
  100. Lord A. Gumucio A. Englund H. Sehlin D. Sundquist V.S. Söderberg L. Möller C. Gellerfors P. Lannfelt L. Pettersson F.E. Nilsson L.N.G. An amyloid-β protofibril-selective antibody prevents amyloid formation in a mouse model of Alzheimer’s disease. Neurobiol. Dis. 2009 36 3 425 434 10.1016/j.nbd.2009.08.007 19703562
    [Google Scholar]
  101. Tucker S. Möller C. Tegerstedt K. Lord A. Laudon H. Sjödahl J. Söderberg L. Spens E. Sahlin C. Waara E.R. Satlin A. Gellerfors P. Osswald G. Lannfelt L. The murine version of BAN2401 (mAb158) selectively reduces amyloid-β protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice. J. Alzheimers Dis. 2014 43 2 575 588 10.3233/JAD‑140741 25096615
    [Google Scholar]
  102. Cohen S. Dyck v.C.H. Gee M. Doherty T. Kanekiyo M. Dhadda S. Li D. Hersch S. Irizarry M. Kramer L.D. Lecanemab clarity ad: Quality-of-life results from a randomized, double-blind phase 3 trial in early Alzheimer’s disease. J. Prev. Alzheimers Dis. 2023 10 4 771 777 37874099
    [Google Scholar]
  103. Söllvander S. Nikitidou E. Gallasch L. Zyśk M. Söderberg L. Sehlin D. Lannfelt L. Erlandsson A. The Aβ protofibril selective antibody mAb158 prevents accumulation of Aβ in astrocytes and rescues neurons from Aβ-induced cell death. J. Neuroinflammation 2018 15 1 98 10.1186/s12974‑018‑1134‑4 29592816
    [Google Scholar]
  104. Tam S. Zhang G. Li L. Elmaarouf A. Skov M. Dolan P. Kinney G.G. Campbell B. Zago W.M. PRX012 induces microglia-mediated clearance of pyroglutamate-modified Aβ in Alzheimer’s disease brain tissue. Alzheimers Dement. 2021 17 S9 e057773 10.1002/alz.057773
    [Google Scholar]
  105. Logovinsky V. Satlin A. Lai R. Swanson C. Kaplow J. Osswald G. Basun H. Lannfelt L. Safety and tolerability of BAN2401 - a clinical study in Alzheimer’s disease with a protofibril selective Aβ antibody. Alzheimers Res. Ther. 2016 8 1 14 10.1186/s13195‑016‑0181‑2 27048170
    [Google Scholar]
  106. Swanson C.J. Zhang Y. Dhadda S. Wang J. Kaplow J. Lai R.Y.K. Lannfelt L. Bradley H. Rabe M. Koyama A. Reyderman L. Berry D.A. Berry S. Gordon R. Kramer L.D. Cummings J.L. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer’s disease with lecanemab, an anti-Aβ protofibril antibody. Alzheimers Res. Ther. 2021 13 1 80 10.1186/s13195‑021‑00813‑8 33865446
    [Google Scholar]
  107. Dyck v.C.H. Swanson C.J. Aisen P. Bateman R.J. Chen C. Gee M. Kanekiyo M. Li D. Reyderman L. Cohen S. Froelich L. Katayama S. Sabbagh M. Vellas B. Watson D. Dhadda S. Irizarry M. Kramer L.D. Iwatsubo T. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 2023 388 1 9 21 10.1056/NEJMoa2212948 36449413
    [Google Scholar]
  108. Rafii M.S. Sperling R.A. Donohue M.C. Zhou J. Roberts C. Irizarry M.C. Dhadda S. Sethuraman G. Kramer L.D. Swanson C.J. Li D. Krause S. Rissman R.A. Walter S. Raman R. Johnson K.A. Aisen P.S. The AHEAD 3-45 study: Design of a prevention trial for Alzheimer’s disease. Alzheimers Dement. 2023 19 4 1227 1233 10.1002/alz.12748 35971310
    [Google Scholar]
  109. Rofo F. Buijs J. Falk R. Honek K. Lannfelt L. Lilja A.M. Metzendorf N.G. Gustavsson T. Sehlin D. Söderberg L. Hultqvist G. Novel multivalent design of a monoclonal antibody improves binding strength to soluble aggregates of amyloid beta. Transl. Neurodegener. 2021 10 1 38 10.1186/s40035‑021‑00258‑x 34579778
    [Google Scholar]
  110. Knappik A. Ge L. Honegger A. Pack P. Fischer M. Wellnhofer G. Hoess A. Wölle J. Plückthun A. Virnekäs B. Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides 1 1Edited by I. A. Wilson. J. Mol. Biol. 2000 296 1 57 86 10.1006/jmbi.1999.3444 10656818
    [Google Scholar]
  111. Steidl S. Ratsch O. Brocks B. Dürr M. Thomassen-Wolf E. In vitro affinity maturation of human GM-CSF antibodies by targeted CDR-diversification. Mol. Immunol. 2008 46 1 135 144 10.1016/j.molimm.2008.07.013 18722015
    [Google Scholar]
  112. Bohrmann B. Baumann K. Benz J. Gerber F. Huber W. Knoflach F. Messer J. Oroszlan K. Rauchenberger R. Richter W.F. Rothe C. Urban M. Bardroff M. Winter M. Nordstedt C. Loetscher H. Gantenerumab: A novel human anti-Aβ antibody demonstrates sustained cerebral amyloid-β binding and elicits cell-mediated removal of human amyloid-β. J. Alzheimers Dis. 2012 28 1 49 69 10.3233/JAD‑2011‑110977 21955818
    [Google Scholar]
  113. Xiao Q. Yan P. Ma X. Liu H. Perez R. Zhu A. Gonzales E. Burchett J.M. Schuler D.R. Cirrito J.R. Diwan A. Lee J.M. Enhancing astrocytic lysosome biogenesis facilitates Aβ clearance and attenuates amyloid plaque pathogenesis. J. Neurosci. 2014 34 29 9607 9620 10.1523/JNEUROSCI.3788‑13.2014 25031402
    [Google Scholar]
  114. Gabandé-Rodríguez E. Keane L. Capasso M. Microglial phagocytosis in aging and Alzheimer’s disease. J. Neurosci. Res. 2020 98 2 284 298 10.1002/jnr.24419 30942936
    [Google Scholar]
  115. Klein G. Delmar P. Voyle N. Rehal S. Hofmann C. Abi-Saab D. Andjelkovic M. Ristic S. Wang G. Bateman R. Kerchner G.A. Baudler M. Fontoura P. Doody R. Gantenerumab reduces amyloid-β plaques in patients with prodromal to moderate Alzheimer’s disease: A PET substudy interim analysis. Alzheimers Res. Ther. 2019 11 1 101 10.1186/s13195‑019‑0559‑z 31831056
    [Google Scholar]
  116. Klein G. Delmar P. Kerchner G.A. Hofmann C. Abi-Saab D. Davis A. Voyle N. Baudler M. Fontoura P. Doody R. Thirty-six-month amyloid positron emission tomography results show continued reduction in amyloid burden with subcutaneous gantenerumab. J. Prev. Alzheimers Dis. 2021 8 1 3 6 33336218
    [Google Scholar]
  117. Ostrowitzki S. Lasser R.A. Dorflinger E. Scheltens P. Barkhof F. Nikolcheva T. Ashford E. Retout S. Hofmann C. Delmar P. Klein G. Andjelkovic M. Dubois B. Boada M. Blennow K. Santarelli L. Fontoura P. A phase III randomized trial of gantenerumab in prodromal Alzheimer’s disease. Alzheimers Res. Ther. 2017 9 1 95 10.1186/s13195‑017‑0318‑y 29221491
    [Google Scholar]
