Skip to content
2000
image of Recent Advances in Co-Condensation and Co-Aggregation of Amyloid Proteins Linked to Neurodegenerative Diseases

Abstract

The misfolding and aggregation of amyloid proteins are closely associated with a range of neurodegenerative diseases. Liquid-liquid phase separation (LLPS) can initiate the aggregation of proteins, indicating that LLPS may serve as an alternative pathway for the pathological aggregation of amyloid proteins. The co-occurrence of two or more amyloid pathologies has been observed in extensive pathophysiological studies and is linked to faster disease progression. The co-LLPS (also known as co-condensation) and co-aggregation of different disease-related proteins have been proposed as a potential molecular mechanism for combined neuropathology. Here, we reviewed the current state of knowledge regarding the co-aggregation and co-condensation of various amyloid proteins, including Aβ, tau, α-synuclein, TDP-43, FUS, and hnRNPA/B protein family, C9orf72 dipeptide repeats and prion protein. We briefly introduced the epidemiological correlation among different neurodegenerative diseases and specifically presented recent experimental findings about co-aggregation and co-condensation of two different amyloid proteins. Additionally, we discussed computational studies focusing on the molecular interactions between amyloid proteins to offer mechanistic insights into the co-LLPS and co-aggregation processes. This review provides an overview of the synergistic interactions between different disease-related proteins, which is helpful for understanding the mechanisms of combined neuropathology and developing targeted therapeutic strategies.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037350729241129054701
2025-02-10
2025-05-19
Loading full text...

Full text loading...

References

  1. Hou Y. Dan X. Babbar M. Wei Y. Hasselbalch S.G. Croteau D.L. Bohr V.A. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 2019 15 10 565 581 10.1038/s41582‑019‑0244‑7 31501588
    [Google Scholar]
  2. Hung C.W. Chen Y.C. Hsieh W.L. Chiou S.H. Kao C.L. Ageing and neurodegenerative diseases. Ageing Res. Rev. 2010 9 Suppl. 1 S36 S46 10.1016/j.arr.2010.08.006 20732460
    [Google Scholar]
  3. Reeve A. Simcox E. Turnbull D. Ageing and parkinson’s disease: Why is advancing age the biggest risk factor? Ageing Res. Rev. 2014 14 100 19 30 10.1016/j.arr.2014.01.004 24503004
    [Google Scholar]
  4. Parra Bravo C. Naguib S.A. Gan L. Cellular and pathological functions of tau. Nat. Rev. Mol. Cell Biol. 2024 25 11 845 864 10.1038/s41580‑024‑00753‑9 39014245
    [Google Scholar]
  5. Nguyen P.H. Ramamoorthy A. Sahoo B.R. Zheng J. Faller P. Straub J.E. Dominguez L. Shea J.E. Dokholyan N.V. De Simone A. Ma B. Nussinov R. Najafi S. Ngo S.T. Loquet A. Chiricotto M. Ganguly P. McCarty J. Li M.S. Hall C. Wang Y. Miller Y. Melchionna S. Habenstein B. Timr S. Chen J. Hnath B. Strodel B. Kayed R. Lesné S. Wei G. Sterpone F. Doig A.J. Derreumaux P. Amyloid oligomers: A joint experimental/computational perspective on alzheimer’s disease, parkinson’s disease, Type II diabetes, and amyotrophic lateral sclerosis. Chem. Rev. 2021 121 4 2545 2647 10.1021/acs.chemrev.0c01122 33543942
    [Google Scholar]
  6. Wells C. Brennan S. Keon M. Ooi L. The role of amyloid oligomers in neurodegenerative pathologies. Int. J. Biol. Macromol. 2021 181 582 604 10.1016/j.ijbiomac.2021.03.113 33766600
    [Google Scholar]
  7. Wu J.W. Breydo L. Isas J.M. Lee J. Kuznetsov Y.G. Langen R. Glabe C. Fibrillar oligomers nucleate the oligomerization of monomeric amyloid beta but do not seed fibril formation. J. Biol. Chem. 2010 285 9 6071 6079 10.1074/jbc.M109.069542 20018889
    [Google Scholar]
  8. Winner B. Jappelli R. Maji S.K. Desplats P.A. Boyer L. Aigner S. Hetzer C. Loher T. Vilar M. Campioni S. Tzitzilonis C. Soragni A. Jessberger S. Mira H. Consiglio A. Pham E. Masliah E. Gage F.H. Riek R. In vivo demonstration that α-synuclein oligomers are toxic. Proc. Natl. Acad. Sci. USA 2011 108 10 4194 4199 10.1073/pnas.1100976108 21325059
    [Google Scholar]
  9. Goedert M. Alzheimer’s and Parkinson’s diseases: The prion concept in relation to assembled Aβ, tau, and α-synuclein. Science 2015 349 6248 1255555 10.1126/science.1255555 26250687
    [Google Scholar]
  10. Jucker M. Walker L.C. Propagation and spread of pathogenic protein assemblies in neurodegenerative diseases. Nat. Neurosci. 2018 21 10 1341 1349 10.1038/s41593‑018‑0238‑6 30258241
    [Google Scholar]
  11. Goedert M. Eisenberg D.S. Crowther R.A. Propagation of Tau aggregates and neurodegeneration. Annu. Rev. Neurosci. 2017 40 1 189 210 10.1146/annurev‑neuro‑072116‑031153 28772101
    [Google Scholar]
  12. Spillantini M.G. Crowther R.A. Jakes R. Hasegawa M. Goedert M. α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc. Natl. Acad. Sci. USA 1998 95 11 6469 6473 10.1073/pnas.95.11.6469 9600990
    [Google Scholar]
  13. Ling J.P. Pletnikova O. Troncoso J.C. Wong P.C. TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD. Science 2015 349 6248 650 655 10.1126/science.aab0983 26250685
    [Google Scholar]
  14. Deng H. Gao K. Jankovic J. The role of FUS gene variants in neurodegenerative diseases. Nat. Rev. Neurol. 2014 10 6 337 348 10.1038/nrneurol.2014.78 24840975
    [Google Scholar]
  15. Ambadipudi S. Biernat J. Riedel D. Mandelkow E. Zweckstetter M. Liquid–liquid phase separation of the microtubule-binding repeats of the alzheimer-related protein Tau. Nat. Commun. 2017 8 1 275 10.1038/s41467‑017‑00480‑0 28819146
    [Google Scholar]
  16. Sawner A.S. Ray S. Yadav P. Mukherjee S. Panigrahi R. Poudyal M. Patel K. Ghosh D. Kummerant E. Kumar A. Riek R. Maji S.K. Modulating α-synuclein liquid–liquid phase separation. Biochemistry 2021 60 48 3676 3696 10.1021/acs.biochem.1c00434 34431665
    [Google Scholar]
  17. Conicella A.E. Dignon G.L. Zerze G.H. Schmidt H.B. D’Ordine A.M. Kim Y.C. Rohatgi R. Ayala Y.M. Mittal J. Fawzi N.L. TDP-43 α-helical structure tunes liquid–liquid phase separation and function. Proc. Natl. Acad. Sci. USA 2020 117 11 5883 5894 10.1073/pnas.1912055117 32132204
    [Google Scholar]
  18. Portz B. Lee B.L. Shorter J. FUS and TDP-43 phases in health and disease. Trends Biochem. Sci. 2021 46 7 550 563 10.1016/j.tibs.2020.12.005 33446423
    [Google Scholar]
  19. Li P. Banjade S. Cheng H.C. Kim S. Chen B. Guo L. Llaguno M. Hollingsworth J.V. King D.S. Banani S.F. Russo P.S. Jiang Q.X. Nixon B.T. Rosen M.K. Phase transitions in the assembly of multivalent signalling proteins. Nature 2012 483 7389 336 340 10.1038/nature10879 22398450
    [Google Scholar]
  20. Larson A.G. Narlikar G.J. The role of phase separation in heterochromatin formation, function, and regulation. Biochemistry 2018 57 17 2540 2548 10.1021/acs.biochem.8b00401 29644850
    [Google Scholar]
  21. Mitrea D.M. Kriwacki R.W. Phase separation in biology; Functional organization of a higher order. Cell Commun. Signal. 2016 14 1 1 10.1186/s12964‑015‑0125‑7 26727894
    [Google Scholar]
