Skip to content
2000
image of Inhibitors of Type II NADH Dehydrogenase Enzyme: A Review

Abstract

Mitochondria are organelles in eukaryotic organisms with an electron transport chain consisting of four complexes ( CI, CII, CIII, and CIV) on the inner membrane, which have functions such as providing energy, electron transport, and generating proton gradients. NADH dehydrogenase type 2 (NDH-2), widely found in bacterial, plant, fungal and protist mitochondria, is a nonproton-pumping single-subunit enzyme bound to the surface of the inner mitochondrial membrane that partially replaces NDH-1. NDH-2 has a crucial role in the energy metabolism of pathogenic microorganisms, and the lack of NDH-2 or its homologs in humans makes NDH-2 an essential target for the development of antimicrobial drugs. There is a wide variety of pathogenic microorganisms that invade the human body and cause diseases; therefore, more and more inhibitors targeting NDH-2 of different pathogenic microorganisms continue to be reported. This paper first reviews the structure and function of NDH-2 and summarizes the classification of compounds targeting NDH-2. Given the relative paucity of inhibition mechanisms for NDH-2, which has greatly hindered the development of targeted drugs, the article concludes with a summary of two possible mechanisms in action: allosteric inhibition and competitive inhibition. This review will provide theoretical support for the subsequent molecular design and modification of drugs targeting the pathogenic microorganism NDH-2.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037350396250213115109
2025-03-10
2025-04-18
Loading full text...

Full text loading...

References

  1. Giorgio M. Migliaccio E. Orsini F. Paolucci D. Moroni M. Contursi C. Pelliccia G. Luzi L. Minucci S. Marcaccio M. Pinton P. Rizzuto R. Bernardi P. Paolucci F. Pelicci P.G. Electron transfer between cytochrome C and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 2005 122 2 221 233 10.1016/j.cell.2005.05.011 16051147
    [Google Scholar]
  2. Chen X. Li J. Hou J. Xie Z. Yang F. Mammalian mitochondrial proteomics: insights into mitochondrial functions and mitochondria-related diseases. Expert Rev. Proteomics 2010 7 3 333 345 10.1586/epr.10.22 20536306
    [Google Scholar]
  3. Zhang B. Chu W. Wei P. Liu Y. Wei T. Xanthohumol induces generation of reactive oxygen species and triggers apoptosis through inhibition of mitochondrial electron transfer chain complex I. Free Radic. Biol. Med. 2015 89 486 497 10.1016/j.freeradbiomed.2015.09.021 26453927
    [Google Scholar]
  4. Giorgi C. Agnoletto C. Bononi A. Bonora M. De Marchi E. Marchi S. Missiroli S. Patergnani S. Poletti F. Rimessi A. Suski J.M. Wieckowski M.R. Pinton P. Mitochondrial calcium homeostasis as potential target for mitochondrial medicine. Mitochondrion 2012 12 1 77 85 10.1016/j.mito.2011.07.004 21798374
    [Google Scholar]
  5. Skulachev V.P. Anisimov V.N. Antonenko Y.N. Bakeeva L.E. Chernyak B.V. Erichev V.P. Filenko O.F. Kalinina N.I. Kapelko V.I. Kolosova N.G. Kopnin B.P. Korshunova G.A. Lichinitser M.R. Obukhova L.A. Pasyukova E.G. Pisarenko O.I. Roginsky V.A. Ruuge E.K. Senin I.I. Severina I.I. Skulachev M.V. Spivak I.M. Tashlitsky V.N. Tkachuk V.A. Vyssokikh M.Y. Yaguzhinsky L.S. Zorov D.B. An attempt to prevent senescence: A mitochondrial approach. Biochim. Biophys. Acta Bioenerg. 2009 1787 5 437 461 10.1016/j.bbabio.2008.12.008
    [Google Scholar]
  6. Wallace D.C. Diseases of the mitochondrial DNA. Annu. Rev. Biochem. 1992 61 1 1175 1212 10.1146/annurev.bi.61.070192.005523 1497308
    [Google Scholar]
  7. Stuart K. Kinetoplast D.N.A. Kinetoplast DNA, mitochondria DNA with a difference. Mol. Biochem. Parasitol. 1983 9 2 93 104 10.1016/0166‑6851(83)90103‑2 6366549
    [Google Scholar]
  8. Macino G. Tzagoloff A. Assembly of the mitochondrial membrane system: Sequence analysis of a yeast mitochondrial ATPase gene containing the oli-2 and oli-4 loci. Cell 1980 20 2 507 517 10.1016/0092‑8674(80)90637‑6 6446405
    [Google Scholar]
  9. Mannella C.A. Structure and dynamics of the mitochondrial inner membrane cristae. Biochim. Biophys. Acta Mol. Cell Res. 2006 1763 5-6 542 548 10.1016/j.bbamcr.2006.04.006 16730811
    [Google Scholar]
  10. Dudkina N.V. Folea I.M. Boekema E.J. Towards structural and functional characterization of photosynthetic and mitochondrial supercomplexes. Micron 2015 72 39 51 10.1016/j.micron.2015.03.002 25841081
    [Google Scholar]