  118. Salloway S. Farlow M. McDade E. Clifford D.B. Wang G. Llibre-Guerra J.J. Hitchcock J.M. Mills S.L. Santacruz A.M. Aschenbrenner A.J. Hassenstab J. Benzinger T.L.S. Gordon B.A. Fagan A.M. Coalier K.A. Cruchaga C. Goate A.A. Perrin R.J. Xiong C. Li Y. Morris J.C. Snider B.J. Mummery C. Surti G.M. Hannequin D. Wallon D. Berman S.B. Lah J.J. Jimenez-Velazquez I.Z. Roberson E.D. Dyck v.C.H. Honig L.S. Sánchez-Valle R. Brooks W.S. Gauthier S. Galasko D.R. Masters C.L. Brosch J.R. Hsiung G.Y.R. Jayadev S. Formaglio M. Masellis M. Clarnette R. Pariente J. Dubois B. Pasquier F. Jack C.R. Jr Koeppe R. Snyder P.J. Aisen P.S. Thomas R.G. Berry S.M. Wendelberger B.A. Andersen S.W. Holdridge K.C. Mintun M.A. Yaari R. Sims J.R. Baudler M. Delmar P. Doody R.S. Fontoura P. Giacobino C. Kerchner G.A. Bateman R.J. Formaglio M. Mills S.L. Pariente J. Dyck v.C.H. A trial of gantenerumab or solanezumab in dominantly inherited Alzheimer’s disease. Nat. Med. 2021 27 7 1187 1196 10.1038/s41591‑021‑01369‑8 34155411
    [Google Scholar]
  119. Lane C. Bullain S. Thanasopoulou A. Delmar P. Boada M. Grimmer T. Baseline characteristics of the GRADUATE studies: Phase III randomized, placebo-controlled studies investigating subcutaneous gantenerumab in participants with early Alzheimer’s disease. Neurology: Lippincott Williams & Wilkins TWO COMMERCE SQ, 2001 MARKET ST; PHILADELPHIA 2022
    [Google Scholar]
  120. Bateman R.J. Cummings J. Schobel S. Salloway S. Vellas B. Boada M. Black S.E. Blennow K. Fontoura P. Klein G. Assunção S.S. Smith J. Doody R.S. Gantenerumab: An anti-amyloid monoclonal antibody with potential disease-modifying effects in early Alzheimer’s disease. Alzheimers Res. Ther. 2022 14 1 178 10.1186/s13195‑022‑01110‑8 36447240
    [Google Scholar]
  121. Smith J. Donohue M.C. Gruendl E. Grimmer T. Perry R.J. Black S.E. Salloway S. Lyons M. Rutten-Jacobs L. Bittner T. Blennow K. Pelentrides C. Barkhof F. Tonietto M. Baudler-Klein M. Fontoura P. Doody R.S. GRADUATE I AND II: Findings of two phase III randomized placebo-controlled studies assessing the efficacy and safety of subcutaneous gantenerumab in early Alzheimer’s disease (AD)(S26. 010). Neurology 2023 100 17_supplement_2 4285 10.1212/WNL.0000000000203868
    [Google Scholar]
  122. Weber F. Bohrmann B. Niewoehner J. Fischer J.A.A. Rueger P. Tiefenthaler G. Moelleken J. Bujotzek A. Brady K. Singer T. Ebeling M. Iglesias A. Freskgård P.O. Brain shuttle antibody for Alzheimer’s disease with attenuated peripheral effector function due to an inverted binding mode. Cell Rep. 2018 22 1 149 162 10.1016/j.celrep.2017.12.019 29298417
    [Google Scholar]
  123. Cummings J. Zhou Y. Lee G. Zhong K. Fonseca J. Cheng F. Alzheimer's disease drug development pipeline: Alzheimer's & dementia, 2023 p. e12385
    [Google Scholar]
  124. Delnomdedieu M. Duvvuri S. Li D.J. Atassi N. Lu M. Brashear H.R. Liu E. Ness S. Kupiec J.W. First-In-Human safety and long-term exposure data for AAB-003 (PF-05236812) and biomarkers after intravenous infusions of escalating doses in patients with mild to moderate Alzheimer’s disease. Alzheimers Res. Ther. 2016 8 1 12 10.1186/s13195‑016‑0177‑y 26925577
    [Google Scholar]
  125. Black R.S. Sperling R.A. Safirstein B. Motter R.N. Pallay A. Nichols A. Grundman M. A single ascending dose study of bapineuzumab in patients with Alzheimer disease. Alzheimer Dis. Assoc. Disord. 2010 24 2 198 203 10.1097/WAD.0b013e3181c53b00 20505438
    [Google Scholar]
  126. Sperling R.A. Jack C.R. Jr Black S.E. Frosch M.P. Greenberg S.M. Hyman B.T. Scheltens P. Carrillo M.C. Thies W. Bednar M.M. Black R.S. Brashear H.R. Grundman M. Siemers E.R. Feldman H.H. Schindler R.J. Amyloid-related imaging abnormalities in amyloid-modifying therapeutic trials: Recommendations from the Alzheimer’s Association Research Roundtable Workgroup. Alzheimers Dement. 2011 7 4 367 385 10.1016/j.jalz.2011.05.2351 21784348
    [Google Scholar]
  127. Laskowitz DT Kolls BJ A phase 2 multiple ascending dose trial of bapineuzumab in mild to moderate Alzheimer disease. Neurology. 2010 74 24 2026 10.1212/WNL.0b013e3181e03844
    [Google Scholar]
  128. Mohs R.C. Knopman D. Petersen R.C. Ferris S.H. Ernesto C. Grundman M. Sano M. Bieliauskas L. Geldmacher D. Clark C. Thai L.J. Development of cognitive instruments for use in clinical trials of antidementia drugs: Additions to the Alzheimer’s Disease Assessment Scale that broaden its scope. The Alzheimer’s Disease Cooperative Study. Alzheimer Dis. Assoc. Disord. 1997 11 Suppl. 2 13 21 10.1097/00002093‑199700112‑00003 9236948
    [Google Scholar]
  129. Rosen W.G. Mohs R.C. Davis K.L. A new rating scale for Alzheimer’s disease. Am. J. Psychiatry 1984 141 11 1356 1364 10.1176/ajp.141.11.1356 6496779
    [Google Scholar]
  130. Arrighi H.M. Gélinas I. McLaughlin T.P. Buchanan J. Gauthier S. Longitudinal changes in functional disability in Alzheimer’s disease patients. Int. Psychogeriatr. 2013 25 6 929 937 10.1017/S1041610212002360 23406898
    [Google Scholar]
  131. Rinne J.O. Brooks D.J. Rossor M.N. Fox N.C. Bullock R. Klunk W.E. Mathis C.A. Blennow K. Barakos J. Okello A.A. LIano d.S.R.M. Liu E. Koller M. Gregg K.M. Schenk D. Black R. Grundman M. 11C-PiB PET assessment of change in fibrillar amyloid-β load in patients with Alzheimer’s disease treated with bapineuzumab: A phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol. 2010 9 4 363 372 10.1016/S1474‑4422(10)70043‑0 20189881
    [Google Scholar]
  132. Zetterberg H. Zetterberg H. Rinne J.O. Salloway S. Wei J. Black R. Grundman M. Liu E. Effect of immunotherapy with bapineuzumab on cerebrospinal fluid biomarker levels in patients with mild to moderate Alzheimer disease. Arch. Neurol. 2012 69 8 1002 1010 10.1001/archneurol.2012.90 22473769
    [Google Scholar]