  22. Brangwynne C.P. Eckmann C.R. Courson D.S. Rybarska A. Hoege C. Gharakhani J. Jülicher F. Hyman A.A. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 2009 324 5935 1729 1732 10.1126/science.1172046 19460965
    [Google Scholar]
  23. Brangwynne C.P. Mitchison T.J. Hyman A.A. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc. Natl. Acad. Sci. USA 2011 108 11 4334 4339 10.1073/pnas.1017150108 21368180
    [Google Scholar]
  24. Hernández-Vega A. Braun M. Scharrel L. Jahnel M. Wegmann S. Hyman B.T. Alberti S. Diez S. Hyman A.A. Local nucleation of microtubule bundles through tubulin concentration into a condensed tau phase. Cell Rep. 2017 20 10 2304 2312 10.1016/j.celrep.2017.08.042 28877466
    [Google Scholar]
  25. Wegmann S. Liquid-liquid phase separation of tau protein in neurobiology and pathology. Adv. Exp. Med. Biol. 2019 1184 341 357 10.1007/978‑981‑32‑9358‑8_25 32096048
    [Google Scholar]
  26. Kanaan N.M. Hamel C. Grabinski T. Combs B. Liquid-liquid phase separation induces pathogenic tau conformations in vitro. Nat. Commun. 2020 11 1 2809 10.1038/s41467‑020‑16580‑3 32499559
    [Google Scholar]
  27. Ray S. Singh N. Kumar R. Patel K. Pandey S. Datta D. Mahato J. Panigrahi R. Navalkar A. Mehra S. Gadhe L. Chatterjee D. Sawner A.S. Maiti S. Bhatia S. Gerez J.A. Chowdhury A. Kumar A. Padinhateeri R. Riek R. Krishnamoorthy G. Maji S.K. α-Synuclein aggregation nucleates through liquid–liquid phase separation. Nat. Chem. 2020 12 8 705 716 10.1038/s41557‑020‑0465‑9 32514159
    [Google Scholar]
  28. Petronilho E.C. Pedrote M.M. Marques M.A. Passos Y.M. Mota M.F. Jakobus B. Sousa G.S. Pereira da Costa F. Felix A.L. Ferretti G.D.S. Almeida F.P. Cordeiro Y. Vieira T.C.R.G. de Oliveira G.A.P. Silva J.L. Phase separation of p53 precedes aggregation and is affected by oncogenic mutations and ligands. Chem. Sci. 2021 12 21 7334 7349 10.1039/D1SC01739J 34163823
    [Google Scholar]
  29. Alberti S. Dormann D. Liquid–liquid phase separation in disease. Annu. Rev. Genet. 2019 53 1 171 194 10.1146/annurev‑genet‑112618‑043527 31430179
    [Google Scholar]
  30. Wegmann S. Eftekharzadeh B. Tepper K. Zoltowska K.M. Bennett R.E. Dujardin S. Laskowski P.R. MacKenzie D. Kamath T. Commins C. Vanderburg C. Roe A.D. Fan Z. Molliex A.M. Hernandez-Vega A. Muller D. Hyman A.A. Mandelkow E. Taylor J.P. Hyman B.T. Tau protein liquid–liquid phase separation can initiate tau aggregation. EMBO J. 2018 37 7 e98049 10.15252/embj.201798049 29472250
    [Google Scholar]
  31. Murakami T. Qamar S. Lin J.Q. Schierle G.S.K. Rees E. Miyashita A. Costa A.R. Dodd R.B. Chan F.T.S. Michel C.H. Kronenberg-Versteeg D. Li Y. Yang S.P. Wakutani Y. Meadows W. Ferry R.R. Dong L. Tartaglia G.G. Favrin G. Lin W.L. Dickson D.W. Zhen M. Ron D. Schmitt-Ulms G. Fraser P.E. Shneider N.A. Holt C. Vendruscolo M. Kaminski C.F. St George-Hyslop P. ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP Granule function. Neuron 2015 88 4 678 690 10.1016/j.neuron.2015.10.030 26526393
    [Google Scholar]
  32. Patel A. Lee H.O. Jawerth L. Maharana S. Jahnel M. Hein M.Y. Stoynov S. Mahamid J. Saha S. Franzmann T.M. Pozniakovski A. Poser I. Maghelli N. Royer L.A. Weigert M. Myers E.W. Grill S. Drechsel D. Hyman A.A. Alberti S. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 2015 162 5 1066 1077 10.1016/j.cell.2015.07.047 26317470
    [Google Scholar]
  33. Aarsland D. Batzu L. Halliday G.M. Geurtsen G.J. Ballard C. Ray Chaudhuri K. Weintraub D. Parkinson disease-associated cognitive impairment. Nat. Rev. Dis. Primers 2021 7 1 47 10.1038/s41572‑021‑00280‑3 34210995
    [Google Scholar]
  34. Das S. Zhang Z. Ang L.C. Clinicopathological overlap of neurodegenerative diseases: A comprehensive review. J. Clin. Neurosci. 2020 78 30 33 10.1016/j.jocn.2020.04.088 32354648
    [Google Scholar]
  35. Matej R. Tesar A. Rusina R. Alzheimer’s disease and other neurodegenerative dementias in comorbidity: A clinical and neuropathological overview. Clin. Biochem. 2019 73 26 31 10.1016/j.clinbiochem.2019.08.005 31400306
    [Google Scholar]
  36. Irwin D.J. Lee V.M.Y. Trojanowski J.Q. Parkinson’s disease dementia: Convergence of α-synuclein, tau and amyloid-β pathologies. Nat. Rev. Neurosci. 2013 14 9 626 636 10.1038/nrn3549 23900411
    [Google Scholar]
  37. Chaudhuri P. Prajapati K.P. Anand B.G. Dubey K. Kar K. Amyloid cross-seeding raises new dimensions to understanding of amyloidogenesis mechanism. Ageing Res. Rev. 2019 56 100937 10.1016/j.arr.2019.100937 31430565
    [Google Scholar]
  38. Biza K.V. Nastou K.C. Tsiolaki P.L. Mastrokalou C.V. Hamodrakas S.J. Iconomidou V.A. The amyloid interactome: Exploring protein aggregation. PLoS One 2017 12 3 e0173163 10.1371/journal.pone.0173163 28249044
    [Google Scholar]
  39. Luo J. Wärmländer S.K.T.S. Gräslund A. Abrahams J.P. Cross-interactions between the alzheimer disease amyloid-β peptide and other amyloid proteins: A further aspect of the amyloid cascade hypothesis. J. Biol. Chem. 2016 291 32 16485 16493 10.1074/jbc.R116.714576 27325705
    [Google Scholar]
  40. Marsh S.E. Blurton-Jones M. Examining the mechanisms that link β-amyloid and α-synuclein pathologies. Alzheimers Res. Ther. 2012 4 2 11 10.1186/alzrt109 22546279
    [Google Scholar]
  41. Galpern W.R. Lang A.E. Interface between tauopathies and synucleinopathies: A tale of two proteins. Ann. Neurol. 2006 59 3 449 458 10.1002/ana.20819 16489609
    [Google Scholar]
  42. Irwin D.J. Grossman M. Weintraub D. Hurtig H.I. Duda J.E. Xie S.X. Lee E.B. Van Deerlin V.M. Lopez O.L. Kofler J.K. Nelson P.T. Jicha G.A. Woltjer R. Quinn J.F. Kaye J. Leverenz J.B. Tsuang D. Longfellow K. Yearout D. Kukull W. Keene C.D. Montine T.J. Zabetian C.P. Trojanowski J.Q. Neuropathological and genetic correlates of survival and dementia onset in synucleinopathies: A retrospective analysis. Lancet Neurol. 2017 16 1 55 65 10.1016/S1474‑4422(16)30291‑5 27979356
    [Google Scholar]
  43. Nagaishi M. Yokoo H. Nakazato Y. Tau-positive glial cytoplasmic granules in multiple system atrophy. Neuropathology 2011 31 3 299 305 10.1111/j.1440‑1789.2010.01159.x 21062361
    [Google Scholar]
  44. Irwin D.J. White M.T. Toledo J.B. Xie S.X. Robinson J.L. Van Deerlin V. Lee V.M.Y. Leverenz J.B. Montine T.J. Duda J.E. Hurtig H.I. Trojanowski J.Q. Neuropathologic substrates of parkinson disease dementia. Ann. Neurol. 2012 72 4 587 598 10.1002/ana.23659 23037886
    [Google Scholar]
  45. Horvath J. Herrmann F. R. Burkhard P. R. Bouras C. Kövari E. Neuropathology of dementia in a large cohort of patients with parkinson's disease. Parkinsonism Relat Disord 2013 19 10 864 868 10.1016/j.parkreldis.2013.05.010
    [Google Scholar]
  46. Ruffmann C. Calboli F.C.F. Bravi I. Gveric D. Curry L.K. de Smith A. Pavlou S. Buxton J.L. Blakemore A.I.F. Takousis P. Molloy S. Piccini P. Dexter D.T. Roncaroli F. Gentleman S.M. Middleton L.T. Cortical Lewy bodies and Aβ burden are associated with prevalence and timing of dementia in Lewy body diseases. Neuropathol. Appl. Neurobiol. 2016 42 5 436 450 10.1111/nan.12294 26527105
    [Google Scholar]
  47. Compta Y. Parkkinen L. O’Sullivan S.S. Vandrovcova J. Holton J.L. Collins C. Lashley T. Kallis C. Williams D.R. de Silva R. Lees A.J. Revesz T. Lewy and Alzheimer-type pathologies in parkinson’s disease dementia: Which is more important? Brain 2011 134 5 1493 1505 10.1093/brain/awr031 21596773
