Skip to content
2000
image of Synergistic Effects of Hydrogen Peroxide Preconditioning and Valproic Acid on Hepatic Differentiation of Mesenchymal Stem Cells

Abstract

Introduction

preconditioning increases the therapeutic potential of mesenchymal stem cells (MSCs) in terms of antioxidant activity, growth factor production, homing, differentiation, and immunomodulation. Therefore, it is considered an effective strategy to be used before transplantation and therapeutic application of MSCs. Histone deacetylase inhibitor (HDACi), valproic acid (VPA), has been reported to induce hepatic differentiation in MSCs. Although individual studies have shown that preconditioning and epigenetic modification enhance the survival and differentiation of MSCs, the combined effects of these therapies have not been fully explored. This study aims to investigate the combined effect of hydrogen peroxide (HO) preconditioning and HDACi (valproic acid) on the differentiation of bone marrow-derived mesenchymal stem cells (BM-MSCs) into hepatic-like cells.

Methods

MSCs were first preconditioned with HO and then cultured with VPA. The migration and proliferation potential of the treated cells were evaluated using wound healing and colony-forming unit assays. Furthermore, the expression of hepatic genes () and proteins (AFP, ALB, TAT) was evaluated in all treated groups.

Results

The combined therapy group exhibited enhanced cell migration and proliferation, as evidenced by wound healing and colony-forming unit assays. Additionally, the combined treatment group showed higher expression of hepatic genes and TAT protein, suggesting an improved differentiation of stem cells into hepatocytes.

Conclusion

In conclusion, the combination of HO and VPA emerges as an important factor in promoting hepatocyte differentiation. However, further studies are required to optimize this protocol for future therapeutics.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037343658241111051831
2025-01-03
2025-03-13
Loading full text...

Full text loading...

