Skip to content
2000
image of Network Pharmacology and Experiments to Verify the Effect and Potential Mechanism of Baicalein on Osteoporosis

Abstract

Background

Baicalein (BN), a potent flavonoid derived from scutellaria scutellaria, exhibits an array of noteworthy attributes, such as anti-inflammatory, antibacterial, and antipyretic properties. Furthermore, its potential in treating osteoporosis has been highlighted. Nonetheless, the exact modes of action responsible for its therapeutic effects remain obscure. Hence, this study aims to elucidate the improvement effect of BN on OVX rats and explore its potential mechanism of action in treating osteoporosis through a comprehensive strategy that integrates network pharmacology and rigorous animal experiments.

Methods

The potential protein targets and OP disease targets in BN are analyzed using the protein database. The protein interaction diagram is constructed by Cytoscape3.7.2 software, and binding energy is used to evaluate the binding activity between BN and core targets, and some key genes are verified by protein experiments.

Results

Topology analysis and prediction reveal that osteoporosis (OP) is associated with more than ten core target proteins. Notably, NAD-dependent deacetylase sirtuin 1 (SIRT1), Androgen Receptor (AR), Estrogen Receptor beta (ESR1), and Cyclooxygenase-2 (PTGS2) emerge as pivotal proteins in the treatment of osteoporosis with BN. The biological process underlying BN treatment of osteoporosis primarily involves the regulation of sex hormone levels, autophagy, inflammatory response, and reactive oxygen metabolism. Moreover, the signaling pathways involved are predominantly the PI3K-Akt pathway, AMPK pathway, and estrogen signaling pathway. Subsequent animal experiments corroborate these findings by demonstrating that BN significantly enhances the expression levels of SIRT1, AR, and ESR1 in tissues, while concurrently reducing the protein expression of PTGS2. This multifaceted approach ultimately achieves the desired therapeutic outcome of osteoporosis treatment.

Conclusion

In summary, this study has validated the therapeutic effect of BN on OP and analyzed multiple potential therapeutic targets of BN for osteoporosis, which provides new ideas for further clinical treatment and experimental research of BN.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037353878250212053910
2025-03-18
2025-05-17
Loading full text...

Full text loading...