    [Google Scholar]
  48. Jellinger K.A. Seppi K. Wenning G.K. Poewe W. Impact of coexistent Alzheimer pathology on the natural history of parkinson’s disease. J. Neural Transm. (Vienna) 2002 109 3 329 339 10.1007/s007020200027 11956955
    [Google Scholar]
  49. Ishizawa T. Mattila P. Davies P. Wang D. Dickson D.W. Colocalization of tau and alpha-synuclein epitopes in Lewy bodies. J. Neuropathol. Exp. Neurol. 2003 62 4 389 397 10.1093/jnen/62.4.389 12722831
    [Google Scholar]
  50. Arima K. Hirai S. Sunohara N. Aoto K. Izumiyama Y. Uéda K. Ikeda K. Kawai M. Cellular co-localization of phosphorylated tau- and NACP/α-synuclein-epitopes in Lewy bodies in sporadic parkinson’s disease and in dementia with Lewy bodies. Brain Res. 1999 843 1-2 53 61 10.1016/S0006‑8993(99)01848‑X 10528110
    [Google Scholar]
  51. Colom-Cadena M. Gelpi E. Charif S. Belbin O. Blesa R. Martí M.J. Clarimón J. Lleó A. Confluence of α-synuclein, tau, and β-amyloid pathologies in dementia with Lewy bodies. J. Neuropathol. Exp. Neurol. 2013 72 12 1203 1212 10.1097/NEN.0000000000000018 24226269
    [Google Scholar]
  52. Lu J. Zhang S. Ma X. Jia C. Liu Z. Huang C. Liu C. Li D. Structural basis of the interplay between α-synuclein and Tau in regulating pathological amyloid aggregation. J. Biol. Chem. 2020 295 21 7470 7480 10.1074/jbc.RA119.012284 32291284
    [Google Scholar]
  53. Chau E. Kim J.R. α-synuclein-assisted oligomerization of β-amyloid (1–42). Arch. Biochem. Biophys. 2022 717 109120 10.1016/j.abb.2022.109120 35041853
    [Google Scholar]
  54. Vasconcelos B. Stancu I.C. Buist A. Bird M. Wang P. Vanoosthuyse A. Van Kolen K. Verheyen A. Kienlen-Campard P. Octave J.N. Baatsen P. Moechars D. Dewachter I. Heterotypic seeding of Tau fibrillization by pre-aggregated Abeta provides potent seeds for prion-like seeding and propagation of Tau-pathology in vivo. Acta Neuropathol. 2016 131 4 549 569 10.1007/s00401‑015‑1525‑x 26739002
    [Google Scholar]
  55. Taylor N.O. Wei M.T. Stone H.A. Brangwynne C.P. Quantifying dynamics in phase-separated condensates using fluorescence recovery after photobleaching. Biophys. J. 2019 117 7 1285 1300 10.1016/j.bpj.2019.08.030 31540706
    [Google Scholar]
  56. Ross C. A. Poirier M. A. Protein aggregation and neurodegenerative disease. Nat Med 2004 10 Suppl S10 S17 10.1038/nm1066
    [Google Scholar]
  57. Aguzzi A. O’Connor T. Protein aggregation diseases: Pathogenicity and therapeutic perspectives. Nat. Rev. Drug Discov. 2010 9 3 237 248 10.1038/nrd3050 20190788
    [Google Scholar]
  58. Murphy M.P. LeVine H. III Alzheimer’s disease and the amyloid-beta peptide. J. Alzheimers Dis. 2010 19 1 311 323 10.3233/JAD‑2010‑1221 20061647
    [Google Scholar]
  59. Lu J.X. Qiang W. Yau W.M. Schwieters C.D. Meredith S.C. Tycko R. Molecular structure of β-amyloid fibrils in alzheimer’s disease brain tissue. Cell 2013 154 6 1257 1268 10.1016/j.cell.2013.08.035 24034249
    [Google Scholar]
  60. Gremer L. Schölzel D. Schenk C. Reinartz E. Labahn J. Ravelli R.B.G. Tusche M. Lopez-Iglesias C. Hoyer W. Heise H. Willbold D. Schröder G.F. Fibril structure of amyloid-β(1–42) by cryo–electron microscopy. Science 2017 358 6359 116 119 10.1126/science.aao2825 28882996
    [Google Scholar]
  61. Fitzpatrick A.W.P. Falcon B. He S. Murzin A.G. Murshudov G. Garringer H.J. Crowther R.A. Ghetti B. Goedert M. Scheres S.H.W. Cryo-EM structures of tau filaments from alzheimer’s disease. Nature 2017 547 7662 185 190 10.1038/nature23002 28678775
    [Google Scholar]
  62. Ingelsson M. Alpha-synuclein oligomers—neurotoxic molecules in parkinson’s disease and other Lewy body disorders. Front. Neurosci. 2016 10 408 10.3389/fnins.2016.00408 27656123
    [Google Scholar]
  63. Tuttle M.D. Comellas G. Nieuwkoop A.J. Covell D.J. Berthold D.A. Kloepper K.D. Courtney J.M. Kim J.K. Barclay A.M. Kendall A. Wan W. Stubbs G. Schwieters C.D. Lee V.M.Y. George J.M. Rienstra C.M. Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein. Nat. Struct. Mol. Biol. 2016 23 5 409 415 10.1038/nsmb.3194 27018801
    [Google Scholar]
  64. Li Y. Zhao C. Luo F. Liu Z. Gui X. Luo Z. Zhang X. Li D. Liu C. Li X. Amyloid fibril structure of α-synuclein determined by cryo-electron microscopy. Cell Res. 2018 28 9 897 903 10.1038/s41422‑018‑0075‑x 30065316
    [Google Scholar]
  65. Guerrero-Ferreira R. Taylor N.M.I. Mona D. Ringler P. Lauer M.E. Riek R. Britschgi M. Stahlberg H. Cryo-EM structure of alpha-synuclein fibrils. eLife 2018 7 e36402 10.7554/eLife.36402 29969391
    [Google Scholar]
  66. Li B. Ge P. Murray K.A. Sheth P. Zhang M. Nair G. Sawaya M.R. Shin W.S. Boyer D.R. Ye S. Eisenberg D.S. Zhou Z.H. Jiang L. Cryo-EM of full-length α-synuclein reveals fibril polymorphs with a common structural kernel. Nat. Commun. 2018 9 1 3609 10.1038/s41467‑018‑05971‑2 30190461
    [Google Scholar]
  67. Ciryam P. Lambert-Smith I.A. Bean D.M. Freer R. Cid F. Tartaglia G.G. Saunders D.N. Wilson M.R. Oliver S.G. Morimoto R.I. Dobson C.M. Vendruscolo M. Favrin G. Yerbury J.J. Spinal motor neuron protein supersaturation patterns are associated with inclusion body formation in ALS. Proc. Natl. Acad. Sci. USA 2017 114 20 E3935 E3943 10.1073/pnas.1613854114 28396410
    [Google Scholar]
  68. Hallegger M. Chakrabarti A.M. Lee F.C.Y. Lee B.L. Amalietti A.G. Odeh H.M. Copley K.E. Rubien J.D. Portz B. Kuret K. Huppertz I. Rau F. Patani R. Fawzi N.L. Shorter J. Luscombe N.M. Ule J. TDP-43 condensation properties specify its RNA-binding and regulatory repertoire. Cell 2021 184 18 4680 4696.e22 10.1016/j.cell.2021.07.018 34380047
    [Google Scholar]
  69. Ganser L.R. Niaki A.G. Yuan X. Huang E. Deng D. Djaja N.A. Ge Y. Craig A. Langlois O. Myong S. The roles of FUS-RNA binding domain and low complexity domain in RNA-dependent phase separation. Structure 2024 32 2 177 187.e5 10.1016/j.str.2023.11.006 38070499
    [Google Scholar]
  70. Tsoi P.S. Quan M.D. Choi K.J. Dao K.M. Ferreon J.C. Ferreon A.C.M. Electrostatic modulation of hnRNPA1 low‐complexity domain liquid–liquid phase separation and aggregation. Protein Sci. 2021 30 7 1408 1417 10.1002/pro.4108 33982369
    [Google Scholar]
  71. Zahn R. Liu A. Lührs T. Riek R. von Schroetter C. López García F. Billeter M. Calzolai L. Wider G. Wüthrich K. NMR solution structure of the human prion protein. Proc. Natl. Acad. Sci. USA 2000 97 1 145 150 10.1073/pnas.97.1.145 10618385
    [Google Scholar]
  72. Aguzzi A. Calella A.M. Prions: Protein aggregation and infectious diseases. Physiol. Rev. 2009 89 4 1105 1152 10.1152/physrev.00006.2009 19789378
    [Google Scholar]
  73. Irwin D.J. Hurtig H.I. The contribution of tau, amyloid-beta and alpha-synuclein pathology to dementia in Lewy body disorders. J. Alzheimers Dis. Parkinsonism 2018 8 4 444 10.4172/2161‑0460.1000444 30473927
    [Google Scholar]
  74. Pan L. Meng L. He M. Zhang Z. Tau in the pathophysiology of parkinson’s disease. J. Mol. Neurosci. 2021 71 11 2179 2191 10.1007/s12031‑020‑01776‑5 33459970
    [Google Scholar]