  133. Salloway S. Marshall G.A. Lu M. Brashear H.R. Long-term safety and efficacy of bapineuzumab in patients with mild-to-moderate Alzheimer’s disease: A phase 2, open-label extension study. Curr. Alzheimer Res. 2018 15 13 1231 1243 10.2174/1567205015666180821114813 30129411
    [Google Scholar]
  134. Gao Y. Guo J. Zhang F. Li Y. Safety analysis of bapineuzumab in the treatment of mild to moderate alzheimer’s disease: A systematic review and meta-analysis. Comb. Chem. High Throughput Screen. 2024 27 1 40 47 10.2174/1386207326666230419095813 37076966
    [Google Scholar]
  135. Hao Y. Dong M. Sun Y. Duan X. Niu W. Effectiveness and safety of monoclonal antibodies against amyloid-beta vis-à-vis placebo in mild or moderate Alzheimer’s disease. Front. Neurol. 2023 14 1147757 10.3389/fneur.2023.1147757 37006475
    [Google Scholar]
  136. Siemers E.R. Sundell K.L. Carlson C. Case M. Sethuraman G. Liu-Seifert H. Dowsett S.A. Pontecorvo M.J. Dean R.A. Demattos R. Phase 3 solanezumab trials: Secondary outcomes in mild Alzheimer’s disease patients. Alzheimers Dement. 2016 12 2 110 120 10.1016/j.jalz.2015.06.1893 26238576
    [Google Scholar]
  137. DeMattos R.B. Bales K.R. Cummins D.J. Dodart J.C. Paul S.M. Holtzman D.M. Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2001 98 15 8850 8855 10.1073/pnas.151261398 11438712
    [Google Scholar]
  138. DeMattos R.B. Bales K.R. Cummins D.J. Paul S.M. Holtzman D.M. Brain to plasma amyloid-beta efflux: A measure of brain amyloid burden in a mouse model of Alzheimer’s disease. Science 2002 295 5563 2264 2267 10.1126/science.1067568 11910111
    [Google Scholar]
  139. Burstein A.H. Zhao Q. Ross J. Styren S. Landen J.W. Ma W.W. McCush F. Alvey C. Kupiec J.W. Bednar M.M. Safety and pharmacology of ponezumab (PF-04360365) after a single 10-minute intravenous infusion in subjects with mild to moderate Alzheimer disease. Clin. Neuropharmacol. 2013 36 1 8 13 10.1097/WNF.0b013e318279bcfa 23334069
    [Google Scholar]
  140. Farlow M. Arnold S.E. Dyck v.C.H. Aisen P.S. Snider B.J. Porsteinsson A.P. Friedrich S. Dean R.A. Gonzales C. Sethuraman G. DeMattos R.B. Mohs R. Paul S.M. Siemers E.R. Safety and biomarker effects of solanezumab in patients with Alzheimer’s disease. Alzheimers Dement. 2012 8 4 261 271 10.1016/j.jalz.2011.09.224 22672770
    [Google Scholar]
  141. Doody R.S. Thomas R.G. Farlow M. Iwatsubo T. Vellas B. Joffe S. Kieburtz K. Raman R. Sun X. Aisen P.S. Siemers E. Liu-Seifert H. Mohs R. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N. Engl. J. Med. 2014 370 4 311 321 10.1056/NEJMoa1312889 24450890
    [Google Scholar]
  142. Lancet N. Solanezumab: Too late in mild Alzheimer’s disease? Lancet Neurol. 2017 16 2 97 10.1016/S1474‑4422(16)30395‑7 28102152
    [Google Scholar]
  143. Doggrell S.A. Grasping at straws: The failure of solanezumab to modify mild Alzheimer’s disease. Expert Opin. Biol. Ther. 2018 18 12 1189 1192 10.1080/14712598.2018.1543397 30376649
    [Google Scholar]
  144. Holdridge K.C. Yaari R. Hoban D.B. Andersen S. Sims J.R. Targeting amyloid β in Alzheimer’s disease: Meta-analysis of low-dose solanezumab in Alzheimer’s disease with mild dementia studies. Alzheimers Dement. 2023 19 10 4619 4628 10.1002/alz.13031 36946603
    [Google Scholar]
  145. Adolfsson O. Pihlgren M. Toni N. Varisco Y. Buccarello A.L. Antoniello K. Lohmann S. Piorkowska K. Gafner V. Atwal J.K. Maloney J. Chen M. Gogineni A. Weimer R.M. Mortensen D.L. Friesenhahn M. Ho C. Paul R. Pfeifer A. Muhs A. Watts R.J. An effector-reduced anti-β-amyloid (Aβ) antibody with unique aβ binding properties promotes neuroprotection and glial engulfment of Aβ. J. Neurosci. 2012 32 28 9677 9689 10.1523/JNEUROSCI.4742‑11.2012 22787053
    [Google Scholar]
  146. Ultsch M. Li B. Maurer T. Mathieu M. Adolfsson O. Muhs A. Pfeifer A. Pihlgren M. Bainbridge T.W. Reichelt M. Ernst J.A. Eigenbrot C. Fuh G. Atwal J.K. Watts R.J. Wang W. Structure of crenezumab complex with aβ shows loss of β-hairpin. Sci. Rep. 2016 6 1 39374 10.1038/srep39374 27996029
    [Google Scholar]
  147. Salloway S. Honigberg L.A. Cho W. Ward M. Friesenhahn M. Brunstein F. Quartino A. Clayton D. Mortensen D. Bittner T. Ho C. Rabe C. Schauer S.P. Wildsmith K.R. Fuji R.N. Suliman S. Reiman E.M. Chen K. Paul R. Amyloid positron emission tomography and cerebrospinal fluid results from a crenezumab anti-amyloid-beta antibody double-blind, placebo-controlled, randomized phase II study in mild-to-moderate Alzheimer’s disease (BLAZE). Alzheimers Res. Ther. 2018 10 1 96 10.1186/s13195‑018‑0424‑5 30231896
    [Google Scholar]
  148. Crespi G.A.N. Hermans S.J. Parker M.W. Miles L.A. Molecular basis for mid-region amyloid-β capture by leading Alzheimer’s disease immunotherapies. Sci. Rep. 2015 5 1 9649 10.1038/srep09649 25880481
    [Google Scholar]
  149. Ostrowitzki S. Bittner T. Sink K.M. Mackey H. Rabe C. Honig L.S. Cassetta E. Woodward M. Boada M. Dyck v.C.H. Grimmer T. Selkoe D.J. Schneider A. Blondeau K. Hu N. Quartino A. Clayton D. Dolton M. Dang Y. Ostaszewski B. Sanabria-Bohórquez S.M. Rabbia M. Toth B. Eichenlaub U. Smith J. Honigberg L.A. Doody R.S. Evaluating the safety and efficacy of crenezumab vs. placebo in adults with early Alzheimer disease. JAMA Neurol. 2022 79 11 1113 1121 10.1001/jamaneurol.2022.2909 36121669
    [Google Scholar]
  150. Salloway S. Cho W. Clayton D. Honigberg L. Rabe C. Friesenhahn M. Amyloid PET imaging results from a study to evaluate the impact of crenezumab on fibrillar amyloid in patients with mild-to-moderate Alzheimer’s disease. J Prev Alz. 2014 1 214 296
    [Google Scholar]
  151. Honigberg L. Clayton D. Cho W. Rabe C. Friesenhahn M. Ward M. Biomarker results from the crenezumab anti-Aβ phase 2 biomarker trial. Clinical Trials on Alzheimer’s Disease 2014 20 22
    [Google Scholar]
  152. Landen J.W. Zhao Q. Cohen S. Borrie M. Woodward M. Billing C.B. Jr Bales K. Alvey C. McCush F. Yang J. Kupiec J.W. Bednar M.M. Safety and pharmacology of a single intravenous dose of ponezumab in subjects with mild-to-moderate Alzheimer disease: A phase I, randomized, placebo-controlled, double-blind, dose-escalation study. Clin. Neuropharmacol. 2013 36 1 14 23 10.1097/WNF.0b013e31827db49b 23334070