  11. Cogliati S. Lorenzi I. Rigoni G. Caicci F. Soriano M.E. Regulation of mitochondrial electron transport chain assembly. J. Mol. Biol. 2018 430 24 4849 4873 10.1016/j.jmb.2018.09.016 30292820
    [Google Scholar]
  12. Speijer D. Can all major ROS forming sites of the respiratory chain be activated by high FADH2/NADH ratios? Ancient evolutionary constraints determine mitochondrial ROS formation. BioEssays 2019 41 1 1800180 10.1002/bies.201800180 30512221
    [Google Scholar]
  13. Moser C.C. Farid T.A. Chobot S.E. Dutton P.L. Electron tunneling chains of mitochondria. Biochim. Biophys. Acta Bioenerg. 2006 1757 9-10 1096 1109 10.1016/j.bbabio.2006.04.015
    [Google Scholar]
  14. Sadri S. Tomar N. Yang C. Audi S.H. Cowley A.W. Jr Dash R.K. Effects of ROS pathway inhibitors and NADH and FADH2 linked substrates on mitochondrial bioenergetics and ROS emission in the heart and kidney cortex and outer medulla. Arch. Biochem. Biophys. 2023 744 109690 10.1016/j.abb.2023.109690 37429534
    [Google Scholar]
  15. Carroll J. Fearnley I.M. Skehel J.M. Shannon R.J. Hirst J. Walker J.E. Bovine complex I is a complex of 45 different subunits. J. Biol. Chem. 2006 281 43 32724 32727 10.1074/jbc.M607135200 16950771
    [Google Scholar]
  16. Zhang C. Shuai J. Ran Z. Zhao J. Wu Z. Liao R. Wu J. Ma W. Lei M. Structural insights into NDH-1 mediated cyclic electron transfer. Nat. Commun. 2020 11 1 888 10.1038/s41467‑020‑14732‑z 32060291
    [Google Scholar]
  17. Vinothkumar K.R. Zhu J. Hirst J. Architecture of mammalian respiratory complex I. Nature 2014 515 7525 80 84 10.1038/nature13686 25209663
    [Google Scholar]
  18. Wirth C. Brandt U. Hunte C. Zickermann V. Structure and function of mitochondrial complex I. Biochim. Biophys. Acta Bioenerg. 2016 1857 7 902 914 10.1016/j.bbabio.2016.02.013
    [Google Scholar]
  19. Janssen R.J.R.J. Nijtmans L.G. Heuvel L.P. Smeitink J.A.M. Mitochondrial complex I: Structure, function and pathology. J. Inherit. Metab. Dis. 2006 29 4 499 515 10.1007/s10545‑006‑0362‑4 16838076
    [Google Scholar]
  20. Bandeiras T.M. Salgueiro C. Kletzin A. Gomes C.M. Teixeira M. Acidianus ambivalens type‐II NADH dehydrogenase: genetic characterisation and identification of the flavin moiety as FMN. FEBS Lett. 2002 531 2 273 277 10.1016/S0014‑5793(02)03514‑7 12417325
    [Google Scholar]
  21. Weinstein E.A. Yano T. Li L.S. Avarbock D. Avarbock A. Helm D. McColm A.A. Duncan K. Lonsdale J.T. Rubin H. Inhibitors of type II NADH:menaquinone oxidoreductase represent a class of antitubercular drugs. Proc. Natl. Acad. Sci. USA 2005 102 12 4548 4553 10.1073/pnas.0500469102 15767566
    [Google Scholar]
  22. Rao S.P.S. Alonso S. Rand L. Dick T. Pethe K. The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 2008 105 33 11945 11950 10.1073/pnas.0711697105 18697942
    [Google Scholar]
  23. Lencina A.M. Franza T. Sullivan M.J. Ulett G.C. Ipe D.S. Gaudu P. Gennis R.B. Schurig-Briccio L.A. Type 2 NADH dehydrogenase is the only point of entry for electrons into the streptococcus agalactiae respiratory chain and is a potential drug target 2018 9 4 10.1128/mBio.01034‑18 29970468
    [Google Scholar]
  24. Melo A.M.P. Bandeiras T.M. Teixeira M. New insights into type II NAD(P)H:quinone oxidoreductases. Microbiol. Mol. Biol. Rev. 2004 68 4 603 616 10.1128/MMBR.68.4.603‑616.2004 15590775
    [Google Scholar]
  25. Feng Y. Li W. Li J. Wang J. Ge J. Xu D. Liu Y. Wu K. Zeng Q. Wu J.W. Tian C. Zhou B. Yang M. Structural insight into the type-II mitochondrial NADH dehydrogenases. Nature 2012 491 7424 478 482 10.1038/nature11541 23086143
    [Google Scholar]
  26. Iwata M. Lee Y. Yamashita T. Yagi T. Iwata S. Cameron A.D. Maher M.J. The structure of the yeast NADH dehydrogenase (Ndi1) reveals overlapping binding sites for water- and lipid-soluble substrates. Proc. Natl. Acad. Sci. USA 2012 109 38 15247 15252 10.1073/pnas.1210059109 22949654
    [Google Scholar]
  27. Heikal A. Nakatani Y. Dunn E. Weimar M.R. Day C.L. Baker E.N. Lott J.S. Sazanov L.A. Cook G.M. Structure of the bacterial type II NADH dehydrogenase: a monotopic membrane protein with an essential role in energy generation. Mol. Microbiol. 2014 91 5 950 964 10.1111/mmi.12507 24444429
    [Google Scholar]
  28. Pepe S. Mentzer R.M. Jr Gottlieb R.A. Cell-permeable protein therapy for complex I dysfunction. J. Bioenerg. Biomembr. 2014 46 4 337 345 10.1007/s10863‑014‑9559‑7 25005682
    [Google Scholar]
  29. Santidrian A.F. Matsuno-Yagi A. Ritland M. Seo B.B. LeBoeuf S.E. Gay L.J. Yagi T. Felding-Habermann B. Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression. J. Clin. Invest. 2013 123 3 1068 1081 10.1172/JCI64264 23426180