  75. Hely M.A. Reid W.G.J. Adena M.A. Halliday G.M. Morris J.G.L. The Sydney multicenter study of Parkinson’s disease: The inevitability of dementia at 20 years. Mov. Disord. 2008 23 6 837 844 10.1002/mds.21956 18307261
    [Google Scholar]
  76. Li J. Ruskey J.A. Arnulf I. Dauvilliers Y. Hu M.T.M. Högl B. Leblond C.S. Zhou S. Ambalavanan A. Ross J.P. Bourassa C.V. Spiegelman D. Laurent S.B. Stefani A. Charley Monaca C. Cochen De Cock V. Boivin M. Ferini-Strambi L. Plazzi G. Antelmi E. Young P. Heidbreder A. Labbe C. Ferman T.J. Dion P.A. Fan D. Desautels A. Gagnon J.F. Dupré N. Fon E.A. Montplaisir J.Y. Boeve B.F. Postuma R.B. Rouleau G.A. Ross O.A. Gan-Or Z. Full sequencing and haplotype analysis of MAPT in Parkinson’s disease and rapid eye movement sleep behavior disorder. Mov. Disord. 2018 33 6 1016 1020 10.1002/mds.27385 29756641
    [Google Scholar]
  77. Stefansson H. Helgason A. Thorleifsson G. Steinthorsdottir V. Masson G. Barnard J. Baker A. Jonasdottir A. Ingason A. Gudnadottir V.G. Desnica N. Hicks A. Gylfason A. Gudbjartsson D.F. Jonsdottir G.M. Sainz J. Agnarsson K. Birgisdottir B. Ghosh S. Olafsdottir A. Cazier J.B. Kristjansson K. Frigge M.L. Thorgeirsson T.E. Gulcher J.R. Kong A. Stefansson K. A common inversion under selection in Europeans. Nat. Genet. 2005 37 2 129 137 10.1038/ng1508 15654335
    [Google Scholar]
  78. Nalls M.A. Plagnol V. Hernandez D.G. Sharma M. Sheerin U.M. Saad M. Simón-Sánchez J. Schulte C. Lesage S. Sveinbjörnsdóttir S. Stefánsson K. Martinez M. Hardy J. Heutink P. Brice A. Gasser T. Singleton A.B. Wood N.W. Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: A meta-analysis of genome-wide association studies. Lancet 2011 377 9766 641 649 10.1016/S0140‑6736(10)62345‑8 21292315
    [Google Scholar]
  79. Setó-Salvia N. Clarimón J. Pagonabarraga J. Pascual-Sedano B. Campolongo A. Combarros O. Mateo J.I. Regaña D. Martínez-Corral M. Marquié M. Alcolea D. Suárez-Calvet M. Molina-Porcel L. Dols O. Gómez-Isla T. Blesa R. Lleó A. Kulisevsky J. Dementia risk in parkinson disease: Disentangling the role of MAPT haplotypes. Arch. Neurol. 2011 68 3 359 364 10.1001/archneurol.2011.17 21403021
    [Google Scholar]
  80. Williams-Gray C.H. Evans J.R. Goris A. Foltynie T. Ban M. Robbins T.W. Brayne C. Kolachana B.S. Weinberger D.R. Sawcer S.J. Barker R.A. The distinct cognitive syndromes of parkinson’s disease: 5 year follow-up of the CamPaIGN cohort. Brain 2009 132 11 2958 2969 10.1093/brain/awp245 19812213
    [Google Scholar]
  81. Mollenhauer B. Caspell-Garcia C.J. Coffey C.S. Taylor P. Shaw L.M. Trojanowski J.Q. Singleton A. Frasier M. Marek K. Galasko D. Marek K. Jennings D. Lasch S. Tanner C. Simuni T. Coffey C. Kieburtz K. Wilson R. Poewe W. Mollenhauer B. Foroud T. Sherer T. Chowdhury S. Frasier M. Kopil C. Arnedo V. Rudolph A. Casaceli C. Seibyl J. Mendick S. Schuff N. Caspell C. Uribe L. Foster E. Gloer K. Yankey J. Toga A. Crawford K. Casalin P. Malferrari G. Mollenhauer B. Galasko D. Singleton A. Hawkins K.A. Russell D. Factor S. Hogarth P. Standaert D. Hauser R. Jankovic J. Stern M. Chahine L. Leverenz J. Frank S. Richard I. Seppi K. Shill H. Fernandez H. Berg D. Wurster I. Galasko D. Mari Z. Brooks D. Pavese N. Barone P. Isaacson S. Espay A. Rowe D. Brandabur M. Tetrud J. Liang G. Iranzo A. Tolosa E. Leary L. Riordan C. Rees L. Portillo A. Lenahan A. Williams K. Guthrie S. Rawlins A. Harlan S. Hunter C. Tran B. Darin A. Linder C. Baca M. Venkov H. Thomas C-A. James R. Deeley C. Bishop C. Fabienne Sprenger Willeke D. Obradov S. Mule J. Monahan N. Gauss K. Fontaine D. Gigliotti C. McCoy A. Dunlop B. Shah B. Susan A. James A. Silverstein R. Espay K. Ranola M. Marek K. Investigator P. Jennings D. Lasch S. Siderowf A. Caroline T. Simuni T. Coffey C. Karl Kieburtz Flagg E. Chowdhury S. Poewe W. Mollenhauer B. Sherer T. Frasier M. Meunier C. Rudolph A. Casaceli C. Seibyl J. Investigator P. Mendick S. Schuff N. Ying Zhang Toga A. Crawford K. Ansbach A. De Blasio P. Piovella M. Trojanowski J. Shaw L. Singleton A. Hawkins K. PsyDMichael J. Eberling J. Brooks D. Russell D. Leary L. Factor S. Sommerfeld B. Hogarth P. Pighetti E. Williams K. Standaert D. Guthrie S. Hauser R. Delgado H. Jankovic J. Hunter C. Stern M. Tran B. Leverenz J. Baca M. Frank S. Thomas C-A. Richard I. Deeley C. Rees L. Sprenger F. Oertel W. Lang E. Shill H. Obradov S. Fernandez H. Winters A. Berg D. Gauss K. Galasko D. Fontaine D. Mari Z. Gerstenhaber M. Brooks D. Malloy S. Barone P. Longo K. Comery T. Ravina B. Grachev I. Gallagher K. Collins M. Widnell K.L. Ostrowizki S. Fontoura P. La-Roche F.H. Ho T. Luthman J. van der Brug M. Reith A.D. Taylor P. Longitudinal CSF biomarkers in patients with early parkinson disease and healthy controls. Neurology 2017 89 19 1959 1969 10.1212/WNL.0000000000004609 29030452
    [Google Scholar]
  82. Dolatshahi M. Pourmirbabaei S. Kamalian A. Ashraf-Ganjouei A. Yaseri M. Aarabi M.H. Longitudinal alterations of alpha-synuclein, amyloid beta, total, and phosphorylated tau in cerebrospinal fluid and correlations between their changes in parkinson’s disease. Front. Neurol. 2018 9 560 10.3389/fneur.2018.00560 30050494
    [Google Scholar]
  83. Sengupta U. Guerrero-Muñoz M.J. Castillo-Carranza D.L. Lasagna-Reeves C.A. Gerson J.E. Paulucci-Holthauzen A.A. Krishnamurthy S. Farhed M. Jackson G.R. Kayed R. Pathological interface between oligomeric alpha-synuclein and tau in synucleinopathies. Biol. Psychiatry 2015 78 10 672 683 10.1016/j.biopsych.2014.12.019 25676491
    [Google Scholar]
  84. Hu X. Yang Y. Gong D. Changes of cerebrospinal fluid Aβ42, t-tau, and p-tau in parkinson’s disease patients with cognitive impairment relative to those with normal cognition: a meta-analysis. Neurol. Sci. 2017 38 11 1953 1961 10.1007/s10072‑017‑3088‑1 28808876
    [Google Scholar]
  85. Schrag A. Siddiqui U.F. Anastasiou Z. Weintraub D. Schott J.M. Clinical variables and biomarkers in prediction of cognitive impairment in patients with newly diagnosed Parkinson’s disease: A cohort study. Lancet Neurol. 2017 16 1 66 75 10.1016/S1474‑4422(16)30328‑3 27866858
    [Google Scholar]
  86. Liu C. Cholerton B. Shi M. Ginghina C. Cain K.C. Auinger P. Zhang J. CSF tau and tau/Aβ42 predict cognitive decline in parkinson’s disease. Parkinsonism Relat. Disord. 2015 21 3 271 276 10.1016/j.parkreldis.2014.12.027 25596881
    [Google Scholar]
  87. Aarsland D. Andersen K. Larsen J.P. Lolk A. Kragh-Sørensen P. Prevalence and characteristics of dementia in parkinson disease: An 8-year prospective study. Arch. Neurol. 2003 60 3 387 392 10.1001/archneur.60.3.387 12633150
    [Google Scholar]
  88. Buter T.C. van den Hout A. Matthews F.E. Larsen J.P. Brayne C. Aarsland D. Dementia and survival in parkinson disease. Neurology 2008 70 13 1017 1022 10.1212/01.wnl.0000306632.43729.24 18362281
    [Google Scholar]
  89. Přikrylová Vranová H. Mareš J. Hluštík P. Nevrlý M. Stejskal D. Zapletalová J. Obereigneru R. Kaňovský P. Tau protein and beta-amyloid1-42 CSF levels in different phenotypes of parkinson’s disease. J. Neural Transm. (Vienna) 2012 119 3 353 362 10.1007/s00702‑011‑0708‑4 21892760
    [Google Scholar]