References

  1. Sasser A.C. Taylor M. Birnbaum H.G. Schoenfeld M.J. Oster E.F. Rousculp M. Assessing the economic impact of chronic conditions in postmenopausal women. Expert Opin. Pharmacother. 2005 6 11 1803 1814 10.1517/14656566.6.11.1803 16144502
    [Google Scholar]
  2. Li J. Wang W. Feng G. Du J. Kang S. Li Z. Zhu W. Shang H. Efficacy and safety of duhuo jisheng decoction for Postmenopausal osteoporosis: A systematic review and meta-analysis. Evid. Based Complement. Alternat. Med. 2020 2020 1 6957825 10.1155/2020/6957825 33014108
    [Google Scholar]
  3. Zhang, Y.; You, R.X.; Zhang, C.; et al. Expert consensus on rational use of anti-osteoporosis agents(2023) [J]. Chinese J. Hosp. Pharm., 2024, 44(09): 985-1006.
  4. Shoback D. Rosen C.J. Black D.M. Cheung A.M. Murad M.H. Eastell R. Pharmacological management of osteoporosis in postmenopausal women: An endocrine society guideline update. J. Clin. Endocrinol. Metab. 2020 105 3 587 594 10.1210/clinem/dgaa048 32068863
    [Google Scholar]
  5. Brown J.P. Antiresorptives: Safety concerns—clinical perspective. Toxicol. Pathol. 2017 45 7 859 863 10.1177/0192623317737066 29065818
    [Google Scholar]
  6. Zhang Y. Jiang J. Shen H. Chai Y. Wei X. Xie Y. Total flavonoids from Rhizoma Drynariae (Gusuibu) for treating osteoporotic fractures: Implication in clinical practice. Drug Des. Devel. Ther. 2017 11 1881 1890 10.2147/DDDT.S139804 28694688
    [Google Scholar]
  7. Huang X. Zhou Z. Zheng Y. Fan G. Ni B. Liu M. Zhao M. Zeng L. Wang W. Network pharmacological study on mechanism of the therapeutic effect of modified duhuo jisheng decoction in osteoporosis. Front. Endocrinol. 2022 13 860649 10.3389/fendo.2022.860649 35432213
    [Google Scholar]
  8. Li C. Lin X. Lin Q. Lin Y. Lin H. Jiangu granules ameliorate postmenopausal osteoporosis via rectifying bone homeostasis imbalance: A network pharmacology analysis based on multi-omics validation. Phytomedicine 2024 122 155137 10.1016/j.phymed.2023.155137 37856991
    [Google Scholar]
  9. Luo T. Lu Y. Yan S. Xiao X. Rong X. Guo J. Network pharmacology in research of chinese medicine formula: Methodology, application and prospective. Chin. J. Integr. Med. 2020 26 1 72 80 10.1007/s11655‑019‑3064‑0 30941682
    [Google Scholar]
  10. Liang G. Zhao J. Dou Y. Yang Y. Zhao D. Zhou Z. Zhang R. Yang W. Zeng L. Mechanism and experimental verification of Luteolin for the treatment of osteoporosis based on network pharmacology. Front. Endocrinol. 2022 13 866641 10.3389/fendo.2022.866641 35355555
    [Google Scholar]
  11. Xie L. Song X. Lei L. Chen C. Zhao H. Hu J. Yu Y. Bai X. Wu X. Li X. Yang X. Yuan B. Li D. Zhu X. Zhang X. Exploring the potential mechanism of Heng-Gu-Gu-Shang-Yu-He-Ji therapy for osteoporosis based on network pharmacology and transcriptomics. J. Ethnopharmacol. 2024 321 117480 10.1016/j.jep.2023.117480 37995823
    [Google Scholar]
  12. Zhang B. Qu Z. Hui H. He B. Wang D. Zhang Y. Zhao Y. Zhang J. Yan L. Exploring the therapeutic potential of isoorientin in the treatment of osteoporosis: A study using network pharmacology and experimental validation. Mol. Med. 2024 30 1 27 10.1186/s10020‑024‑00799‑7 38378457
    [Google Scholar]
  13. Srinivas N.R. Baicalin, an emerging multi-therapeutic agent: Pharmacodynamics, pharmacokinetics, and considerations from drug development perspectives. Xenobiotica 2010 40 5 357 367 10.3109/00498251003663724 20230189
    [Google Scholar]
  14. Li H. Jiang Y. Chen F. Separation methods used for Scutellaria baicalensis active components. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2004 812 1-2 277 290 10.1016/S1570‑0232(04)00545‑8 15556504
    [Google Scholar]
  15. Pandey M.K. Sung B. Ahn K.S. Kunnumakkara A.B. Chaturvedi M.M. Aggarwal B.B. Gambogic acid, a novel ligand for transferrin receptor, potentiates TNF-induced apoptosis through modulation of the nuclear factor-κB signaling pathway. Blood 2007 110 10 3517 3525 10.1182/blood‑2007‑03‑079616 17673602