    [Google Scholar]
  30. Teh J. Yano T. Rubin H. Type II NADH:Menaquinone oxidoreductase of mycobacterium tuberculosis 2007 7 2 169 181 10.2174/187152607781001781
    [Google Scholar]
  31. Nixon G.L. Pidathala C. Shone A.E. Antoine T. Fisher N. O’Neill P.M. Ward S.A. Biagini G.A. Targeting the mitochondrial electron transport chain of plasmodium falciparum: new strategies towards the development of improved antimalarials for the elimination era Future Med. Chem. 2013 5 13 1573 1591 10.4155/fmc.13.121 24024949
    [Google Scholar]
  32. Zumla A. Nahid P. Cole S.T. Advances in the development of new tuberculosis drugs and treatment regimens. Nat. Rev. Drug Discov. 2013 12 5 388 404 10.1038/nrd4001 23629506
    [Google Scholar]
  33. Seo B.B. Kitajima-Ihara T. Chan E.K.L. Scheffler I.E. Matsuno-Yagi A. Yagi T. Molecular remedy of complex I defects: Rotenone-insensitive internal NADH-quinone oxidoreductase of Saccharomyces cerevisiae mitochondria restores the NADH oxidase activity of complex I-deficient mammalian cells. Proc. Natl. Acad. Sci. USA 1998 95 16 9167 9171 10.1073/pnas.95.16.9167 9689052
    [Google Scholar]
  34. Seo B.B. Matsuno-Yagi A. Yagi T. Modulation of oxidative phosphorylation of human kidney 293 cells by transfection with the internal rotenone-insensitive NADH–quinone oxidoreductase (ndi1) gene of saccharomyces cerevisiae. Biochim. Biophys. Acta Bioenerg. 1999 1412 1 56 65 10.1016/S0005‑2728(99)00051‑1 10354494
    [Google Scholar]
  35. Santidrian A.F. Matsuno-Yagi A. Ritland M. Seo B.B. LeBoeuf S.E. Gay L.J. Yagi T. Felding-Habermann B. Abstract IA3: Normalizing tumor cell metabolism in breast cancer metastasis: A novel therapeutic approach. Cancer Res. 2013 73 3_Supplement IA3 IA3 10.1158/1538‑7445.TIM2013‑IA3
    [Google Scholar]
  36. Marella M. Seo B.B. Nakamaru-Ogiso E. Greenamyre J.T. Matsuno-Yagi A. Yagi T. Protection by the ndi1 gene against neurodegeneration in a rotenone rat model of parkinson’s disease. PLoS One 2008 3 1 e1433 10.1371/journal.pone.0001433 18197244
    [Google Scholar]
  37. Rubin H. The respiratory chain of M. tuberculosis. New York Wiley Online Library 2007 1 6 10.1096/fasebj.21.5.A207‑b
    [Google Scholar]
  38. Schurig-Briccio L.A. Yano T. Rubin H. Gennis R.B. Characterization of the type 2 NADH:Menaquinone oxidoreductases from staphylococcus aureus and the bactericidal action of phenothiazines. Biochim. Biophys. Acta Bioenerg. 2014 1837 7 954 963 10.1016/j.bbabio.2014.03.017 24709059
    [Google Scholar]
  39. Elguindy M.M. Nakamaru-Ogiso E. Apoptosis-inducing factor (AIF) and its family member protein, AMID, are rotenone-sensitive NADH: ubiquinone oxidoreductases (NDH-2). J. Biol. Chem. 2015 290 34 20815 20826 10.1074/jbc.M115.641498 26063804
    [Google Scholar]
  40. Marreiros B.C. Sena F.V. Sousa F.M. Oliveira A.S.F. Soares C.M. Batista A.P. Pereira M.M. Structural and Functional insights into the catalytic mechanism of the Type II NADH:quinone oxidoreductase family. Sci. Rep. 2017 7 1 42303 10.1038/srep42303 28181562
    [Google Scholar]
  41. Yang Y. Yu Y. Li X. Li J. Wu Y. Yu J. Ge J. Huang Z. Jiang L. Rao Y. Yang M. Target elucidation by cocrystal structures of NADH-ubiquinone oxidoreductase of plasmodium falciparum (pf ndh2) with small molecule to eliminate drug-resistant malaria. J. Med. Chem. 2017 60 5 1994 2005 10.1021/acs.jmedchem.6b01733 28195463
    [Google Scholar]
  42. Sousa F.M. Sena F.V. Batista A.P. Athayde D. Brito J.A. Archer M. Oliveira A.S.F. Soares C.M. Catarino T. Pereira M.M. The key role of glutamate 172 in the mechanism of type II NADH:Quinone oxidoreductase of staphylococcus aureus. Biochim. Biophys. Acta Bioenerg. 2017 1858 10 823 832 10.1016/j.bbabio.2017.08.002 28801048
    [Google Scholar]
  43. Petri J. Shimaki Y. Jiao W. Bridges H.R. Russell E.R. Parker E.J. Aragão D. Cook G.M. Nakatani Y. Structure of the NDH-2 – HQNO inhibited complex provides molecular insight into quinone-binding site inhibitors. Biochim. Biophys. Acta Bioenerg. 2018 1859 7 482 490 10.1016/j.bbabio.2018.03.014 29621505
    [Google Scholar]
  44. Nakatani Y. Jiao W. Aragão D. Shimaki Y. Petri J. Parker E.J. Cook G.M. Crystal structure of type II NADH:quinone oxidoreductase from Caldalkalibacillus thermarum with an improved resolution of 2.15 Å. Acta Crystallogr. F Struct. Biol. Commun. 2017 73 10 541 549 10.1107/S2053230X17013073 28994401
    [Google Scholar]