  90. Toledo J.B. Gopal P. Raible K. Irwin D.J. Brettschneider J. Sedor S. Waits K. Boluda S. Grossman M. Van Deerlin V.M. Lee E.B. Arnold S.E. Duda J.E. Hurtig H. Lee V.M.Y. Adler C.H. Beach T.G. Trojanowski J.Q. Pathological α-synuclein distribution in subjects with coincident alzheimer’s and Lewy body pathology. Acta Neuropathol. 2016 131 3 393 409 10.1007/s00401‑015‑1526‑9 26721587
    [Google Scholar]
  91. Hamilton R.L. Lewy bodies in alzheimer’s disease: A neuropathological review of 145 cases using alpha-synuclein immunohistochemistry. Brain Pathol. 2000 10 3 378 384 10.1111/j.1750‑3639.2000.tb00269.x 10885656
    [Google Scholar]
  92. Uchikado H. Lin W.L. DeLucia M.W. Dickson D.W. Alzheimer disease with amygdala Lewy bodies: A distinct form of alpha-synucleinopathy. J. Neuropathol. Exp. Neurol. 2006 65 7 685 697 10.1097/01.jnen.0000225908.90052.07 16825955
    [Google Scholar]
  93. Clinton L.K. Blurton-Jones M. Myczek K. Trojanowski J.Q. LaFerla F.M. Synergistic Interactions between Abeta, tau, and alpha-synuclein: Acceleration of neuropathology and cognitive decline. J. Neurosci. 2010 30 21 7281 7289 10.1523/JNEUROSCI.0490‑10.2010 20505094
    [Google Scholar]
  94. Toledo J.B. Brettschneider J. Grossman M. Arnold S.E. Hu W.T. Xie S.X. Lee V.M.Y. Shaw L.M. Trojanowski J.Q. CSF biomarkers cutoffs: The importance of coincident neuropathological diseases. Acta Neuropathol. 2012 124 1 23 35 10.1007/s00401‑012‑0983‑7 22526019
    [Google Scholar]
  95. Ono K. Takahashi R. Ikeda T. Yamada M. Cross‐seeding effects of amyloid β‐protein and α‐synuclein. J. Neurochem. 2012 122 5 883 890 10.1111/j.1471‑4159.2012.07847.x 22734715
    [Google Scholar]
  96. Candreva J. Chau E. Rice M.E. Kim J.R. Interactions between soluble species of β-amyloid and α-synuclein promote oligomerization while inhibiting fibrillization. Biochemistry 2020 59 4 425 435 10.1021/acs.biochem.9b00655 31854188
    [Google Scholar]
  97. Foressi N.N. Rodríguez L.C. Celej M.S. Heterotypic liquid-liquid phase separation of tau and α-synuclein: Implications for overlapping neuropathologies. Biochim. Biophys. Acta. Proteins Proteomics 2023 1871 6 140950 10.1016/j.bbapap.2023.140950 37574035
    [Google Scholar]
  98. Rodríguez L.C. Foressi N.N. Celej M.S. Modulation of α-synuclein phase separation by biomolecules. Biochim. Biophys. Acta. Proteins Proteomics 2023 1871 2 140885 10.1016/j.bbapap.2022.140885 36481455
    [Google Scholar]
  99. Gracia P. Polanco D. Tarancón-Díez J. Serra I. Bracci M. Oroz J. Laurents D.V. García I. Cremades N. Molecular mechanism for the synchronized electrostatic coacervation and co-aggregation of alpha-synuclein and tau. Nat. Commun. 2022 13 1 4586 10.1038/s41467‑022‑32350‑9 35933508
    [Google Scholar]
  100. Siegert A. Rankovic M. Favretto F. Ukmar-Godec T. Strohäker T. Becker S. Zweckstetter M. Interplay between tau and α‐synuclein liquid–liquid phase separation. Protein Sci. 2021 30 7 1326 1336 10.1002/pro.4025 33452693
    [Google Scholar]
  101. Jensen P.H. Hager H. Nielsen M.S. Højrup P. Gliemann J. Jakes R. alpha-synuclein binds to Tau and stimulates the protein kinase A-catalyzed tau phosphorylation of serine residues 262 and 356. J. Biol. Chem. 1999 274 36 25481 25489 10.1074/jbc.274.36.25481 10464279
    [Google Scholar]
  102. Oikawa T. Nonaka T. Terada M. Tamaoka A. Hisanaga S. Hasegawa M. α-Synuclein fibrils exhibit gain of toxic function, promoting tau aggregation and inhibiting microtubule assembly. J. Biol. Chem. 2016 291 29 15046 15056 10.1074/jbc.M116.736355 27226637
    [Google Scholar]
  103. Bhasne K. Sebastian S. Jain N. Mukhopadhyay S. Synergistic amyloid switch triggered by early heterotypic oligomerization of intrinsically disordered α-synuclein and tau. J. Mol. Biol. 2018 430 16 2508 2520 10.1016/j.jmb.2018.04.020 29704492
    [Google Scholar]
  104. Masliah E. Rockenstein E. Veinbergs I. Sagara Y. Mallory M. Hashimoto M. Mucke L. β-Amyloid peptides enhance α-synuclein accumulation and neuronal deficits in a transgenic mouse model linking alzheimer’s disease and parkinson’s disease. Proc. Natl. Acad. Sci. USA 2001 98 21 12245 12250 10.1073/pnas.211412398 11572944
    [Google Scholar]
  105. Walsh D.M. Klyubin I. Fadeeva J.V. Cullen W.K. Anwyl R. Wolfe M.S. Rowan M.J. Selkoe D.J. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 2002 416 6880 535 539 10.1038/416535a 11932745
    [Google Scholar]
  106. Lesné S. Koh M.T. Kotilinek L. Kayed R. Glabe C.G. Yang A. Gallagher M. Ashe K.H. A specific amyloid-β protein assembly in the brain impairs memory. Nature 2006 440 7082 352 357 10.1038/nature04533 16541076
    [Google Scholar]
  107. Shigenaga M.K. Hagen T.M. Ames B.N. Oxidative damage and mitochondrial decay in aging. Proc. Natl. Acad. Sci. USA 1994 91 23 10771 10778 10.1073/pnas.91.23.10771 7971961
    [Google Scholar]
  108. Handa A.K. Fatima T. Mattoo A.K. Polyamines: Bio-molecules with diverse functions in plant and human health and disease. Front Chem. 2018 6 10 10.3389/fchem.2018.00010 29468148
    [Google Scholar]
  109. Higashi S. Iseki E. Yamamoto R. Minegishi M. Hino H. Fujisawa K. Togo T. Katsuse O. Uchikado H. Furukawa Y. Kosaka K. Arai H. Concurrence of TDP-43, tau and α-synuclein pathology in brains of alzheimer’s disease and dementia with Lewy bodies. Brain Res. 2007 1184 284 294 10.1016/j.brainres.2007.09.048 17963732
    [Google Scholar]
  110. McAleese K.E. Walker L. Erskine D. Thomas A.J. McKeith I.G. Attems J. TDP‐43 pathology in alzheimer’s disease, dementia with Lewy bodies and ageing. Brain Pathol. 2017 27 4 472 479 10.1111/bpa.12424 27495267
    [Google Scholar]
  111. Robinson J.L. Lee E.B. Xie S.X. Rennert L. Suh E. Bredenberg C. Caswell C. Van Deerlin V.M. Yan N. Yousef A. Hurtig H.I. Siderowf A. Grossman M. McMillan C.T. Miller B. Duda J.E. Irwin D.J. Wolk D. Elman L. McCluskey L. Chen-Plotkin A. Weintraub D. Arnold S.E. Brettschneider J. Lee V.M.Y. Trojanowski J.Q. Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. Brain 2018 141 7 2181 2193 10.1093/brain/awy146 29878075
    [Google Scholar]
  112. Smith V.D. Bachstetter A.D. Ighodaro E. Roberts K. Abner E.L. Fardo D.W. Nelson P.T. Overlapping but distinct TDP‐43 and tau pathologic patterns in aged hippocampi. Brain Pathol. 2018 28 2 264 273 10.1111/bpa.12505 28281308
    [Google Scholar]
  113. Yokota O. Davidson Y. Arai T. Hasegawa M. Akiyama H. Ishizu H. Terada S. Sikkink S. Pickering-Brown S. Mann D.M.A. Effect of topographical distribution of α-synuclein pathology on TDP-43 accumulation in Lewy body disease. Acta Neuropathol. 2010 120 6 789 801 10.1007/s00401‑010‑0731‑9 20669025
    [Google Scholar]
  114. Nakashima-Yasuda H. Uryu K. Robinson J. Xie S.X. Hurtig H. Duda J.E. Arnold S.E. Siderowf A. Grossman M. Leverenz J.B. Woltjer R. Lopez O.L. Hamilton R. Tsuang D.W. Galasko D. Masliah E. Kaye J. Clark C.M. Montine T.J. Lee V.M.Y. Trojanowski J.Q. Co-morbidity of TDP-43 proteinopathy in Lewy body related diseases. Acta Neuropathol. 2007 114 3 221 229 10.1007/s00401‑007‑0261‑2 17653732
    [Google Scholar]