    [Google Scholar]
  16. Yang S. Wang H. Yang Y. Wang R. Wang Y. Wu C. Du G. Baicalein administered in the subacute phase ameliorates ischemia-reperfusion-induced brain injury by reducing neuroinflammation and neuronal damage. Biomed. Pharmacother. 2019 117 109102 10.1016/j.biopha.2019.109102 31228802
    [Google Scholar]
  17. Kim J.M. Lee S.U. Kim Y.S. Min Y.K. Kim S.H. Baicalein stimulates osteoblast differentiation via coordinating activation of MAP kinases and transcription factors. J. Cell. Biochem. 2008 104 5 1906 1917 10.1002/jcb.21760 18384125
    [Google Scholar]
  18. Kim M.H. Ryu S.Y. Bae M.A. Choi J.S. Min Y.K. Kim S.H. Baicalein inhibits osteoclast differentiation and induces mature osteoclast apoptosis. Food Chem. Toxicol. 2008 46 11 3375 3382 10.1016/j.fct.2008.08.016 18786594
    [Google Scholar]
  19. Li S.F. Tang J.J. Chen J. Zhang P. Wang T. Chen T.Y. Yan B. Huang B. Wang L. Huang M.J. Zhang Z.M. Jin D.D. Regulation of bone formation by baicalein via the mTORC1 pathway. Drug Des. Devel. Ther. 2015 9 5169 5183 26392752
    [Google Scholar]
  20. Cai P. Lu Y. Yin Z. Wang X. Zhou X. Li Z. Baicalein ameliorates osteoporosis via AKT/FOXO1 signaling. Aging 2021 13 13 17370 17379 10.18632/aging.203227 34198266
    [Google Scholar]
  21. Huang D.W. Sherman B.T. Lempicki R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009 37 1 1 13 10.1093/nar/gkn923 19033363
    [Google Scholar]
  22. Huang D.W. Sherman B.T. Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009 4 1 44 57 10.1038/nprot.2008.211 19131956
    [Google Scholar]
  23. Burley S.K. Berman H.M. Kleywegt G.J. Markley J.L. Nakamura H. Velankar S. Protein data bank (PDB): The single global macromolecular structure archive. Methods Mol. Biol. 2017 1607 627 641 10.1007/978‑1‑4939‑7000‑1_26 28573592
    [Google Scholar]
  24. Saul D. Gleitz S. Nguyen H.H. Kosinsky R.L. Sehmisch S. Hoffmann D.B. Wassmann M. Menger B. Komrakova M. Effect of the lipoxygenase-inhibitors baicalein and zileuton on the vertebra in ovariectomized rats. Bone 2017 101 134 144 10.1016/j.bone.2017.04.011 28455215
    [Google Scholar]
  25. Tang Y. Li M. Wang J. Pan Y. Wu F.X. CytoNCA: A cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems 2015 127 67 72 10.1016/j.biosystems.2014.11.005 25451770
    [Google Scholar]
  26. Li J. Fu A. Zhang L. An overview of scoring functions used for protein–ligand interactions in molecular docking. Interdiscip. Sci. 2019 11 2 320 328 10.1007/s12539‑019‑00327‑w 30877639
    [Google Scholar]
  27. Li B. Rui J. Ding X. Yang X. Exploring the multicomponent synergy mechanism of Banxia Xiexin Decoction on irritable bowel syndrome by a systems pharmacology strategy. J. Ethnopharmacol. 2019 233 158 168 10.1016/j.jep.2018.12.033 30590198
    [Google Scholar]
  28. Pérez-Lozano M.L. Cesaro A. Mazor M. Esteve E. Berteina-Raboin S. Best T.M. Lespessailles E. Toumi H. Emerging natural-product-based treatments for the management of osteoarthritis. Antioxidants 2021 10 2 265 10.3390/antiox10020265 33572126
    [Google Scholar]
  29. Phromnoi K. Yodkeeree S. Pintha K. Mapoung S. Suttajit M. Saenjum C. Dejkriengkraikul P. Anti-osteoporosis effect of Perilla frutescens leaf hexane fraction through regulating osteoclast and osteoblast differentiation. Molecules 2022 27 3 824 10.3390/molecules27030824 35164085
    [Google Scholar]
  30. Fu F.S. Ding J.X. Shao S.Y. Baicalein inhibits RANKL-induced osteoclast differentiation and function. J. Jinzhou Med. Univ. 2019 40 02 18 20
    [Google Scholar]
  31. Guo, B.Q. Effect of baicalein on erastin-induced iron death in osteoblasts and the potential mechanism [D]. Nanjing University of Traditional Chinese Medicine, 2021.
  32. Chen G.F. Shang Q. Li J.M. Experimental study on the role of baicalein in promoting MC3T3-E1 osteogenesis through BMP-2/Smad pathway. Z Red Fruit GU's Shu Send Za Value 2022 28 10 1442 1447
    [Google Scholar]