    [Google Scholar]
  153. Landen JW Cohen S Billing CB Jr Cronenberger C Styren S Burstein AH Multiple-dose ponezumab for mild-to-moderate Alzheimer's disease: Safety and efficacy. Alzheimer's & dementia (New York, N Y). 2017 3 339 347
    [Google Scholar]
  154. Landen JW Andreasen N Cronenberger CL Schwartz PF Börjesson-Hanson A Östlund H Ponezumab in mild-to-moderate Alzheimer's disease: Randomized phase II PET-PIB study. Alzheimer's & dementia (New York, N Y). 2017 3 393 401
    [Google Scholar]
  155. Leurent C. Goodman J.A. Zhang Y. He P. Polimeni J.R. Gurol M.E. Lindsay M. Frattura L. Sohur U.S. Viswanathan A. Bednar M.M. Smith E.E. Greenberg S.M. Immunotherapy with ponezumab for probable cerebral amyloid angiopathy. Ann. Clin. Transl. Neurol. 2019 6 4 795 806 10.1002/acn3.761 31020004
    [Google Scholar]
  156. Pradier L. Blanchard-Brégeon V. Bohme A. Debeir T. Menager J. Benoit P. Barneoud P. Taupin V. Bertrand P. Dugay P. Cameron B. Shi Y. Naimi S. Duchesne M. Gagnaire M. Weeden T. Travaline T. Reczek D. Khiroug L. Slaoui M. Brunel P. Fukuyama H. Ravetch J. Canton T. Cohen C. SAR228810: An antibody for protofibrillar amyloid β peptide designed to reduce the risk of amyloid-related imaging abnormalities (ARIA). Alzheimers Res. Ther. 2018 10 1 117 10.1186/s13195‑018‑0447‑y 30486882
    [Google Scholar]
  157. Akasaka-Manya K. Manya H. The role of APP O-glycosylation in Alzheimer’s disease. Biomolecules 2020 10 11 1569 10.3390/biom10111569 33218200
    [Google Scholar]
  158. Wang X. Zhou X. Li G. Zhang Y. Wu Y. Song W. Modifications and trafficking of app in the pathogenesis of alzheimer’s disease. Front. Mol. Neurosci. 2017 10 294 10.3389/fnmol.2017.00294 28966576
    [Google Scholar]
  159. Götz J. Ittner A. Ittner L.M. Tau-targeted treatment strategies in Alzheimer’s disease. Br. J. Pharmacol. 2012 165 5 1246 1259 10.1111/j.1476‑5381.2011.01713.x 22044248
    [Google Scholar]
  160. Lee H.E. Lim D. Lee J.Y. Lim S.M. Pae A.N. Recent tau-targeted clinical strategies for the treatment of Alzheimer’s disease. Future Med. Chem. 2019 11 15 1845 1848 10.4155/fmc‑2019‑0151 31517533
    [Google Scholar]
  161. Mietelska-Porowska A. Wasik U. Goras M. Filipek A. Niewiadomska G. Tau protein modifications and interactions: Their role in function and dysfunction. Int. J. Mol. Sci. 2014 15 3 4671 4713 10.3390/ijms15034671 24646911
    [Google Scholar]
  162. Clavaguera F. Bolmont T. Crowther R.A. Abramowski D. Frank S. Probst A. Fraser G. Stalder A.K. Beibel M. Staufenbiel M. Jucker M. Goedert M. Tolnay M. Transmission and spreading of tauopathy in transgenic mouse brain. Nat. Cell Biol. 2009 11 7 909 913 10.1038/ncb1901 19503072
    [Google Scholar]
  163. Šimić G. Leko B.M. Wray S. Harrington C. Delalle I. Jovanov-Milošević N. Bažadona D. Buée L. Silva D.R. Giovanni D.G. Wischik C. Hof P. Tau protein hyperphosphorylation and aggregation in alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules 2016 6 1 6 10.3390/biom6010006 26751493
    [Google Scholar]
  164. Kumar P. Jha N.K. Jha S.K. Ramani K. Ambasta R.K. Tau phosphorylation, molecular chaperones, and ubiquitin E3 ligase: Clinical relevance in Alzheimer’s disease. J. Alzheimers Dis. 2014 43 2 341 361 10.3233/JAD‑140933 25096626
    [Google Scholar]
  165. Reyes J.F. Reynolds M.R. Horowitz P.M. Fu Y. Guillozet-Bongaarts A.L. Berry R. Binder L.I. A possible link between astrocyte activation and tau nitration in Alzheimer’s disease. Neurobiol. Dis. 2008 31 2 198 208 10.1016/j.nbd.2008.04.005 18562203
    [Google Scholar]
  166. Hu K.W. Fan H.F. Lin H.C. Huang J.W. Chen Y.C. Shen C.L. Shih Y.H. Tu L.H. Exploring the impact of glyoxal glycation on β-amyloid peptide (aβ) aggregation in alzheimer’s disease. J. Phys. Chem. B 2021 125 21 5559 5571 10.1021/acs.jpcb.1c02797 34019761
    [Google Scholar]
  167. Neațu M. Covaliu A. Ioniță I. Jugurt A. Davidescu E.I. Popescu B.O. Monoclonal antibody therapy in Alzheimer’s disease. Pharmaceutics 2023 16 1 60 10.3390/pharmaceutics16010060 38258071
    [Google Scholar]
  168. Ramanan V.K. Armstrong M.J. Choudhury P. Coerver K.A. Hamilton R.H. Klein B.C. Wolk D.A. Wessels S.R. Jones L.K., Jr. Antiamyloid monoclonal antibody therapy for Alzheimer disease: Emerging issues in neurology. Neurology 2023 101 19 842 852 10.1212/WNL.0000000000207757 37495380
    [Google Scholar]
  169. Singh A. Hasan A. Tiwari S. Pandey L.M. Therapeutic advancement in Alzheimer disease: New hopes on the horizon? CNS Neurol. Disord. Drug Targets 2018 17 8 571 589 10.2174/1871527317666180627122448 29952273
    [Google Scholar]
  170. Salemme S. Ancidoni A. Locuratolo N. Piscopo P. Lacorte E. Canevelli M. Vanacore N. Advances in amyloid-targeting monoclonal antibodies for Alzheimer’s disease: Clinical and public health issues. Expert Rev. Neurother. 2023 23 12 1113 1129 10.1080/14737175.2023.2284305 37975226
    [Google Scholar]
  171. Chowdhury, S. Monoclonal Antibody Treatments for Alzheimer's disease: Aducanumab and lecanemab. Discoveries, 2023, 11(3),
  172. Khan T. Waseem R. Shahid M. Ansari J. Ahanger I.A. Hassan I. Islam A. Recent advancement in therapeutic strategies for Alzheimer’s disease: Insights from clinical trials. Ageing Res. Rev. 2023 92 102113 10.1016/j.arr.2023.102113 37918760
    [Google Scholar]
  173. Chowdhury S. Chowdhury N.S. Novel anti-amyloid-beta (Aβ) monoclonal antibody lecanemab for Alzheimer’s disease: A systematic review. nternational journal of immunopathology pharmacology & Therapeutics Part B. Gen. Syst. Pharmacol. 2023 37 03946320231209839
    [Google Scholar]
  174. Gautam S.A. Pandey S.K. Lasure V. Dubey S. Singh R.K. Monoclonal antibodies for the management of central nervous system diseases: Clinical success and future strategies. Expert Opin. Biol. Ther. 2023 23 7 603 618 10.1080/14712598.2023.2227378 37334564