  115. Aoki N. Murray M.E. Ogaki K. Fujioka S. Rutherford N.J. Rademakers R. Ross O.A. Dickson D.W. Hippocampal sclerosis in Lewy body disease is a TDP-43 proteinopathy similar to FTLD-TDP Type A. Acta Neuropathol. 2015 129 1 53 64 10.1007/s00401‑014‑1358‑z 25367383
    [Google Scholar]
  116. Uemura M.T. Robinson J.L. Cousins K.A.Q. Tropea T.F. Kargilis D.C. McBride J.D. Suh E. Xie S.X. Xu Y. Porta S. Uemura N. Van Deerlin V.M. Wolk D.A. Irwin D.J. Brunden K.R. Lee V.M.Y. Lee E.B. Trojanowski J.Q. Distinct characteristics of limbic-predominant age-related TDP-43 encephalopathy in Lewy body disease. Acta Neuropathol. 2022 143 1 15 31 10.1007/s00401‑021‑02383‑3 34854996
    [Google Scholar]
  117. Karanth S. Nelson P.T. Katsumata Y. Kryscio R.J. Schmitt F.A. Fardo D.W. Cykowski M.D. Jicha G.A. Van Eldik L.J. Abner E.L. Prevalence and clinical phenotype of quadruple misfolded proteins in older adults. JAMA Neurol. 2020 77 10 1299 1307 10.1001/jamaneurol.2020.1741 32568358
    [Google Scholar]
  118. Montalbano M. McAllen S. Cascio F.L. Sengupta U. Garcia S. Bhatt N. Ellsworth A. Heidelman E.A. Johnson O.D. Doskocil S. Kayed R. TDP-43 and tau oligomers in alzheimer’s disease, amyotrophic lateral sclerosis, and frontotemporal dementia. Neurobiol. Dis. 2020 146 105130 10.1016/j.nbd.2020.105130 33065281
    [Google Scholar]
  119. Guerrero-Muñoz M.J. Castillo-Carranza D.L. Krishnamurthy S. Paulucci-Holthauzen A.A. Sengupta U. Lasagna-Reeves C.A. Ahmad Y. Jackson G.R. Kayed R. Amyloid-β oligomers as a template for secondary amyloidosis in alzheimer’s disease. Neurobiol. Dis. 2014 71 14 23 10.1016/j.nbd.2014.08.008 25134727
    [Google Scholar]
  120. Latimer C.S. Stair J.G. Hincks J.C. Currey H.N. Bird T.D. Keene C.D. Kraemer B.C. Liachko N.F. TDP-43 promotes tau accumulation and selective neurotoxicity in bigenic Caenorhabditis elegans. Dis. Model. Mech. 2022 15 4 dmm049323 10.1242/dmm.049323 35178571
    [Google Scholar]
  121. Jiang L. Lin W. Zhang C. Ash P.E.A. Verma M. Kwan J. van Vliet E. Yang Z. Cruz A.L. Boudeau S. Maziuk B.F. Lei S. Song J. Alvarez V.E. Hovde S. Abisambra J.F. Kuo M.H. Kanaan N. Murray M.E. Crary J.F. Zhao J. Cheng J.X. Petrucelli L. Li H. Emili A. Wolozin B. Interaction of tau with HNRNPA2B1 and N6-methyladenosine RNA mediates the progression of tauopathy. Mol. Cell 2021 81 20 4209 4227.e12 10.1016/j.molcel.2021.07.038 34453888
    [Google Scholar]
  122. Shih Y.H. Tu L.H. Chang T.Y. Ganesan K. Chang W.W. Chang P.S. Fang Y.S. Lin Y.T. Jin L.W. Chen Y.R. TDP-43 interacts with amyloid-β, inhibits fibrillization, and worsens pathology in a model of alzheimer’s disease. Nat. Commun. 2020 11 1 5950 10.1038/s41467‑020‑19786‑7 33230138
    [Google Scholar]
  123. Laos V. Bishop D. Ganguly P. Schonfeld G. Trapp E. Cantrell K.L. Buratto S.K. Shea J.E. Bowers M.T. Catalytic cross talk between key peptide fragments that couple alzheimer’s disease with amyotrophic lateral sclerosis. J. Am. Chem. Soc. 2021 143 9 3494 3502 10.1021/jacs.0c12729 33621087
    [Google Scholar]
  124. Dhakal S. Wyant C.E. George H.E. Morgan S.E. Rangachari V. Prion-like C-terminal domain of tdp-43 and α-synuclein interact synergistically to generate neurotoxic hybrid fibrils. J. Mol. Biol. 2021 433 10 166953 10.1016/j.jmb.2021.166953 33771571
    [Google Scholar]
  125. Dhakal S. Mondal M. Mirzazadeh A. Banerjee S. Ghosh A. Rangachari V. α-Synuclein emulsifies TDP-43 prion-like domain—RNA liquid droplets to promote heterotypic amyloid fibrils. Commun. Biol. 2023 6 1 1227 10.1038/s42003‑023‑05608‑1 38052886
    [Google Scholar]
  126. Dhakal S. Robang A.S. Bhatt N. Puangmalai N. Fung L. Kayed R. Paravastu A.K. Rangachari V. Distinct neurotoxic TDP-43 fibril polymorphs are generated by heterotypic interactions with α-Synuclein. J. Biol. Chem. 2022 298 11 102498 10.1016/j.jbc.2022.102498 36116552
    [Google Scholar]
  127. Zinszner H. Sok J. Immanuel D. Yin Y. Ron D. TLS (FUS) binds RNA in vivo and engages in nucleo-cytoplasmic shuttling. J. Cell Sci. 1997 110 15 1741 1750 10.1242/jcs.110.15.1741 9264461
    [Google Scholar]
  128. Ayala Y.M. Zago P. D’Ambrogio A. Xu Y.F. Petrucelli L. Buratti E. Baralle F.E. Structural determinants of the cellular localization and shuttling of TDP-43. J. Cell Sci. 2008 121 22 3778 3785 10.1242/jcs.038950 18957508
    [Google Scholar]
  129. Geuens T. Bouhy D. Timmerman V. The hnRNP family: Insights into their role in health and disease. Hum. Genet. 2016 135 8 851 867 10.1007/s00439‑016‑1683‑5 27215579
    [Google Scholar]
  130. Colombrita C. Zennaro E. Fallini C. Weber M. Sommacal A. Buratti E. Silani V. Ratti A. TDP‐43 is recruited to stress granules in conditions of oxidative insult. J. Neurochem. 2009 111 4 1051 1061 10.1111/j.1471‑4159.2009.06383.x 19765185
    [Google Scholar]
  131. Bosco D.A. Lemay N. Ko H.K. Zhou H. Burke C. Kwiatkowski T.J. Jr Sapp P. McKenna-Yasek D. Brown R.H. Jr Hayward L.J. Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules. Hum. Mol. Genet. 2010 19 21 4160 4175 10.1093/hmg/ddq335 20699327
    [Google Scholar]
  132. Gal J. Zhang J. Kwinter D.M. Zhai J. Jia H. Jia J. Zhu H. Nuclear localization sequence of FUS and induction of stress granules by ALS mutants. Neurobiol. Aging 2011 32 12 2323.e27 2323.e40 10.1016/j.neurobiolaging.2010.06.010 20674093
    [Google Scholar]
  133. Sreedharan J. Blair I.P. Tripathi V.B. Hu X. Vance C. Rogelj B. Ackerley S. Durnall J.C. Williams K.L. Buratti E. Baralle F. de Belleroche J. Mitchell J.D. Leigh P.N. Al-Chalabi A. Miller C.C. Nicholson G. Shaw C.E. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 2008 319 5870 1668 1672 10.1126/science.1154584 18309045
    [Google Scholar]
  134. Vance C. Rogelj B. Hortobágyi T. De Vos K.J. Nishimura A.L. Sreedharan J. Hu X. Smith B. Ruddy D. Wright P. Ganesalingam J. Williams K.L. Tripathi V. Al-Saraj S. Al-Chalabi A. Leigh P.N. Blair I.P. Nicholson G. de Belleroche J. Gallo J.M. Miller C.C. Shaw C.E. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 2009 323 5918 1208 1211 10.1126/science.1165942 19251628
    [Google Scholar]
  135. Kim H.J. Kim N.C. Wang Y.D. Scarborough E.A. Moore J. Diaz Z. MacLea K.S. Freibaum B. Li S. Molliex A. Kanagaraj A.P. Carter R. Boylan K.B. Wojtas A.M. Rademakers R. Pinkus J.L. Greenberg S.A. Trojanowski J.Q. Traynor B.J. Smith B.N. Topp S. Gkazi A.S. Miller J. Shaw C.E. Kottlors M. Kirschner J. Pestronk A. Li Y.R. Ford A.F. Gitler A.D. Benatar M. King O.D. Kimonis V.E. Ross E.D. Weihl C.C. Shorter J. Taylor J.P. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 2013 495 7442 467 473 10.1038/nature11922 23455423
    [Google Scholar]
  136. Freibaum B.D. Chitta R.K. High A.A. Taylor J.P. Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery. J. Proteome Res. 2010 9 2 1104 1120 10.1021/pr901076y 20020773
    [Google Scholar]
  137. Buratti E. Brindisi A. Giombi M. Tisminetzky S. Ayala Y.M. Baralle F.E. TDP-43 binds heterogeneous nuclear ribonucleoprotein A/B through its C-terminal tail: An important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing. J. Biol. Chem. 2005 280 45 37572 37584 10.1074/jbc.M505557200 16157593
    [Google Scholar]
  138. Lee E.B. Lee V.M.Y. Trojanowski J.Q. Gains or losses: Molecular mechanisms of TDP43-mediated neurodegeneration. Nat. Rev. Neurosci. 2012 13 1 38 50 10.1038/nrn3121 22127299