References

  1. Hu C. Wu Z. Li L. Pre‐treatments enhance the therapeutic effects of mesenchymal stem cells in liver diseases. J. Cell. Mol. Med. 2020 24 1 40 49 10.1111/jcmm.14788 31691463
    [Google Scholar]
  2. Wang L. Chen Y.M. George D. Smets F. Sokal E.M. Bremer E.G. Soriano H.E. Engraftment assessment in human and mouse liver tissue after sex-mismatched liver cell transplantation by real-time quantitative PCR for Y chromosome sequences. Liver Transpl. 2002 8 9 822 828 10.1053/jlts.2002.34891 12200785
    [Google Scholar]
  3. Iansante V. Mitry R.R. Filippi C. Fitzpatrick E. Dhawan A. Human hepatocyte transplantation for liver disease: current status and future perspectives. Pediatr. Res. 2018 83 1-2 232 240 10.1038/pr.2017.284 29149103
    [Google Scholar]
  4. Martin-Rendon E. Sweeney D. Lu F. Girdlestone J. Navarrete C. Watt S.M. 5‐Azacytidine‐treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies. Vox Sang. 2008 95 2 137 148 10.1111/j.1423‑0410.2008.01076.x 18557828
    [Google Scholar]
  5. Augello A. De Bari C. The regulation of differentiation in mesenchymal stem cells. Hum. Gene Ther. 2010 21 10 1226 1238 10.1089/hum.2010.173 20804388
    [Google Scholar]
  6. Khatlani T. Algudiri D. Alenzi R. Al Subayyil A.M. Abomaray F.M. Bahattab E. AlAskar A.S. Kalionis B. El-Muzaini M.F. Abumaree M.H. Bahattab (2018) Preconditioning by hydrogen peroxide enhances multiple properties of human decidua basalis mesenchymal stem/multipotent stromal cells. Stem Cells Int. 2018 2018 1 13 10.1155/2018/6480793 29795719
    [Google Scholar]
  7. Garrido-Pascual P. Alonso-Varona A. Castro B. Burón M. Palomares T. H2O2-preconditioned human adipose-derived stem cells (HC016) increase their resistance to oxidative stress by overexpressing Nrf2 and bioenergetic adaptation. Stem Cell Res. Ther. 2020 11 1 335 10.1186/s13287‑020‑01851‑z 31900237
    [Google Scholar]
  8. Tompkins Y.H. Liu G. Kim W.K. Impact of exogenous hydrogen peroxide on osteogenic differentiation of broiler chicken compact bones derived mesenchymal stem cells. Front. Physiol. 2023 14 1124355 10.3389/fphys.2023.1124355 36776980
    [Google Scholar]
  9. Guo L. Du J. Yuan D. Zhang Y. Zhang S. Zhang H. Mi J. Ning Y. Chen M. Wen D. Sun J. Liu D. Zeng L. Zhang A. Jiang J. Huang H. Optimal H2O2 preconditioning to improve bone marrow mesenchymal stem cells’ engraftment in wound healing. Stem Cell Res. Ther. 2020 11 1 434 10.1186/s13287‑020‑01910‑5 33032649
    [Google Scholar]
  10. Bai H. Fang C.W. Shi Y. Zhai S. Jiang A. Li Y.N. Wang L. Liu Q.L. Zhou G.Y. Cao J.H. Li J. Yang X.K. Qin X.J. Mitochondria-derived H2O2 triggers liver regeneration via FoxO3a signaling pathway after partial hepatectomy in mice. Cell Death Dis. 2023 14 3 216 10.1038/s41419‑023‑05744‑w 36977674
    [Google Scholar]
  11. Sies H. Role of metabolic H2O2 generation: redox signaling and oxidative stress. J. Biol. Chem. 2014 289 13 8735 8741 10.1074/jbc.R113.544635 24515117
    [Google Scholar]
  12. Mahmoudi T. Abdolmohammadi K. Bashiri H. Mohammadi M. Rezaie M.J. Fathi F. Fakhari S. Rezaee M.A. Jalili A. Rahmani M.R. Tayebi L. Hydrogen peroxide preconditioning promotes protective effects of umbilical cord vein mesenchymal stem cells in experimental pulmonary fibrosis. Adv. Pharm. Bull. 2019 10 1 72 80 10.15171/apb.2020.009 32002364
    [Google Scholar]
  13. Snykers S. Vanhaecke T. De Becker A. Papeleu P. Vinken M. Van Riet I. Rogiers V. Chromatin remodeling agent trichostatin A: a key-factor in the hepatic differentiation of human mesenchymal stem cells derived of adult bone marrow. BMC Dev. Biol. 2007 7 1 24 10.1186/1471‑213X‑7‑24 17407549
    [Google Scholar]
  14. Li X. Li L. Pandey R. Byun J.S. Gardner K. Qin Z. Dou Y. The histone acetyltransferase MOF is a key regulator of the embryonic stem cell core transcriptional network. Cell Stem Cell 2012 11 2 163 178 10.1016/j.stem.2012.04.023 22862943
    [Google Scholar]
  15. Rashid S. Qazi R.M. Malick T.S. Salim A. Khan I. Ilyas A. Haneef K. Effect of valproic acid on the hepatic differentiation of mesenchymal stem cells in 2D and 3D microenvironments. Mol. Cell. Biochem. 2021 476 2 909 919 10.1007/s11010‑020‑03955‑9 33111212
    [Google Scholar]
  16. Tarique S. Naeem N. Salim A. Ainuddin J.A. Haneef K. The role of epigenetic modifiers in the hepatic differentiation of human umbilical cord derived mesenchymal stem cells. Biol. Futur. 2022 73 4 495 502 10.1007/s42977‑022‑00145‑0 36512201
    [Google Scholar]
  17. An S.Y. Han J. Lim H.J. Park S.Y. Kim J.H. Do B.R. Kim J.H. Valproic acid promotes differentiation of hepatocyte-like cells from whole human umbilical cord-derived mesenchymal stem cells. Tissue Cell 2014 46 2 127 135 10.1016/j.tice.2013.12.006 24472423
    [Google Scholar]
  18. Rashid S. Salim A. Qazi R.M. Malick T.S. Haneef K. Sodium butyrate induces hepatic differentiation of mesenchymal stem cells in 3D collagen scaffolds. Appl. Biochem. Biotechnol. 2022 194 8 3721 3732 10.1007/s12010‑022‑03941‑5 35499693
    [Google Scholar]