    [Google Scholar]
  175. Hussain S. Khan M.A. Rajan R. Jyoti J. Sharma S. Sahu S.K. Nanorobots: The future of healthcare. AIP Conference Proceedings . 2023. AIP Publishing, Vol. 2800, No. 1
    [Google Scholar]
  176. Terao I. Kodama W. Comparative efficacy, tolerability and acceptability of donanemab, lecanemab, aducanumab and lithium on cognitive function in mild cognitive impairment and Alzheimer’s disease: A systematic review and network meta-analysis. Ageing Res. Rev. 2024 94 102203 10.1016/j.arr.2024.102203 38253184
    [Google Scholar]
  177. Perneczky R. Dom G. Chan A. Falkai P. Bassetti C. Anti-amyloid antibody treatments for Alzheimer’s disease. Eur. J. Neurol. 2024 31 2 e16049 10.1111/ene.16049 37697714
    [Google Scholar]
  178. Marsool M.D.M. Prajjwal P. Reddy Y.B. Marsool A.D.M. Lam J.R. Nandwana V. Newer modalities in the management of Alzheimer’s dementia along with the role of aducanumab and lecanemab in the treatment of its refractory cases. Dis. Mon. 2023 69 5 101547 10.1016/j.disamonth.2023.101547 36931947
    [Google Scholar]
  179. Wu W. Ji Y. Wang Z. Wu X. Li J. Gu F. Chen Z. Wang Z. The FDA-approved anti-amyloid-β monoclonal antibodies for the treatment of Alzheimer’s disease: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Med. Res. 2023 28 1 544 10.1186/s40001‑023‑01512‑w 38017568
    [Google Scholar]
  180. Imbimbo B.P. Ippati S. Watling M. Imbimbo C. Role of monomeric amyloid-β in cognitive performance in Alzheimer’s disease: Insights from clinical trials with secretase inhibitors and monoclonal antibodies. Pharmacol. Res. 2023 187 106631 10.1016/j.phrs.2022.106631 36586644
    [Google Scholar]
  181. Withington C.G. Turner R.S. Amyloid-related imaging abnormalities with anti-amyloid antibodies for the treatment of dementia due to Alzheimer’s disease. Front. Neurol. 2022 13 862369 10.3389/fneur.2022.862369 35401412
    [Google Scholar]
  182. Scott I.A. Monoclonal antibodies for treating early Alzheimer disease—a commentary on recent ‘positive’ trials. Age Ageing 2024 53 2 afae023 10.1093/ageing/afae023 38411409
    [Google Scholar]
  183. Çulcu EA Demiryürek Ş Demiryürek AT Recent treatment approaches for Alzheimer’s disease with monoclonal antibodies targeting amyloid-β. Rec. Trends Pharma. 1 3 150 166
    [Google Scholar]
  184. Suzuki N. Hatta T. Ito M. Kusakabe K. Anti-amyloid-β antibodies and anti-tau therapies for alzheimer’s disease: Recent advances and perspectives. Chem. Pharm. Bull. 2024 72 7 602 609 10.1248/cpb.c24‑00069 38945936
    [Google Scholar]
  185. Jeremic D. Navarro-Lopez J.D. Jimenez-Diaz L. Donanemab outperformed aducanumab and lecanemab on cognitive, but not on biomarker and safety outcomes: Systematic review, frequentist and bayesian network meta-analyses. medRxiv 2024 2024.03 10.1101/2024.03.31.24305134
    [Google Scholar]
  186. Tousi B. Sabbagh M.N. A Time of Transition of Alzheimer's Disease in the Advent of Anti-Amyloid Monoclonal Antibodies. Neurology, editor. Springer 2021 1 5
    [Google Scholar]
  187. Tousi B. Sabbagh M.N. Therapy. a time of transition of alzheimer’s disease in the advent of anti-amyloid monoclonal antibodies. neurology. Neurol. Ther. 2021 10 2 409 413
    [Google Scholar]
  188. Armansyah N.A. Putri A.M. Azizah W.N. Maryati I. Potential of monoclonal antibody (mab) as alternative treatment of alzheimer: A sytematic scoping review. J. Pendidikan Keperawatan Indonesia 2023 9 1 79 82 10.17509/jpki.v9i1.52874
    [Google Scholar]
  189. Pardridge W.M. Re-engineering therapeutic antibodies for Alzheimer’s disease as blood-brain barrier penetrating bi-specific antibodies. Expert Opin. Biol. Ther. 2016 16 12 1455 1468 10.1080/14712598.2016.1230195 27572805
    [Google Scholar]
  190. Rofo F. Meier S.R. Metzendorf N.G. Morrison J.I. Petrovic A. Syvänen S. Sehlin D. Hultqvist G. A brain-targeting bispecific-multivalent antibody clears soluble amyloid-beta aggregates in Alzheimer’s disease mice. Neurotherapeutics 2022 19 5 1588 1602 10.1007/s13311‑022‑01283‑y 35939261
    [Google Scholar]
  191. Sumbria R.K. Hui E.K.W. Lu J.Z. Boado R.J. Pardridge W.M. Disaggregation of amyloid plaque in brain of Alzheimer’s disease transgenic mice with daily subcutaneous administration of a tetravalent bispecific antibody that targets the transferrin receptor and the Abeta amyloid peptide. Mol. Pharm. 2013 10 9 3507 3513 10.1021/mp400348n 23924247
    [Google Scholar]
  192. He P. Xin W. Schulz P. Sierks M.R. Bispecific antibody fragment targeting APP and inducing α-site cleavage restores neuronal health in an Alzheimer’s mouse model. Mol. Neurobiol. 2019 56 11 7420 7432 10.1007/s12035‑019‑1597‑z 31041656
    [Google Scholar]
  193. Stanimirovic D. Kemmerich K. Haqqani A.S. Farrington G.K. Engineering and pharmacology of blood-brain barrier-permeable bispecific antibodies. Adv. Pharmacol. 2014 71 301 335 10.1016/bs.apha.2014.06.005 25307221
    [Google Scholar]
  194. Robert R. Wark K.L. Engineered antibody approaches for Alzheimer’s disease immunotherapy. Arch. Biochem. Biophys. 2012 526 2 132 138 10.1016/j.abb.2012.02.022 22475448
    [Google Scholar]
  195. Shiraiwa H. Narita A. Kamata-Sakurai M. Ishiguro T. Sano Y. Hironiwa N. Tsushima T. Segawa H. Tsunenari T. Ikeda Y. Kayukawa Y. Noguchi M. Wakabayashi T. Sakamoto A. Konishi H. Kuramochi T. Endo M. Hattori K. Nezu J. Igawa T. Engineering a bispecific antibody with a common light chain: Identification and optimization of an anti-CD3 epsilon and anti-GPC3 bispecific antibody, ERY974. Methods 2019 154 10 20 10.1016/j.ymeth.2018.10.005 30326272
    [Google Scholar]
  196. Ma J. Mo Y. Tang M. Shen J. Qi Y. Zhao W. Huang Y. Xu Y. Qian C. Bispecific antibodies: From research to clinical application. Front. Immunol. 2021 12 626616 10.3389/fimmu.2021.626616 34025638