  45. Herrou J. Czyż D.M. Willett J.W. Kim H.S. Chhor G. Babnigg G. Kim Y. Crosson S. Wrpa is an atypical flavodoxin family protein under regulatory control of the brucella abortus general stress response system. J. Bacteriol. 2016 198 8 1281 1293 10.1128/JB.00982‑15 26858101
    [Google Scholar]
  46. Dourado D.F.A.R. Swart M. Carvalho A.T.P. Why the flavin adenine dinucleotide (fad) cofactor needs to be covalently linked to complex ii of the electron‐transport chain for the conversion of FADH2 into fad. Chemistry 2018 24 20 5246 5252 10.1002/chem.201704622 29124817
    [Google Scholar]
  47. Eschemann A. Galkin A. Oettmeier W. Brandt U. Kerscher S. HDQ (1-hydroxy-2-dodecyl-4(1H)quinolone), a high affinity inhibitor for mitochondrial alternative NADH dehydrogenase: evidence for a ping-pong mechanism. J. Biol. Chem. 2005 280 5 3138 3142 10.1074/jbc.M411217200 15533932
    [Google Scholar]
  48. Yano T. Li L.S. Weinstein E. Teh J.S. Rubin H. Steady-state kinetics and inhibitory action of antitubercular phenothiazines on mycobacterium tuberculosis type-II NADH-menaquinone oxidoreductase (NDH-2). J. Biol. Chem. 2006 281 17 11456 11463 10.1074/jbc.M508844200 16469750
    [Google Scholar]
  49. Yang Y. Yamashita T. Nakamaru-Ogiso E. Hashimoto T. Murai M. Igarashi J. Miyoshi H. Mori N. Matsuno-Yagi A. Yagi T. Kosaka H. Reaction mechanism of single subunit NADH-ubiquinone oxidoreductase (Ndi1) from Saccharomyces cerevisiae: evidence for a ternary complex mechanism. J. Biol. Chem. 2011 286 11 9287 9297 10.1074/jbc.M110.175547 21220430
    [Google Scholar]
  50. Yagi T. Seo B.B. Nakamaru-Ogiso E. Marella M. Barber-Singh J. Yamashita T. Kao M.C. Matsuno-Yagi A. Can a single subunit yeast NADH dehydrogenase (Ndi1) remedy diseases caused by respiratory complex I defects? Rejuvenation Res. 2006 9 2 191 197 10.1089/rej.2006.9.191 16706641
    [Google Scholar]
  51. Torres A. Kasturiarachi N. DuPont M. Cooper V.S. Bomberger J. Zemke A. NADH dehydrogenases in pseudomonas aeruginosa growth and virulence. Front. Microbiol. 2019 10 75 10.3389/fmicb.2019.00075 30804898
    [Google Scholar]
  52. Surve S.V. Jensen B.C. Heestand M. Mazet M. Smith T.K. Bringaud F. Parsons M. Schnaufer A. NADH dehydrogenase of trypanosoma brucei is important for efficient acetate production in bloodstream forms. Mol. Biochem. Parasitol. 2017 211 57 61 10.1016/j.molbiopara.2016.10.001 27717801
    [Google Scholar]
  53. Knuuti J. Belevich G. Sharma V. Bloch D.A. Verkhovskaya M. A single amino acid residue controls ROS production in the respiratory C omplex I fromE scherichia coli. Mol. Microbiol. 2013 90 6 1190 1200 10.1111/mmi.12424 24325249
    [Google Scholar]
  54. Schurig-Briccio L.A. Rintoul M.R. Volentini S.I. Farías R.N. Baldomà L. Badía J. Rodríguez-Montelongo L. Rapisarda V.A. A critical phosphate concentration in the stationary phase maintains ndh gene expression and aerobic respiratory chain activity in Escherichia coli. FEMS Microbiol. Lett. 2008 284 1 76 83 10.1111/j.1574‑6968.2008.01188.x 18492062
    [Google Scholar]
  55. Murugesan D. Ray P.C. Bayliss T. Prosser G.A. Harrison J.R. Green K. Soares de Melo C. Feng T.S. Street L.J. Chibale K. Warner D.F. Mizrahi V. Epemolu O. Scullion P. Ellis L. Riley J. Shishikura Y. Ferguson L. Osuna-Cabello M. Read K.D. Green S.R. Lamprecht D.A. Finin P.M. Steyn A.J.C. Ioerger T.R. Sacchettini J. Rhee K.Y. Arora K. Barry C.E. III Wyatt P.G. Boshoff H.I.M. 2-Mercapto-quinazolinones as inhibitors of type ii NADH dehydrogenase and mycobacterium tuberculosis: structure–activity relationships, mechanism of action and absorption, distribution, metabolism, and excretion characterization. ACS Infect. Dis. 2018 4 6 954 969 10.1021/acsinfecdis.7b00275 29522317
    [Google Scholar]
  56. Zhou J.L. Chen H.H. Xu J. Huang M.Y. Wang J.F. Shen H.J. Shen S.X. Gao C.X. Qian C.D. Myricetin acts as an inhibitor of type ii NADH dehydrogenase from staphylococcus aureus. Molecules 2024 29 10 2354 10.3390/molecules29102354 38792214
    [Google Scholar]
  57. Bertsova Y.V. Bogachev A.V. Skulachev V.P. Noncoupled NADH: ubiquinone oxidoreductase of Azotobacter vinelandii is required for diazotrophic growth at high oxygen concentrations. J. Bacteriol. 2001 183 23 6869 6874 10.1128/JB.183.23.6869‑6874.2001 11698376
    [Google Scholar]
  58. Saha P. Sau S. Kalia N.P. Sharma D.K. 2-Aryl-benzoimidazoles as type ii NADH dehydrogenase inhibitors of mycobacterium tuberculosis. ACS Infect. Dis. 2024 10 10 3699 3711 10.1021/acsinfecdis.4c00710 39360674
    [Google Scholar]