  19. Glady A. Vandebroek A. Yasui M. Human keratinocyte-derived extracellular vesicles activate the MAPKinase pathway and promote cell migration and proliferation in vitro. Inflamm. Regen. 2021 41 1 4 10.1186/s41232‑021‑00154‑x 33526070
    [Google Scholar]
  20. Zhang S. Yang Y. Fan L. Zhang F. Li L. The clinical application of mesenchymal stem cells in liver disease: the current situation and potential future. Ann. Transl. Med. 2020 8 8 565 10.21037/atm.2020.03.218 32775366
    [Google Scholar]
  21. Bretón-Romero R. Lamas S. Hydrogen peroxide signaling in vascular endothelial cells. Redox Biol. 2014 2 529 534 10.1016/j.redox.2014.02.005 24634835
    [Google Scholar]
  22. Liu P. Xie X. Wu H. Li H. Chi J. Liu X. Luo J. Tang Y. Xu C. Conditioned medium of mesenchymal stem cells pretreated with H2O2 promotes intestinal mucosal repair in acute experimental colitis. Sci. Rep. 2022 12 1 20772 10.1038/s41598‑022‑24493‑y 36456585
    [Google Scholar]
  23. Deng X. Jing D. Liang H. Zheng D. Shao Z. H2O2 damages the stemness of rat bone marrow-derived mesenchymal stem cells: developing a “stemness loss” model. Med. Sci. Monit. 2019 25 5613 5620 10.12659/MSM.914011 31353362
    [Google Scholar]
  24. Yamamoto Y. Teratani T. Yamamoto H. Quinn G. Murata S. Ikeda R. Kinoshita K. Matsubara K. Kato T. Ochiya T. Recapitulation ofin vivo gene expression during hepatic differentiation from murine embryonic stem cells. Hepatology 2005 42 3 558 567 10.1002/hep.20825 16104048
    [Google Scholar]
  25. Jones E.A. Clement-Jones M. James O.F.W. Wilson D. Differences between human and mouse alpha‐fetoprotein expression during early development. J. Anat. 2001 198 5 555 559 10.1046/j.1469‑7580.2001.19850555.x 11430694
    [Google Scholar]
  26. Semino C.E. Merok J.R. Crane G.G. Panagiotakos G. Zhang S. Functional differentiation of hepatocyte-like spheroid structures from putative liver progenitor cells in three-dimensional peptide scaffolds. Differentiation 2003 71 4-5 262 270 10.1046/j.1432‑0436.2003.7104503.x 12823227
    [Google Scholar]
  27. Bishi D.K. Mathapati S. Venugopal J.R. Guhathakurta S. Cherian K.M. Ramakrishna S. Verma R.S. Trans-differentiation of human mesenchymal stem cells generates functional hepatospheres on poly(l-lactic acid)-co-poly(ε-caprolactone)/collagen nanofibrous scaffolds. J. Mater. Chem. B Mater. Biol. Med. 2013 1 32 3972 3984 10.1039/c3tb20241k 32261223
    [Google Scholar]
  28. He Z.P. Tan W.Q. Tang Y.F. Feng M.F. Differentiation of putative hepatic stem cells derived from adult rats into mature hepatocytes in the presence of epidermal growth factor and hepatocyte growth factor. Differentiation 2003 71 4-5 281 290 10.1046/j.1432‑0436.2003.7104505.x 12823229
    [Google Scholar]
  29. Fang S. Qiu Y. Mao L. Shi X. Yu D. Ding Y. Differentiation of embryoid-body cells derived from embryonic stem cells into hepatocytes in alginate microbeads in vitro. Acta Pharmacol. Sin. 2007 28 12 1924 1930 10.1111/j.1745‑7254.2007.00713.x 18031606
    [Google Scholar]
  30. Qin L. Dai X. Yin Y. Valproic acid exposure sequentially activates Wnt and mTOR pathways in rats. Mol. Cell. Neurosci. 2016 75 27 35 10.1016/j.mcn.2016.06.004 27343825
    [Google Scholar]
  31. Wang X. Ni C. Jiang N. Wei J. Liang J. Zhao B. Lin X. Generation of liver bipotential organoids with a small-molecule cocktail. J. Mol. Cell Biol. 2020 12 8 618 629 10.1093/jmcb/mjaa010 32232340
    [Google Scholar]
  32. Wen X. Jiao L. Tan H. MAPK/ERK pathway as a central regulator in vertebrate organ regeneration. Int. J. Mol. Sci. 2022 23 3 1464 10.3390/ijms23031464 35163418
    [Google Scholar]
  33. Perugorria M.J. Olaizola P. Labiano I. Esparza-Baquer A. Marzioni M. Marin J.J.G. Bujanda L. Banales J.M. Wnt–β-catenin signalling in liver development, health and disease. Nat. Rev. Gastroenterol. Hepatol. 2019 16 2 121 136 10.1038/s41575‑018‑0075‑9 30451972
    [Google Scholar]
  34. Nasiri F. Johari B. Amiri F. Habibi Roudkenar M. Molaei S. Bahadori M. H2O2-Preconditioned Umbilical Cord-Derived Mesenchymal Stem Cells Ameliorate Liver Regeneration in Acute Liver Failure-Induced Mice. Anatomical Sciences Journal 2017 14 1 43 50
    [Google Scholar]
  35. Roth U. Curth K. Unterman T.G. Kietzmann T. The transcription factors HIF-1 and HNF-4 and the coactivator p300 are involved in insulin-regulated glucokinase gene expression via the phosphatidylinositol 3-kinase/protein kinase B pathway. J. Biol. Chem. 2004 279 4 2623 2631 10.1074/jbc.M308391200 14612449
    [Google Scholar]
  36. Akintola A.A. van Heemst D. Insulin, aging, and the brain: mechanisms and implications. Front. Endocrinol. (Lausanne) 2015 6 13 10.3389/fendo.2015.00013 25705204
    [Google Scholar]
  37. Yeh M.M. Bosch D.E. Daoud S.S. Role of hepatocyte nuclear factor 4-alpha in gastrointestinal and liver diseases. World J. Gastroenterol. 2019 25 30 4074 4091 10.3748/wjg.v25.i30.4074 31435165
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037343658241111051831
Loading
/content/journals/cpps/10.2174/0113892037343658241111051831
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test