    [Google Scholar]
  139. Ling S.C. Albuquerque C.P. Han J.S. Lagier-Tourenne C. Tokunaga S. Zhou H. Cleveland D.W. ALS-associated mutations in TDP-43 increase its stability and promote TDP-43 complexes with FUS/TLS. Proc. Natl. Acad. Sci. USA 2010 107 30 13318 13323 10.1073/pnas.1008227107 20624952
    [Google Scholar]
  140. Kryndushkin D. Wickner R.B. Shewmaker F. FUS/TLS forms cytoplasmic aggregates, inhibits cell growth and interacts with TDP-43 in a yeast model of amyotrophic lateral sclerosis. Protein Cell 2011 2 3 223 236 10.1007/s13238‑011‑1525‑0 21452073
    [Google Scholar]
  141. Demongin C. Tranier S. Joshi V. Ceschi L. Desforges B. Pastré D. Hamon L. RNA and the RNA-binding protein FUS act in concert to prevent TDP-43 spatial segregation. J. Biol. Chem. 2024 300 3 105716 10.1016/j.jbc.2024.105716 38311174
    [Google Scholar]
  142. Cook C.N. Wu Y. Odeh H.M. Gendron T.F. Jansen-West K. del Rosso G. Yue M. Jiang P. Gomes E. Tong J. Daughrity L.M. Avendano N.M. Castanedes-Casey M. Shao W. Oskarsson B. Tomassy G.S. McCampbell A. Rigo F. Dickson D.W. Shorter J. Zhang Y.J. Petrucelli L. C9orf72 poly(GR) aggregation induces TDP-43 proteinopathy. Sci. Transl. Med. 2020 12 559 eabb3774 10.1126/scitranslmed.abb3774 32878979
    [Google Scholar]
  143. Ryan V.H. Dignon G.L. Zerze G.H. Chabata C.V. Silva R. Conicella A.E. Amaya J. Burke K.A. Mittal J. Fawzi N.L. Mechanistic view of hnrnpa2 low-complexity domain structure, interactions, and phase separation altered by mutation and arginine methylation. Mol. Cell 2018 69 3 465 479.e7 10.1016/j.molcel.2017.12.022 29358076
    [Google Scholar]
  144. Chew J. Cook C. Gendron T.F. Jansen-West K. del Rosso G. Daughrity L.M. Castanedes-Casey M. Kurti A. Stankowski J.N. Disney M.D. Rothstein J.D. Dickson D.W. Fryer J.D. Zhang Y.J. Petrucelli L. Aberrant deposition of stress granule-resident proteins linked to C9orf72-associated TDP-43 proteinopathy. Mol. Neurodegener. 2019 14 1 9 10.1186/s13024‑019‑0310‑z 30767771
    [Google Scholar]
  145. Chew J. Gendron T.F. Prudencio M. Sasaguri H. Zhang Y.J. Castanedes-Casey M. Lee C.W. Jansen-West K. Kurti A. Murray M.E. Bieniek K.F. Bauer P.O. Whitelaw E.C. Rousseau L. Stankowski J.N. Stetler C. Daughrity L.M. Perkerson E.A. Desaro P. Johnston A. Overstreet K. Edbauer D. Rademakers R. Boylan K.B. Dickson D.W. Fryer J.D. Petrucelli L. C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits. Science 2015 348 6239 1151 1154 10.1126/science.aaa9344 25977373
    [Google Scholar]
  146. Liu Y. Pattamatta A. Zu T. Reid T. Bardhi O. Borchelt D.R. Yachnis A.T. Ranum L.P.W. C9orf72 BAC mouse model with motor deficits and neurodegenerative features of ALS/FTD. Neuron 2016 90 3 521 534 10.1016/j.neuron.2016.04.005 27112499
    [Google Scholar]
  147. Koppers M. Blokhuis A.M. Westeneng H.J. Terpstra M.L. Zundel C.A.C. Vieira de Sá R. Schellevis R.D. Waite A.J. Blake D.J. Veldink J.H. van den Berg L.H. Pasterkamp R.J. C 9orf72 ablation in mice does not cause motor neuron degeneration or motor deficits. Ann. Neurol. 2015 78 3 426 438 10.1002/ana.24453 26044557
    [Google Scholar]
  148. Jiang J. Zhu Q. Gendron T.F. Saberi S. McAlonis-Downes M. Seelman A. Stauffer J.E. Jafar-nejad P. Drenner K. Schulte D. Chun S. Sun S. Ling S.C. Myers B. Engelhardt J. Katz M. Baughn M. Platoshyn O. Marsala M. Watt A. Heyser C.J. Ard M.C. De Muynck L. Daughrity L.M. Swing D.A. Tessarollo L. Jung C.J. Delpoux A. Utzschneider D.T. Hedrick S.M. de Jong P.J. Edbauer D. Van Damme P. Petrucelli L. Shaw C.E. Bennett C.F. Da Cruz S. Ravits J. Rigo F. Cleveland D.W. Lagier-Tourenne C. Gain of toxicity from ALS/FTD-linked repeat expansions in C9ORF72 is alleviated by antisense oligonucleotides targeting GGGGCC-containing RNAs. Neuron 2016 90 3 535 550 10.1016/j.neuron.2016.04.006 27112497
    [Google Scholar]
  149. Lee K.H. Zhang P. Kim H.J. Mitrea D.M. Sarkar M. Freibaum B.D. Cika J. Coughlin M. Messing J. Molliex A. Maxwell B.A. Kim N.C. Temirov J. Moore J. Kolaitis R.M. Shaw T.I. Bai B. Peng J. Kriwacki R.W. Taylor J.P. C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell 2016 167 3 774 788.e17 10.1016/j.cell.2016.10.002 27768896
    [Google Scholar]
  150. Saberi S. Stauffer J.E. Jiang J. Garcia S.D. Taylor A.E. Schulte D. Ohkubo T. Schloffman C.L. Maldonado M. Baughn M. Rodriguez M.J. Pizzo D. Cleveland D. Ravits J. Sense-encoded poly-GR dipeptide repeat proteins correlate to neurodegeneration and uniquely co-localize with TDP-43 in dendrites of repeat-expanded C9orf72 amyotrophic lateral sclerosis. Acta Neuropathol. 2018 135 3 459 474 10.1007/s00401‑017‑1793‑8 29196813
    [Google Scholar]
  151. Kovacs G.G. Rahimi J. Ströbel T. Lutz M.I. Regelsberger G. Streichenberger N. Perret-Liaudet A. Höftberger R. Liberski P.P. Budka H. Sikorska B. Tau pathology in Creutzfeldt‐Jakob disease revisited. Brain Pathol. 2017 27 3 332 344 10.1111/bpa.12411 27377321
    [Google Scholar]
  152. Hallinan G.I. Hoq M.R. Ghosh M. Vago F.S. Fernandez A. Garringer H.J. Vidal R. Jiang W. Ghetti B. Structure of Tau filaments in Prion protein amyloidoses. Acta Neuropathol. 2021 142 2 227 241 10.1007/s00401‑021‑02336‑w 34128081
    [Google Scholar]
  153. Zhao J. Wu H. Tang X. Tau internalization: A complex step in tau propagation. Ageing Res. Rev. 2021 67 101272 10.1016/j.arr.2021.101272 33571704
    [Google Scholar]
  154. Rai S.K. Khanna R. Avni A. Mukhopadhyay S. Heterotypic electrostatic interactions control complex phase separation of tau and prion into multiphasic condensates and co-aggregates. Proc. Natl. Acad. Sci. USA 2023 120 2 e2216338120 10.1073/pnas.2216338120 36595668
    [Google Scholar]
  155. S H. N P. K A. v S. D D. C D. J H. Alpha-synuclein-immunoreactive deposits in human and animal prion diseases. Acta Neuropathol. 2002 103 5 516 520 10.1007/s00401‑001‑0499‑z 11935269
    [Google Scholar]
  156. Agarwal A. Arora L. Rai S.K. Avni A. Mukhopadhyay S. Spatiotemporal modulations in heterotypic condensates of prion and α-synuclein control phase transitions and amyloid conversion. Nat. Commun. 2022 13 1 1154 10.1038/s41467‑022‑28797‑5 35241680
    [Google Scholar]
  157. Scialò C. Celauro L. Zattoni M. Tran T.H. Bistaffa E. Moda F. Kammerer R. Buratti E. Legname G. The cellular prion protein increases the uptake and toxicity of TDP-43 fibrils. Viruses 2021 13 8 1625 10.3390/v13081625 34452489
    [Google Scholar]
  158. Polido S.A. Stuani C. Voigt A. Banik P. Kamps J. Bader V. Grover P. Krause L.J. Zerr I. Matschke J. Glatzel M. Winklhofer K.F. Buratti E. Tatzelt J. Cross-seeding by prion protein inactivates TDP-43. Brain 2024 147 1 240 254 10.1093/brain/awad289 37669322
    [Google Scholar]
  159. Han Y. Ye H. Li P. Zeng Y. Yang J. Gao M. Su Z. Huang Y. In vitro characterization and molecular dynamics simulation reveal mechanism of 14-3-3ζ regulated phase separation of the tau protein. Int. J. Biol. Macromol. 2022 208 1072 1081 10.1016/j.ijbiomac.2022.03.215 35381286
    [Google Scholar]