  59. Chukwuanukwu R.C. Onyenekwe C.C. Martinez-Pomares L. Flynn R. Singh S. Amilo G.I. Agbakoba N.R. Okoye J.O. Modulation of the immune response to Mycobacterium tuberculosis during malaria/ M. tuberculosis co-infection. Clin. Exp. Immunol. 2017 187 2 259 268 10.1111/cei.12861 27577087
    [Google Scholar]
  60. Banerjee A. Dubnau E. Quemard A. Balasubramanian V. Um K.S. Wilson T. Collins D. de Lisle G. Jacobs W.R. Jr inha, a gene encoding a target for isoniazid and ethionamide in mycobacterium tuberculosis. Science 1994 263 5144 227 230 10.1126/science.8284673 8284673
    [Google Scholar]
  61. Ma Z. Lienhardt C. McIlleron H. Nunn A.J. Wang X. Global tuberculosis drug development pipeline: the need and the reality. Lancet 2010 375 9731 2100 2109 10.1016/S0140‑6736(10)60359‑9 20488518
    [Google Scholar]
  62. Gupta H. Macete E. Bulo H. Salvador C. Warsame M. Carvalho E. Ménard D. Ringwald P. Bassat Q. Enosse S. Mayor A. Drug-resistant polymorphisms and copy numbers in plasmodium falciparum, mozambique, 2015. Emerg. Infect. Dis. 2017 24 1 40 48 10.3201/eid2401.170864 29260689
    [Google Scholar]
  63. Massie S.P. The chemistry of phenothiazine. Chem. Rev. 1954 54 5 797 833 10.1021/cr60171a003
    [Google Scholar]
  64. McDowell J.J.H. The crystal and molecular structure of phenothiazine. Acta Crystallogr. B 1976 32 1 5 10 10.1107/S0567740876002215 5536134
    [Google Scholar]
  65. Ordway D. Viveiros M. Leandro C. Bettencourt R. Almeida J. Martins M. Kristiansen J.E. Molnar J. Amaral L. Clinical concentrations of thioridazine kill intracellular multidrug-resistant mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2003 47 3 917 922 10.1128/AAC.47.3.917‑922.2003 12604522
    [Google Scholar]
  66. Amaral L. Udwadia Z. Abbate E. van Soolingen D. The added effect of thioridazine in the treatment of drug-resistant tuberculosis [Correspondence]. Int. J. Tuberc. Lung Dis. 2012 16 12 1706 1708 10.5588/ijtld.12.0616 23131273
    [Google Scholar]
  67. Amaral L. Viveiros M. Kristiansen J. “Non-Antibiotics”: alternative therapy for the management of MDRTB and MRSA in economically disadvantaged countries. Curr. Drug Targets 2006 7 7 887 891 10.2174/138945006777709539 16842219
    [Google Scholar]
  68. Bate A.B. Kalin J.H. Fooksman E.M. Amorose E.L. Price C.M. Williams H.M. Rodig M.J. Mitchell M.O. Cho S.H. Wang Y. Franzblau S.G. Synthesis and antitubercular activity of quaternized promazine and promethazine derivatives. Bioorg. Med. Chem. Lett. 2007 17 5 1346 1348 10.1016/j.bmcl.2006.11.091 17188865
    [Google Scholar]
  69. Katoch V.M. Saxena N. Shivannavar C.T. Sharma V.D. Katoch K. Sharma R.K. Suryanarayana Murthy P. Effect of trifluoperazine on in vitro atp synthesis by mycobacterium leprae. FEMS Immunol. Med. Microbiol. 1998 20 2 99 102 10.1111/j.1574‑695X.1998.tb01115.x 9544776
    [Google Scholar]
  70. Hussain G. Rasul A. Anwar H. Aziz N. Razzaq A. Wei W. Ali M. Li J. Li X. Role of plant derived alkaloids and their mechanism in neurodegenerative disorders. Int. J. Biol. Sci. 2018 14 3 341 357 10.7150/ijbs.23247 29559851
    [Google Scholar]
  71. de Faria P.A. Bettanin F. Cunha R.L.O.R. Paredes-Gamero E.J. Homem-de-Mello P. Nantes I.L. Rodrigues T. Cytotoxicity of phenothiazine derivatives associated with mitochondrial dysfunction: a structure-activity investigation. Toxicology 2015 330 44 54 10.1016/j.tox.2015.02.004 25686698
    [Google Scholar]
  72. Amaral L. Kristiansen J.E. Viveiros M. Atouguia J. Activity of phenothiazines against antibiotic-resistant mycobacterium tuberculosis: a review supporting further studies that may elucidate the potential use of thioridazine as anti-tuberculosis therapy. J. Antimicrob. Chemother. 2001 47 5 505 511 10.1093/jac/47.5.505 11328759
    [Google Scholar]
  73. Madrid P.B. Polgar W.E. Toll L. Tanga M.J. Synthesis and antitubercular activity of phenothiazines with reduced binding to dopamine and serotonin receptors. Bioorg. Med. Chem. Lett. 2007 17 11 3014 3017 10.1016/j.bmcl.2007.03.064 17407813
    [Google Scholar]
  74. Dunn E.A. Roxburgh M. Larsen L. Smith R.A.J. McLellan A.D. Heikal A. Murphy M.P. Cook G.M. Incorporation of triphenylphosphonium functionality improves the inhibitory properties of phenothiazine derivatives in mycobacterium tuberculosis. Bioorg. Med. Chem. 2014 22 19 5320 5328 10.1016/j.bmc.2014.07.050 25150092
    [Google Scholar]