    [Google Scholar]
  197. Farhangnia P. Delbandi A-A. Sadri M. Akbarpour M. Bispecific antibodies in targeted cancer immunotherapy. handbook of cancer and immunology. Rezaei N. Handbook of Cancer and Immunology Springer 2023 1 46
    [Google Scholar]
  198. Zhang J. Yi J. Zhou P. Development of bispecific antibodies in China: Overview and prospects. Antib. Ther. 2020 3 2 126 145 10.1093/abt/tbaa011 33928227
    [Google Scholar]
  199. Register A.C. Tarighat S.S. Lee H.Y. Bioassay development for bispecific antibodies—challenges and opportunities. Int. J. Mol. Sci. 2021 22 10 5350 10.3390/ijms22105350 34069573
    [Google Scholar]
  200. Labrijn A.F. Janmaat M.L. Reichert J.M. Parren P.W.H.I. Bispecific antibodies: A mechanistic review of the pipeline. Nat. Rev. Drug Discov. 2019 18 8 585 608 10.1038/s41573‑019‑0028‑1 31175342
    [Google Scholar]
  201. Keam S.J. Ozoralizumab: First approval. Drugs 2023 83 1 87 92 10.1007/s40265‑022‑01821‑0 36509938
    [Google Scholar]
  202. Sedykh S. Prinz V. Buneva V. Nevinsky G. Bispecific antibodies: Design, therapy, perspectives. Drug Des. Devel. Ther. 2018 12 195 208 10.2147/DDDT.S151282 29403265
    [Google Scholar]
  203. Liu J. Yang B. Ke J. Li W. Suen W.C. Aging Antibody-based drugs and approaches against amyloid-β species for Alzheimer’s disease immunotherapy. Drugs Aging 2016 33 10 685 697 10.1007/s40266‑016‑0406‑x 27699633
    [Google Scholar]
  204. Kontermann R.E. Brinkmann U. Bispecific antibodies. Drug Discov. Today 2015 20 7 838 847 10.1016/j.drudis.2015.02.008 25728220
    [Google Scholar]
  205. Yang F. Wen W. Qin W. Bispecific antibodies as a development platform for new concepts and treatment strategies. Int. J. Mol. Sci. 2016 18 1 48 10.3390/ijms18010048 28036020
    [Google Scholar]
  206. Brinkmann U. Kontermann R.E. Bispecific antibodies. Science 2021 372 6545 916 917 10.1126/science.abg1209 34045345
    [Google Scholar]
  207. Niazi S.K. Mariam Z. Magoola M. Engineered antibodies to improve efficacy against neurodegenerative disorders. Int. J. Mol. Sci. 2024 25 12 6683 10.3390/ijms25126683 38928395
    [Google Scholar]
  208. Regina A. Demeule M. Tripathy S. Lord-Dufour S. Currie J.C. Iddir M. Annabi B. Castaigne J.P. Lachowicz J.E. ANG4043, a novel brain-penetrant peptide-mAb conjugate, is efficacious against HER2-positive intracranial tumors in mice. Mol. Cancer Ther. 2015 14 1 129 140 10.1158/1535‑7163.MCT‑14‑0399 25492620
    [Google Scholar]
  209. Parakh S. Gan H.K. Parslow A.C. Burvenich I.J.G. Burgess A.W. Scott A.M. Evolution of anti-HER2 therapies for cancer treatment. Cancer Treat. Rev. 2017 59 1 21 10.1016/j.ctrv.2017.06.005 28715775
    [Google Scholar]
  210. Punyakoti P. Behl T. Sehgal A. Yadav S. Sachdeva M. Anwer M.K. Vargas-De-La-Cruz C. Venkatachalam T. Naqvi M. Verma R. Tuli H.S. Postulating the possible cellular signalling mechanisms of antibody drug conjugates in Alzheimer’s disease. Cell. Signal. 2023 102 110539 10.1016/j.cellsig.2022.110539 36455831
    [Google Scholar]
  211. Gupta G. Hussain M.S. Pant K. Ali H. Thapa R. Bhatt A.A. Antibody-drug conjugates (ADCs): A novel therapy for triple-negative breast cancer (TNBC). Curr. Cancer Drug Targets 2024 25 2 108 112 39248064
    [Google Scholar]
  212. Papageorgiou L. Papakonstantinou E. Salis C. Polychronidou E. Hagidimitriou M. Maroulis D. Drugena: A fully automated immunoinformatics platform for the design of antibody-drug conjugates against neurodegenerative diseases. GeNeDis 2018: Computational Biology and Bioinformatics. Springer 2020 203 215
    [Google Scholar]
  213. Poblocka M. Bassey A.L. Smith V.M. Falcicchio M. Manso A.S. Althubiti M. Sheng X. Kyle A. Barber R. Frigerio M. Macip S. Targeted clearance of senescent cells using an antibody-drug conjugate against a specific membrane marker. Sci. Rep. 2021 11 1 20358 10.1038/s41598‑021‑99852‑2 34645909
    [Google Scholar]
  214. Tashima T. Delivery of drugs into cancer cells using antibody–drug conjugates based on receptor-mediated endocytosis and the enhanced permeability and retention effect. Antibodies 2022 11 4 78 10.3390/antib11040078 36546903
    [Google Scholar]
  215. Sasso J.M. Tenchov R. Bird R. Iyer K.A. Ralhan K. Rodriguez Y. Zhou Q.A. The evolving landscape of antibody–drug conjugates: In depth analysis of recent research progress. Bioconjug. Chem. 2023 34 11 1951 2000 10.1021/acs.bioconjchem.3c00374 37821099
    [Google Scholar]
  216. Nervig C.S. Owen S.C. Antibody Drug Conjugates. Encyclopedia of Molecular Pharmacology. Cham: Springer International Publishing. 2022 118 125
    [Google Scholar]
  217. McGowan J.W.D. Bidwell G.L., III. Vig P.J.S. Challenges and new strategies for therapeutic peptide delivery to the CNS. Ther. Deliv. 2015 6 7 841 853 10.4155/tde.15.30 26228775
    [Google Scholar]
  218. Dean T.T. Jelú-Reyes J. Allen A.L.C. Moore T.W. Peptide–drug conjugates: An emerging direction for the next generation of peptide therapeutics. J. Med. Chem. 2024 67 3 1641 1661 10.1021/acs.jmedchem.3c01835 38277480
    [Google Scholar]
  219. Wang S. Yao H. Xu Y. Hao R. Zhang W. Liu H. Huang Y. Guo W. Lu B. Therapeutic potential of a TrkB agonistic antibody for Alzheimer’s disease. Theranostics 2020 10 15 6854 6874 10.7150/thno.44165 32550908
    [Google Scholar]
  220. Akıncıoğlu H. Gülçin İ. Potent acetylcholinesterase inhibitors: Potential drugs for Alzheimer’s disease. Mini Rev. Med. Chem. 2020 20 8 703 715 10.2174/1389557520666200103100521 31902355
    [Google Scholar]
  221. Sharma K. Cholinesterase inhibitors as Alzheimer’s therapeutics (Review). Mol. Med. Rep. 2019 20 2 1479 1487 31257471
    [Google Scholar]
  222. Li Q. He S. Chen Y. Feng F. Qu W. Sun H. Donepezil-based multi-functional cholinesterase inhibitors for treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2018 158 463 477 10.1016/j.ejmech.2018.09.031 30243151
    [Google Scholar]