  160. Liu Y.Q. Liang C.Q. Chen Z.W. Hu J. Hu J.J. Luo Y.Y. Chen Y.X. Li Y.M. 14-3-3ζ participates in the phase separation of phosphorylated and glycated tau and modulates the physiological and pathological functions of tau. ACS Chem. Neurosci. 2023 14 7 1220 1225 10.1021/acschemneuro.3c00034 36939323
    [Google Scholar]
  161. Liu H.N. Wang T. Hu J.J. Chen L. Shi X. Li Y.M. Luo S.Z. The disordered protein SERF promotes α-Synuclein aggregation through liquid–liquid phase separation. J. Biol. Chem. 2024 300 3 105667 10.1016/j.jbc.2024.105667 38272228
    [Google Scholar]
  162. Wang C. Liu Y. Yu B. Peng Y. Zhang X. Jiang G. He L. Liu M. Diverse roles of ScSERF in modifying the fibril growth of amyloidogenic proteins. Chemistry 2023 29 30 e202203965 10.1002/chem.202203965 36914570
    [Google Scholar]
  163. Darling A.L. Dahrendorff J. Creodore S.G. Dickey C.A. Blair L.J. Uversky V.N. Small heat shock protein 22 kDa can modulate the aggregation and liquid–liquid phase separation behavior of tau. Protein Sci. 2021 30 7 1350 1359 10.1002/pro.4060 33686711
    [Google Scholar]
  164. Gu J. Wang C. Hu R. Li Y. Zhang S. Sun Y. Wang Q. Li D. Fang Y. Liu C. Hsp70 chaperones TDP-43 in dynamic, liquid-like phase and prevents it from amyloid aggregation. Cell Res. 2021 31 9 1024 1027 10.1038/s41422‑021‑00526‑5 34239072
    [Google Scholar]
  165. Watanabe S. Inami H. Oiwa K. Murata Y. Sakai S. Komine O. Sobue A. Iguchi Y. Katsuno M. Yamanaka K. Aggresome formation and liquid–liquid phase separation independently induce cytoplasmic aggregation of TAR DNA-binding protein 43. Cell Death Dis. 2020 11 10 909 10.1038/s41419‑020‑03116‑2 33097688
    [Google Scholar]
  166. Boczek E.E. Fürsch J. Niedermeier M.L. Jawerth L. Jahnel M. Ruer-Gruß M. Kammer K.M. Heid P. Mediani L. Wang J. Yan X. Pozniakovski A. Poser I. Mateju D. Hubatsch L. Carra S. Alberti S. Hyman A.A. Stengel F. HspB8 prevents aberrant phase transitions of FUS by chaperoning its folded RNA-binding domain. eLife 2021 10 e69377 10.7554/eLife.69377 34487489
    [Google Scholar]
  167. Joseph J.A. Reinhardt A. Aguirre A. Chew P.Y. Russell K.O. Espinosa J.R. Garaizar A. Collepardo-Guevara R. Physics-driven coarse-grained model for biomolecular phase separation with near-quantitative accuracy. Nature Computational Science 2021 1 11 732 743 10.1038/s43588‑021‑00155‑3 35795820
    [Google Scholar]
  168. Sanchez-Burgos I. Espinosa J.R. Joseph J.A. Collepardo-Guevara R. Valency and binding affinity variations can regulate the multilayered organization of protein condensates with many components. Biomolecules 2021 11 2 278 10.3390/biom11020278 33672806
    [Google Scholar]
  169. Espinosa J.R. Joseph J.A. Sanchez-Burgos I. Garaizar A. Frenkel D. Collepardo-Guevara R. Liquid network connectivity regulates the stability and composition of biomolecular condensates with many components. Proc. Natl. Acad. Sci. USA 2020 117 24 13238 13247 10.1073/pnas.1917569117 32482873
    [Google Scholar]
  170. Zhang Y. Xu B. Weiner B.G. Meir Y. Wingreen N.S. Decoding the physical principles of two-component biomolecular phase separation. eLife 2021 10 e62403 10.7554/eLife.62403 33704061
    [Google Scholar]
  171. Pyo A.G.T. Zhang Y. Wingreen N.S. Proximity to criticality predicts surface properties of biomolecular condensates. Proc. Natl. Acad. Sci. USA 2023 120 23 e2220014120 10.1073/pnas.2220014120 37252985
    [Google Scholar]
  172. Dignon G.L. Zheng W. Kim Y.C. Best R.B. Mittal J. Sequence determinants of protein phase behavior from a coarse-grained model. PLOS Comput. Biol. 2018 14 1 e1005941 10.1371/journal.pcbi.1005941 29364893
    [Google Scholar]
  173. Espinosa J.R. Garaizar A. Vega C. Frenkel D. Collepardo-Guevara R. Breakdown of the law of rectilinear diameter and related surprises in the liquid-vapor coexistence in systems of patchy particles. J. Chem. Phys. 2019 150 22 224510 10.1063/1.5098551 31202247
    [Google Scholar]
  174. Semenov A.N. Rubinstein M. Thermoreversible gelation in solutions of associative polymers. 1. Statics. Macromolecules 1998 31 4 1373 1385 10.1021/ma970616h
    [Google Scholar]
  175. Tan C. Niitsu A. Sugita Y. Highly charged proteins and their repulsive interactions antagonize biomolecular condensation. JACS Au 2023 3 3 834 848 10.1021/jacsau.2c00646 37006777
    [Google Scholar]
  176. Welles R.M. Sojitra K.A. Garabedian M.V. Xia B. Wang W. Guan M. Regy R.M. Gallagher E.R. Hammer D.A. Mittal J. Good M.C. Determinants that enable disordered protein assembly into discrete condensed phases. Nat. Chem. 2024 16 7 1062 1072 10.1038/s41557‑023‑01423‑7 38316988
    [Google Scholar]
  177. Chew P.Y. Joseph J.A. Collepardo-Guevara R. Reinhardt A. Thermodynamic origins of two-component multiphase condensates of proteins. Chem. Sci. 2023 14 7 1820 1836 10.1039/D2SC05873A 36819870
    [Google Scholar]
  178. Dignon G.L. Zheng W. Kim Y.C. Mittal J. Temperature-controlled liquid–liquid phase separation of disordered proteins. ACS Cent. Sci. 2019 5 5 821 830 10.1021/acscentsci.9b00102 31139718
    [Google Scholar]
  179. Dong X. Bera S. Qiao Q. Tang Y. Lao Z. Luo Y. Gazit E. Wei G. Liquid–liquid phase separation of tau protein is encoded at the monomeric level. J. Phys. Chem. Lett. 2021 12 10 2576 2586 10.1021/acs.jpclett.1c00208 33686854
    [Google Scholar]
  180. Li M.S. Klimov D.K. Straub J.E. Thirumalai D. Probing the mechanisms of fibril formation using lattice models. J. Chem. Phys. 2008 129 17 175101 10.1063/1.2989981 19045373
    [Google Scholar]
  181. Li M.S. Co N.T. Reddy G. Hu C.K. Straub J.E. Thirumalai D. Factors governing fibrillogenesis of polypeptide chains revealed by lattice models. Phys. Rev. Lett. 2010 105 21 218101 10.1103/PhysRevLett.105.218101 21231356
    [Google Scholar]
  182. Chakraborty D. Straub J.E. Thirumalai D. Differences in the free energies between the excited states of A β 40 and A β 42 monomers encode their aggregation propensities. Proc. Natl. Acad. Sci. USA 2020 117 33 19926 19937 10.1073/pnas.2002570117 32732434
    [Google Scholar]
  183. Qi R. Luo Y. Wei G. Nussinov R. Ma B. Aβ “stretching-and-packing” cross-seeding mechanism can trigger tau protein aggregation. J. Phys. Chem. Lett. 2015 6 16 3276 3282 10.1021/acs.jpclett.5b01447
    [Google Scholar]
  184. Song Z. Gatch A.J. Sun Y. Ding F. Differential binding and conformational dynamics of tau microtubule-binding repeats with a preformed Amyloid-β Fibril seed. ACS Chem. Neurosci. 2023 14 7 1321 1330 10.1021/acschemneuro.3c00014 36975100
    [Google Scholar]
  185. Liu F. Jiang L. Sang J. Lu F. Li L. Molecular basis of cross-interactions between Aβ and Tau protofibrils probed by molecular simulations. Chin. J. Chem. Eng. 2023 55 173 180 10.1016/j.cjche.2022.04.021
    [Google Scholar]
  186. Li X. Chen Y. Yang Z. Zhang S. Wei G. Zhang L. Structural insights into the co-aggregation of Aβ and tau amyloid core peptides: Revealing potential pathological heterooligomers by simulations. Int. J. Biol. Macromol. 2024 254 Pt 2 127841 10.1016/j.ijbiomac.2023.127841 37924907
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037350729241129054701
Loading
/content/journals/cpps/10.2174/0113892037350729241129054701
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test