  75. Nizi M.G. Desantis J. Nakatani Y. Massari S. Mazzarella M.A. Shetye G. Sabatini S. Barreca M.L. Manfroni G. Felicetti T. Rushton-Green R. Hards K. Latacz G. Satała G. Bojarski A.J. Cecchetti V. Kolář M.H. Handzlik J. Cook G.M. Franzblau S.G. Tabarrini O. Antitubercular polyhalogenated phenothiazines and phenoselenazine with reduced binding to cns receptors. Eur. J. Med. Chem. 2020 201 112420 10.1016/j.ejmech.2020.112420 32526553
    [Google Scholar]
  76. Thierbach S. Birmes F.S. Letzel M.C. Hennecke U. Fetzner S. Chemical modification and detoxification of the pseudomonas aeruginosa toxin 2-heptyl-4-hydroxyquinoline n-oxide by environmental and pathogenic bacteria. ACS Chem. Biol. 2017 12 9 2305 2312 10.1021/acschembio.7b00345 28708374
    [Google Scholar]
  77. Sena F.V. Batista A.P. Catarino T. Brito J.A. Archer M. Viertler M. Madl T. Cabrita E.J. Pereira M.M. Type‐ II NADH :quinone oxidoreductase from S taphylococcus aureus has two distinct binding sites and is rate limited by quinone reduction. Mol. Microbiol. 2015 98 2 272 288 10.1111/mmi.13120 26172206
    [Google Scholar]
  78. Radlinski L. Rowe S.E. Kartchner L.B. Maile R. Cairns B.A. Vitko N.P. Gode C.J. Lachiewicz A.M. Wolfgang M.C. Conlon B.P. Pseudomonas aeruginosa exoproducts determine antibiotic efficacy against staphylococcus aureus. PLoS Biol. 2017 15 11 e2003981 10.1371/journal.pbio.2003981 29176757
    [Google Scholar]
  79. Fry M. Pudney M. Site of action of the antimalarial hydroxynaphthoquinone, 2-[trans-4-(4′-chlorophenyl) cyclohexyl]-3- hydroxy-1,4-naphthoquinone (566C80). Biochem. Pharmacol. 1992 43 7 1545 1553 10.1016/0006‑2952(92)90213‑3 1314606
    [Google Scholar]
  80. Nakatani Y. Shimaki Y. Dutta D. Muench S.P. Ireton K. Cook G.M. Jeuken L.J.C. Unprecedented properties of phenothiazines unraveled by a NDH-2 bioelectrochemical assay platform. J. Am. Chem. Soc. 2020 142 3 1311 1320 10.1021/jacs.9b10254 31880924
    [Google Scholar]
  81. Mo J. Si H. Liu S. Zeng Q. Cai M. Liu Z. Zhang J. Fang J. Zhang J. Effect of the pseudomonas metabolites hqno on the toxoplasma gondii rh strain in vitro and in vivo. Int. J. Parasitol. Drugs Drug Resist. 2023 21 74 80 10.1016/j.ijpddr.2023.02.001 36758272
    [Google Scholar]
  82. Lin S.S. Kerscher S. Saleh A. Brandt U. Groß U. Bohne W. The toxoplasma gondii type-II NADH dehydrogenase TgNDH2-I is inhibited by 1-hydroxy-2-alkyl-4(1H)quinolones. Biochim. Biophys. Acta Bioenerg. 2008 1777 11 1455 1462 10.1016/j.bbabio.2008.08.006
    [Google Scholar]
  83. Bajohr L.L. Ma L. Platte C. Liesenfeld O. Tietze L.F. Groß U. Bohne W. In vitro and in vivo activities of 1-hydroxy-2-alkyl-4(1H)quinolone derivatives against toxoplasma gondii. Antimicrob. Agents Chemother. 2010 54 1 517 521 10.1128/AAC.01001‑09 19884369
    [Google Scholar]
  84. Saleh A. Friesen J. Baumeister S. Gross U. Bohne W. Growth inhibition of Toxoplasma gondii and Plasmodium falciparum by nanomolar concentrations of 1-hydroxy-2-dodecyl-4(1H)quinolone, a high-affinity inhibitor of alternative (type II) NADH dehydrogenases. Antimicrob. Agents Chemother. 2007 51 4 1217 1222 10.1128/AAC.00895‑06 17242151
    [Google Scholar]
  85. Biagini G.A. Fisher N. Shone A.E. Mubaraki M.A. Srivastava A. Hill A. Antoine T. Warman A.J. Davies J. Pidathala C. Amewu R.K. Leung S.C. Sharma R. Gibbons P. Hong D.W. Pacorel B. Lawrenson A.S. Charoensutthivarakul S. Taylor L. Berger O. Mbekeani A. Stocks P.A. Nixon G.L. Chadwick J. Hemingway J. Delves M.J. Sinden R.E. Zeeman A.M. Kocken C.H.M. Berry N.G. O’Neill P.M. Ward S.A. Generation of quinolone antimalarials targeting the plasmodium falciparum mitochondrial respiratory chain for the treatment and prophylaxis of malaria. Proc. Natl. Acad. Sci. USA 2012 109 21 8298 8303 10.1073/pnas.1205651109 22566611
    [Google Scholar]
  86. Yang Y. Tang T. Li X. Michel T. Ling L. Huang Z. Mulaka M. Wu Y. Gao H. Wang L. Zhou J. Meunier B. Ke H. Jiang L. Rao Y. Design, synthesis, and biological evaluation of multiple targeting antimalarials. Acta Pharm. Sin. B 2021 11 9 2900 2913 10.1016/j.apsb.2021.05.008 34589403
    [Google Scholar]
  87. Lu L. Åkerbladh L. Ahmad S. Konda V. Cao S. Vocat A. Maes L. Cole S.T. Hughes D. Larhed M. Brandt P. Karlén A. Mowbray S.L. Synthesis and in vitro biological evaluation of quinolinyl pyrimidines targeting type II NADH-dehydrogenase (NDH-2). ACS Infect. Dis. 2022 8 3 482 498 10.1021/acsinfecdis.1c00413 35184552
    [Google Scholar]
  88. Xie T. Wu Z. Gu J. Guo R. Yan X. Duan H. Liu X. Liu W. Liang L. Wan H. Luo Y. Tang D. Shi H. Hu J. The global motion affecting electron transfer in Plasmodium falciparum type II NADH dehydrogenases: a novel non-competitive mechanism for quinoline ketone derivative inhibitors. Phys. Chem. Chem. Phys. 2019 21 33 18105 18118 10.1039/C9CP02645B 31396604