  223. Tsai S-J Huperzine-A, a versatile herb, for the treatment of Alzheimer’s disease. J. Chin. Med. Assoc. LWW. 2019 82 10 750 751
    [Google Scholar]
  224. Hampel H. Vassar R. Strooper D.B. Hardy J. Willem M. Singh N. Zhou J. Yan R. Vanmechelen E. Vos D.A. Nisticò R. Corbo M. Imbimbo B.P. Streffer J. Voytyuk I. Timmers M. Monfared T.A.A. Irizarry M. Albala B. Koyama A. Watanabe N. Kimura T. Yarenis L. Lista S. Kramer L. Vergallo A. The β-secretase BACE1 in Alzheimer’s disease. Biol. Psychiatry 2021 89 8 745 756 10.1016/j.biopsych.2020.02.001 32223911
    [Google Scholar]
  225. Moussa-Pacha N.M. Abdin S.M. Omar H.A. Alniss H. Al-Tel T.H. BACE1 inhibitors: Current status and future directions in treating Alzheimer’s disease. Med. Res. Rev. 2020 40 1 339 384 10.1002/med.21622 31347728
    [Google Scholar]
  226. Wen W. Li P. Liu P. Xu S. Wang F. Huang J.H. Post-translational modifications of BACE1 in Alzheimer’s disease. Curr. Neuropharmacol. 2022 20 1 211 222 10.2174/1570159X19666210121163224 33475074
    [Google Scholar]
  227. Kushwaha P. Singh V. Somvanshi P. Bhardwaj T. Barreto G.E. Ashraf G.M. Mishra B.N. Chundawat R.S. Haque S. Identification of new BACE1 inhibitors for treating Alzheimer’s disease. J. Mol. Model. 2021 27 2 58 10.1007/s00894‑021‑04679‑3 33517514
    [Google Scholar]
  228. Oliver D.M.A. Reddy P.H. Small molecules as therapeutic drugs for Alzheimer’s disease. Mol. Cell. Neurosci. 2019 96 47 62 10.1016/j.mcn.2019.03.001 30877034
    [Google Scholar]
  229. Lee D. Antonsdottir I.M. Clark E.D. Porsteinsson A.P. Review of valiltramiprosate (ALZ-801) for the treatment of Alzheimer’s disease: A novel small molecule with disease modifying potential. Expert Opin. Pharmacother. 2024 25 7 791 799 10.1080/14656566.2024.2360069 38814590
    [Google Scholar]
  230. Song J.X. Malampati S. Zeng Y. Durairajan S.S.K. Yang C.B. Tong B.C.K. Iyaswamy A. Shang W.B. Sreenivasmurthy S.G. Zhu Z. Cheung K.H. Lu J.H. Tang C. Xu N. Li M. A small molecule transcription factor EB activator ameliorates beta-amyloid precursor protein and Tau pathology in Alzheimer’s disease models. Aging Cell 2020 19 2 e13069 10.1111/acel.13069 31858697
    [Google Scholar]
  231. Andújar T.Ba Mary A. Can small molecules provide clues on disease progression in cerebrospinal fluid from mild cognitive impairment and alzheimer’s disease patients? environmental science technology and health care. Envir. Sci. Tech. 2024 58 9 4181 4192
    [Google Scholar]
  232. Toups K. Hathaway A. Gordon D. Chung H. Raji C. Boyd A. Hill B.D. Hausman-Cohen S. Attarha M. Chwa W.J. Jarrett M. Bredesen D.E. Precision medicine approach to Alzheimer’s disease: Successful pilot project. J. Alzheimers Dis. 2022 88 4 1411 1421 10.3233/JAD‑215707 35811518
    [Google Scholar]
  233. Hampel H. Caraci F. Cuello A.C. Caruso G. Nisticò R. Corbo M. Baldacci F. Toschi N. Garaci F. Chiesa P.A. Verdooner S.R. Akman-Anderson L. Hernández F. Ávila J. Emanuele E. Valenzuela P.L. Lucía A. Watling M. Imbimbo B.P. Vergallo A. Lista S. A path toward precision medicine for neuroinflammatory mechanisms in Alzheimer’s disease. Front. Immunol. 2020 11 456 10.3389/fimmu.2020.00456 32296418
    [Google Scholar]
  234. Griñán-Ferré C. Bellver-Sanchis A. Guerrero A. Pallàs M. Advancing personalized medicine in neurodegenerative diseases: The role of epigenetics and pharmacoepigenomics in pharmacotherapy. Pharmacol. Res. 2024 205 107247 10.1016/j.phrs.2024.107247 38834164
    [Google Scholar]
  235. Strianese O. Rizzo F. Ciccarelli M. Galasso G. D’Agostino Y. Salvati A. Giudice D.C. Tesorio P. Rusciano M.R. Precision and personalized medicine: How genomic approach improves the management of cardiovascular and neurodegenerative disease. Genes (Basel) 2020 11 7 747 10.3390/genes11070747 32640513
    [Google Scholar]
  236. Hampel H. Williams C. Etcheto A. Goodsaid F. Parmentier F. Sallantin J. Kaufmann W.E. Missling C.U. Afshar M. A precision medicine framework using artificial intelligence for the identification and confirmation of genomic biomarkers of response to an Alzheimer’s disease therapy: Analysis of the blarcamesine (ANAVEX2-73) Phase 2a clinical study. Alzheimers Dement. (N. Y.) 2020 6 1 e12013 10.1002/trc2.12013 32318621
    [Google Scholar]
  237. Hampel H. Gao P. Cummings J. Toschi N. Thompson P.M. Hu Y. Cho M. Vergallo A. The foundation and architecture of precision medicine in neurology and psychiatry. Trends Neurosci. 2023 46 3 176 198 10.1016/j.tins.2022.12.004 36642626
    [Google Scholar]
  238. Yu T.W. Lane H.Y. Lin C.H. Novel therapeutic approaches for Alzheimer’s disease: An updated review. Int. J. Mol. Sci. 2021 22 15 8208 10.3390/ijms22158208 34360973
    [Google Scholar]
  239. Moorthy H. Govindaraju T. Dendrimer architectonics to treat cancer and neurodegenerative diseases with implications in theranostics and personalized medicine. ACS Appl. Bio Mater. 2021 4 2 1115 1139 10.1021/acsabm.0c01319 35014470
    [Google Scholar]
  240. Ho D. Quake S.R. McCabe E.R.B. Chng W.J. Chow E.K. Ding X. Gelb B.D. Ginsburg G.S. Hassenstab J. Ho C.M. Mobley W.C. Nolan G.P. Rosen S.T. Tan P. Yen Y. Zarrinpar A. Enabling technologies for personalized and precision medicine. Trends Biotechnol. 2020 38 5 497 518 10.1016/j.tibtech.2019.12.021 31980301
    [Google Scholar]
  241. Bottani E. Lamperti C. Prigione A. Tiranti V. Persico N. Brunetti D. Therapeutic approaches to treat mitochondrial diseases:“one-size-fits-all” and “precision medicine” strategies. Pharmaceutics 2020 12 11 1083 10.3390/pharmaceutics12111083 33187380
    [Google Scholar]
  242. Gao X.H. Tang J.J. Liu H.R. Liu L.B. Liu Y.Z. Structure–activity study of fluorine or chlorine-substituted cinnamic acid derivatives with tertiary amine side chain in acetylcholinesterase and butyrylcholinesterase inhibition. Drug Dev. Res. 2019 80 4 438 445 10.1002/ddr.21515 30680760
    [Google Scholar]