  33. Wiren K.M. Chapman Evans A. Zhang X.W. Osteoblast differentiation influences androgen and estrogen receptor-alpha and -beta expression. J. Endocrinol. 2002 175 3 683 694 10.1677/joe.0.1750683 12475379
    [Google Scholar]
  34. Sinnesael M. Claessens F. Laurent M. Dubois V. Boonen S. Deboel L. Vanderschueren D. Androgen receptor (AR) in osteocytes is important for the maintenance of male skeletal integrity: Evidence from targeted AR disruption in mouse osteocytes. J. Bone Miner. Res. 2012 27 12 2535 2543 10.1002/jbmr.1713 22836391
    [Google Scholar]
  35. Noble B. Routledge J. Stevens H. Hughes I. Jacobson W. Androgen receptors in bone-forming tissue. Horm. Res. 1999 51 1 31 36 10095167
    [Google Scholar]
  36. Noirrit-Esclassan E. Valera M-C. Tremollieres F. Arnal J-F. Lenfant F. Fontaine C. Vinel A. Critical role of estrogens on bone homeostasis in both male and female: From physiology to medical implications. Int. J. Mol. Sci. 2021 22 4 1568 10.3390/ijms22041568 33557249
    [Google Scholar]
  37. Park H.J. Gholam-Zadeh M. Yoon S.Y. Suh J.H. Choi H.S. Estrogen decreases cytoskeletal organization by forming an ERα/SHP2/c-Src complex in osteoclasts to protect against ovariectomy-induced bone loss in mice. Antioxidants 2021 10 4 619 10.3390/antiox10040619 33920630
    [Google Scholar]
  38. Jin C. Tan K. Yao Z. Lin B. Zhang D. Chen W.K. Mao S. Zhang W. Chen L. Lin Z. Weng S. Bai B. Zheng W. Zheng G. Wu Z. Yang L. A novel anti-osteoporosis mechanism of VK2: Interfering with ferroptosis via AMPK/SIRT1 pathway in type 2 diabetic osteoporosis. J. Agric. Food Chem. 2023 71 6 2745 2761 10.1021/acs.jafc.2c05632 36719855
    [Google Scholar]
  39. Luo B. Yang J.F. Wang Y.H. Qu G.B. Hao P.D. Zeng Z.J. Yuan J. Yang R. Yuan Y. MicroRNA-579-3p promotes the progression of osteoporosis by inhibiting osteogenic differentiation of mesenchymal stem cells through regulating Sirt1. Eur. Rev. Med. Pharmacol. Sci. 2019 23 16 6791 6799 31486477
    [Google Scholar]
  40. Jiang Y. Luo W. Wang B. Wang X. Gong P. Xiong Y. Resveratrol promotes osteogenesis via activating SIRT1/FoxO1 pathway in osteoporosis mice. Life Sci. 2020 246 117422 10.1016/j.lfs.2020.117422 32057903
    [Google Scholar]
  41. Liu W. Jiang Z. Chen Y. Xiao P. Wang Z. Huang T. Liu E. Network pharmacology approach to elucidate possible action mechanisms of Sinomenii Caulis for treating osteoporosis. J. Ethnopharmacol. 2020 257 112871 10.1016/j.jep.2020.112871 32325182
    [Google Scholar]
  42. Wu C.C. Chen Y.R. Lu D.H. Hsu L.H. Yang K.C. Sumi S. Evaluation of the post-treatment anti-inflammatory capacity of osteoarthritic chondrocytes: An in vitro study using baicalein. Regen. Ther. 2020 14 177 183 10.1016/j.reth.2020.02.002 32128354
    [Google Scholar]
  43. Mao T. Li M.Q. Cheng X.R. NEAT1 inhibits osteoporosis through the PI3K/AKT/Bcl-2 signaling pathway. Genomics Appl. Med. 2020 39 02 758 762
    [Google Scholar]
  44. Wang X.Y. Gong L.J. Huang J.M. Jiang C. Yan Z.Q. Pinocembrin alleviates glucocorticoid-induced apoptosis by activating autophagy via suppressing the PI3K/Akt/mTOR pathway in osteocytes. Eur. J. Pharmacol. 2020 880 173212 10.1016/j.ejphar.2020.173212 32470335
    [Google Scholar]
  45. Zhao P. Xiao L. Peng J. Qian Y.Q. Huang C.C. Exosomes derived from bone marrow mesenchymal stem cells improve osteoporosis through promoting osteoblast proliferation via MAPK pathway. Eur. Rev. Med. Pharmacol. Sci. 2018 22 12 3962 3970 29949171
    [Google Scholar]
  46. Pang T. Gong M. Han J. Liu D. Relationship between osteoporosis and expression of Bcl-2 and CXCL12. Exp. Ther. Med. 2018 15 2 1293 1297 29434715
    [Google Scholar]
  47. Cao P Zhang Y S Wei X M Research progress on antioxidant mechanism of baicalin. West. J. Chin. Med. 2021 34 2 134 137
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037353878250212053910
Loading
/content/journals/cpps/10.2174/0113892037353878250212053910
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test