    [Google Scholar]
  89. Cao Y. Sun C. Wen H. Wang M. Zhu P. Zhong M. Li J. Chen X. Tang Y. Wang J. Zhou B. A yeast-based drug discovery platform to identify plasmodium falciparum type ii NADH dehydrogenase inhibitors. 2021 6 36 10.1128/AAC.02470‑20 33722883
    [Google Scholar]
  90. Shirude P.S. Paul B. Roy Choudhury N. Kedari C. Bandodkar B. Ugarkar B.G. Quinolinyl pyrimidines: potent inhibitors of NDH-2 as a novel class of anti-TB agents. ACS Med. Chem. Lett. 2012 3 9 736 740 10.1021/ml300134b 24900541
    [Google Scholar]
  91. Myers A.G. Clark R.B. Discovery of macrolide antibiotics effective against multi-drug resistant gram-negative pathogens. Acc. Chem. Res. 2021 54 7 1635 1645 10.1021/acs.accounts.1c00020 33691070
    [Google Scholar]
  92. Mogi T. Matsushita K. Murase Y. Kawahara K. Miyoshi H. Ui H. Shiomi K. Omura S. Kita K. Identification of new inhibitors for alternative NADH dehydrogenase (NDH-II). FEMS Microbiol. Lett. 2009 291 2 157 161 10.1111/j.1574‑6968.2008.01451.x 19076229
    [Google Scholar]
  93. Yamashita T. Nakamaru-Ogiso E. Miyoshi H. Matsuno-Yagi A. Yagi T. Roles of bound quinone in the single subunit NADH-quinone oxidoreductase (Ndi1) from Saccharomyces cerevisiae. J. Biol. Chem. 2007 282 9 6012 6020 10.1074/jbc.M610646200 17200125
    [Google Scholar]
  94. Lechartier B. Cole S.T. Mode of action of clofazimine and combination therapy with benzothiazinones against mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2015 59 8 4457 4463 10.1128/AAC.00395‑15 25987624
    [Google Scholar]
  95. Grosset J.H. Tyagi S. Almeida D.V. Converse P.J. Li S.Y. Ammerman N.C. Bishai W.R. Enarson D. Trébucq A. Assessment of clofazimine activity in a second-line regimen for tuberculosis in mice. Am. J. Respir. Crit. Care Med. 2013 188 5 608 612 10.1164/rccm.201304‑0753OC 23822735
    [Google Scholar]
  96. Yano T. Kassovska-Bratinova S. Teh J.S. Winkler J. Sullivan K. Isaacs A. Schechter N.M. Rubin H. Reduction of clofazimine by mycobacterial type 2 NADH:quinone oxidoreductase: a pathway for the generation of bactericidal levels of reactive oxygen species. J. Biol. Chem. 2011 286 12 10276 10287 10.1074/jbc.M110.200501 21193400
    [Google Scholar]
  97. Lamprecht D.A. Finin P.M. Rahman M.A. Cumming B.M. Russell S.L. Jonnala S.R. Adamson J.H. Steyn A.J.C. Turning the respiratory flexibility of mycobacterium tuberculosis against itself. Nat. Commun. 2016 7 1 12393 10.1038/ncomms12393 27506290
    [Google Scholar]
  98. Zhang D. Lu Y. Liu K. Liu B. Wang J. Zhang G. Zhang H. Liu Y. Wang B. Zheng M. Fu L. Hou Y. Gong N. Lv Y. Li C. Cooper C.B. Upton A.M. Yin D. Ma Z. Huang H. Identification of less lipophilic riminophenazine derivatives for the treatment of drug-resistant tuberculosis. J. Med. Chem. 2012 55 19 8409 8417 10.1021/jm300828h 22931472
    [Google Scholar]
  99. Li Q. Lu X. New antituberculosis drugs targeting the respiratory chain. Chin. Chem. Lett. 2020 31 6 1357 1365 10.1016/j.cclet.2020.04.007
    [Google Scholar]
  100. Ding Y. Zhu H. Fu L. Zhang W. Wang B. Guo S. Chen X. Wang N. Liu H. Lu Y. Superior efficacy of a TBI-166, bedaquiline, and pyrazinamide combination regimen in a murine model of tuberculosis. Antimicrob. Agents Chemother. 2022 66 9 e00658-22 10.1128/aac.00658‑22 35924925
    [Google Scholar]
  101. Zhu H. Fu L. Wang B. Chen X. Zhao J. Huang H. Lu Y. Activity of clofazimine and TBI-166 against mycobacterium tuberculosis in different administration intervals in mouse tuberculosis models Antimicrob. Agents Chemother. 2021 4 65 10.1128/AAC.02164‑20 33431417
    [Google Scholar]
  102. Nandi S. Saxena M. Saxena A.K. Important Targets and Inhibitors of Mycobacterium tuberculosis. Tuberculosis: Integrated Studies for a Complex Disease. Cham Springer 2023 429 457 10.1007/978‑3‑031‑15955‑8_21
    [Google Scholar]
  103. Stevanović S. Perdih A. Senćanski M. Glišić S. Duarte M. Tomás A. Sena F. Sousa F. Pereira M. Solmajer T. In silico discovery of a substituted 6-methoxy-quinalidine with leishmanicidal activity in leishmania infantum. Molecules 2018 23 4 772 10.3390/molecules23040772 29584709
    [Google Scholar]
  104. Cha J.-D. Lee J.-H. Choi K.M. Cha S.C. Park J.H. Synergistic effect between cryptotanshinone and antibiotics against clinic methicillin and vancomycin-resistant Staphylococcus aureus. Evid. Based. Complement. Alternat. Med. 2014 10.1155/2014/450572 24782909
    [Google Scholar]