  243. Reddy V. Grogan D. Ahluwalia M. Salles É.L. Ahluwalia P. Khodadadi H. Alverson K. Nguyen A. Raju S.P. Gaur P. Braun M. Vale F.L. Costigliola V. Dhandapani K. Baban B. Vaibhav K. Targeting the endocannabinoid system: A predictive, preventive, and personalized medicine-directed approach to the management of brain pathologies. EPMA J. 2020 11 2 217 250 10.1007/s13167‑020‑00203‑4 32549916
    [Google Scholar]
  244. Niculescu A.B. Le-Niculescu H. Roseberry K. Wang S. Hart J. Kaur A. Robertson H. Jones T. Strasburger A. Williams A. Kurian S.M. Lamb B. Shekhar A. Lahiri D.K. Saykin A.J. Blood biomarkers for memory: Toward early detection of risk for Alzheimer disease, pharmacogenomics, and repurposed drugs. Mol. Psychiatry 2020 25 8 1651 1672 10.1038/s41380‑019‑0602‑2 31792364
    [Google Scholar]
  245. Dai Y. Lei C. Zhang Z. Qi Y. Lao K. Gou X. Amyloid-beta targeted therapeutic approaches for Alzheimer’s disease: Long road ahead. Curr. Drug Targets 2022 23 11 1040 1056 10.2174/1389450123666220421124030 35593357
    [Google Scholar]
  246. Huimin C. Xiaofeng F. Shuiyue Q. Ziye R. Changbiao C. Longfei J. Amyloid-β-targeted therapies for Alzheimer’s disease: Currently and in the future. Ageing Neurod. Dis. 2023 3 3 13 10.20517/and.2023.16
    [Google Scholar]
  247. Hampel H. Au R. Mattke S. Flier d.v.W.M. Aisen P. Apostolova L. Chen C. Cho M. Santi D.S. Gao P. Iwata A. Kurzman R. Saykin A.J. Teipel S. Vellas B. Vergallo A. Wang H. Cummings J. Designing the next-generation clinical care pathway for Alzheimer’s disease. Nat. Aging 2022 2 8 692 703 10.1038/s43587‑022‑00269‑x 37118137
    [Google Scholar]
  248. Ruck T. Nimmerjahn F. Wiendl H. Lünemann J.D. Next-generation antibody-based therapies in neurology. Brain 2022 145 4 1229 1241 10.1093/brain/awab465 34928330
    [Google Scholar]
  249. Lian Y. Jia Y.J. Wong J. Zhou X.F. Song W. Guo J. Masters C.L. Wang Y.J. Clarity on the blazing trail: Clearing the way for amyloid-removing therapies for Alzheimer’s disease. Mol. Psychiatry 2024 29 2 297 305 10.1038/s41380‑023‑02324‑4 38001337
    [Google Scholar]
  250. Zhao Z. Liu Y. Ruan S. Hu Y. Current anti-amyloid-β therapy for Alzheimer’s disease treatment: From clinical research to nanomedicine. Int. J. Nanomedicine 2023 18 7825 7845 10.2147/IJN.S444115 38144511
    [Google Scholar]
  251. Cummings J. Osse A.M.L. Cammann D. Powell J. Chen J. Anti-amyloid monoclonal antibodies for the treatment of Alzheimer’s disease. BioDrugs 2024 38 1 5 22 10.1007/s40259‑023‑00633‑2 37955845
    [Google Scholar]
  252. Cummings J.L. Osse A.M.L. Kinney J.W. Cammann D. Chen J. Alzheimer’s disease: Combination therapies and clinical trials for combination therapy development. CNS Drugs 2024 38 8 613 624 10.1007/s40263‑024‑01103‑1 38937382
    [Google Scholar]
  253. Chen J. Chen J-S. Li S. Zhang F. Deng J. Zeng L-H. Tan J. Amyloid precursor protein: A regulatory hub in alzheimer’s disease. Aging Dis. 2024 15 1 201 225 37307834
    [Google Scholar]
  254. Sarazin M. Lagarde J. Haddad E.I. Souza d.L.C. Bellier B. Potier M-C. The path to next-generation disease-modifying immunomodulatory combination therapies in Alzheimer’s disease. Nature Aging 2024 1 10
    [Google Scholar]
  255. Lozupone M. Dibello V. Sardone R. Castellana F. Zupo R. Lampignano L. Bortone I. Stallone R. Altamura M. Bellomo A. Daniele A. Solfrizzi V. Panza F. Lessons learned from the failure of solanezumab as a prospective treatment strategy for Alzheimer’s disease. Expert Opin. Drug Discov. 2024 19 6 639 647 10.1080/17460441.2024.2348142 38685682
    [Google Scholar]
  256. Carraro C. Montgomery J.V. Klimmt J. Paquet D. Schultze J.L. Beyer M.D. Tackling neurodegeneration in vitro with omics: A path towards new targets and drugs. Front. Mol. Neurosci. 2024 17 1414886 10.3389/fnmol.2024.1414886 38952421
    [Google Scholar]
  257. Wang L. Wang X. Deng L. Zhang H. He B. Cao W. Cui Y. Pexidartinib (PLX3397) through restoring hippocampal synaptic plasticity ameliorates social isolation-induced mood disorders. Int. Immunopharmacol. 2022 113 Pt B 109436 10.1016/j.intimp.2022.109436 36395673
    [Google Scholar]
  258. Revanth B. Asrar S.S. Sapkota B. Vandana K. Reddy K.S. Kumar B.P. The role of artificial intelligence and machine learning in drug discovery and development. Asian J. Adv. Res. 2024 7 133 140
    [Google Scholar]
  259. Saikia S. Prajapati J.B. Prajapati B.G. Padma V.V. Pathak Y.V. The Role of Artificial Intelligence. Philadelphia, Pa Recent Advances in Therapeutic Drug Monitoring Clinical Toxicology 2022 67
    [Google Scholar]
  260. Qiu Y. Cheng F. Artificial intelligence for drug discovery and development in Alzheimer’s disease. Curr. Opin. Struct. Biol. 2024 85 102776 10.1016/j.sbi.2024.102776 38335558
    [Google Scholar]
  261. Sayal A. Jha J. Chaithra N. Gangodkar A.R. Banu S.S. Revolutionizing Drug Discovery: The Role of AI and Machine Learning in Accelerating Medicinal Advancements. Artificial Intelligence Machine Learning in Drug Design Development and Psychopathology. 2024 189 221 10.1002/9781394234196.ch7
    [Google Scholar]
  262. Romanelli V. Cerchia C. Lavecchia A. Unlocking the potential of generative artificial intelligence in drug discovery. App. Gener. AI. 2024 37 63 10.1007/978‑3‑031‑46238‑2_3
    [Google Scholar]
  263. Gsaxner C. Mori S. Schmalstieg D. Egger J. Paar G. Bailer W. DeepDR: Deep Structure-Aware RGB-D Inpainting for Diminished Reality. International Conference on 3D Vision (3DV) IEEE, 2024 pp. 750-60.
    [Google Scholar]
  264. Nag S. Baidya A.T.K. Mandal A. Mathew A.T. Das B. Devi B. Kumar R. Deep learning tools for advancing drug discovery and development. 3 Biotech 2022 12 5 110 10.1007/s13205‑022‑03165‑8 35433167
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037362037250205143911
Loading
/content/journals/cpps/10.2174/0113892037362037250205143911
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test