  105. Barbieri R. Coppo E. Marchese A. Daglia M. Sobarzo-Sánchez E. Nabavi S.F. Nabavi S.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res. 2017 196 44 68 10.1016/j.micres.2016.12.003 28164790
    [Google Scholar]
  106. Teng Z. Li M. Shi D. Deng X. Wang J. Synergistic interactions of cryptotanshinone and aminoglycoside antibiotics against staphylococcus aureus in vitro. J. Glob. Antimicrob. Resist. 2018 13 264 265 10.1016/j.jgar.2018.05.013 29807203
    [Google Scholar]
  107. Baker S. Advances in the discovery of acne and rosacea treatments. 2007 236 241 10.1016/B0‑08‑045044‑X/00236‑4
    [Google Scholar]
  108. Zhou Y.-X. Xia W. Yue W. Peng C. Rahman K. Zhang H. Rhein: a review of pharmacological activities. Evid. Based. Complement. Alternat. Med. 2015 10.1155/2015/578107 26185519
    [Google Scholar]
  109. Chung J.G. Rhein affects arylamine N‐acetyltransferase activity in Helicobacter pylori from peptic ulcer patients. Journal of Applied Toxicology: An International Forum Devoted to Research and Methods Emphasizing Direct Clinical, Industrial and Environmental Applications. New York Wiley Online Library 1998
    [Google Scholar]
  110. Vilchèze C. Weinrick B. Leung L.W. Jacobs W.R. Jr Plasticity of Mycobacterium tuberculosis NADH dehydrogenases and their role in virulence. Proc. Natl. Acad. Sci. USA 2018 115 7 1599 1604 10.1073/pnas.1721545115 29382761
    [Google Scholar]
  111. Nguyen A.T. Kim K. Rhein inhibits the growth of Propionibacterium acnes by blocking NADH dehydrogenase-2 activity. J. Med. Microbiol. 2020 69 5 689 696 10.1099/jmm.0.001196 32375980
    [Google Scholar]
  112. Chen B.C. Ding Z.S. Dai J.S. Chen N.P. Gong X.W. Ma L.F. Qian C.D. New insights into the antibacterial mechanism of Cryptotanshinone, a representative diterpenoid quinone from Salvia miltiorrhiza bunge. Front. Microbiol. 2021 12 647289 10.3389/fmicb.2021.647289 33717044
    [Google Scholar]
  113. Xue Y.P. Kao M.C. Lan C.Y. Novel mitochondrial complex I-inhibiting peptides restrain NADH dehydrogenase activity. Sci. Rep. 2019 9 1 13694 10.1038/s41598‑019‑50114‑2 31548559
    [Google Scholar]
  114. Kaur G. A medicinal chemistry approach to drug repositioning in the treatment of tuberculosis and malaria. Doctoral Thesis University of Cape Town. 2016
    [Google Scholar]
  115. Vallières C. Fisher N. Antoine T. Al-Helal M. Stocks P. Berry N.G. Lawrenson A.S. Ward S.A. O’Neill P.M. Biagini G.A. Meunier B. HDQ, a potent inhibitor of plasmodium falciparum proliferation, binds to the quinone reduction site of the cytochrome bc1 complex. Antimicrob. Agents Chemother. 2012 56 7 3739 3747 10.1128/AAC.00486‑12 22547613
    [Google Scholar]
  116. Kawahara K. Mogi T. Tanaka T.Q. Hata M. Miyoshi H. Kita K. Mitochondrial dehydrogenases in the aerobic respiratory chain of the rodent malaria parasite plasmodium yoelii yoelii. J. Biochem. 2008 145 2 229 237 10.1093/jb/mvn161 19060309
    [Google Scholar]
  117. Mounkoro P. Michel T. Benhachemi R. Surpateanu G. Iorga B.I. Fisher N. Meunier B. Mitochondrial complex III Q i ‐site inhibitor resistance mutations found in laboratory selected mutants and field isolates. Pest Manag. Sci. 2019 75 8 2107 2114 10.1002/ps.5264 30426681
    [Google Scholar]
  118. Vallières C. Fisher N. Antoine T. Al-Helal M. Stocks P. Berry N.G. Lawrenson A.S. Ward S.A. O'Neill P.M. Biagini G.A. Meunier B. HDQ, a potent inhibitor of plasmodium falciparum proliferation, binds to the quinone reduction site of the cytochrome bc1 complex. 2012 56 7 3739 3747 148948 10.1128/AAC.00486‑12 22547613
    [Google Scholar]
  119. Lawrenson A. Antimalarial drug design: Targeting the plasmodium falciparum cytochrome bc1 complex through computational modelling, chemical synthesis and biological testing. Liverpool, UK University of Liverpool 2012 1864 2 148948 10.17638/00007719
    [Google Scholar]
  120. Sousa F.M. Pires P. Barreto A. Refojo P.N. Silva M.S. Fernandes P.B. Carapeto A.P. Robalo T.T. Rodrigues M.S. Pinho M.G. Cabrita E.J. Pereira M.M. Unveiling the membrane bound dihydroorotate: quinone oxidoreductase from Staphylococcus aureus. Biochim. Biophys. Acta Bioenerg. 2023 1864 2 148948 10.1016/j.bbabio.2022.148948 36481274
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037350396250213115109
Loading
/content/journals/cpps/10.2174/0113892037350396250213115109
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: inhibition mechanism ; Mitochondria ; NDH-2 ; inhibitor ; molecular design
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test