Skip to content
2000
image of Engineered Anti-Microbial Peptides Inhibit Cell Viability, Promote Apoptosis, and Induce Cell Cycle Arrest in SW620 Human Colon Adenocarcinoma Cells

Abstract

Background

Colorectal cancer (CRC) is one of the most common malignancies worldwide, and despite advances in treatment, there remains a critical need for novel therapeutic approaches. Recently, anti-microbial peptides (AMPs) have gained attention for their potential use in cancer therapy due to their selective cytotoxicity towards cancer cells.

Objective

This study aims to evaluate the anti-cancer potential of two computationally engineered anti-microbial peptides (EAMPs) in SW620, SW480, and HCT116 colon cancer cells and the normal colon epithelial cell line CCD 841, focusing on their effects on cell proliferation, apoptosis, and DNA damage.

Method

Cell proliferation and survival were measured using the CellTiter-Glo Luminescence and clonogenic assays. DNA damage was assessed through the Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Flow cytometry was used to examine cell apoptosis, cell cycle distribution, and mitochondrial membrane potential in SW620 cells.

Results

EAMPs inhibited CRC cell proliferation in a dose-dependent manner, with minimal toxicity observed in normal colon epithelial cells. In SW620 cells, EAMPs induced DNA damage, resulting in cell cycle arrest at the S/G2 phase, apoptosis, and a reduction in mitochondrial membrane potential. The proliferation results were confirmed in SW480 and HCT116 CRC cell lines.

Conclusion

Our findings revealed that EAMPs exhibited significant anti-cancer activity against CRC cells while sparing normal epithelial cells. These results suggest that EAMPs may offer a potential therapeutic approach for colorectal cancer and warrant further investigation.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037363898250110053529
2025-02-11
2025-05-04
Loading full text...

Full text loading...

References

  1. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  2. Morgan E. Arnold M. Gini A. Lorenzoni V. Cabasag C.J. Laversanne M. Vignat J. Ferlay J. Murphy N. Bray F. Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN. Gut 2023 72 2 338 344 10.1136/gutjnl‑2022‑327736 36604116
    [Google Scholar]
  3. Brenner D.R. Heer E. Sutherland R.L. Ruan Y. Tinmouth J. Heitman S.J. Hilsden R.J. National trends in colorectal cancer incidence among older and younger adults in Canada. JAMA Netw. Open 2019 2 7 e198090 10.1001/jamanetworkopen.2019.8090 31365108
    [Google Scholar]
  4. Xi Y. Xu P. Global colorectal cancer burden in 2020 and projections to 2040. Transl. Oncol. 2021 14 10 101174 10.1016/j.tranon.2021.101174 34243011
    [Google Scholar]
  5. Myer P.A. Lee J.K. Madison R.W. Pradhan K. Newberg J.Y. Isasi C.R. Klempner S.J. Frampton G.M. Ross J.S. Venstrom J.M. Schrock A.B. Das S. Augenlicht L. Verma A. Greally J.M. Raj S.M. Goel S. Ali S.M. The genomics of colorectal cancer in populations with African and European ancestry. Cancer Discov. 2022 12 5 1282 1293 10.1158/2159‑8290.CD‑21‑0813 35176763
    [Google Scholar]
  6. Sousa-Squiavinato A.C.M. Arregui Ramos D.A. Wagner M.S. Tessmann J.W. de-Freitas-Junior J.C.M. Morgado-Díaz J.A. Long-term resistance to 5-fluorouracil promotes epithelial–mesenchymal transition, apoptosis evasion, autophagy, and reduced proliferation rate in colon cancer cells. Eur. J. Pharmacol. 2022 933 175253 10.1016/j.ejphar.2022.175253 36067803
    [Google Scholar]
  7. Zhao Z. Yang Y. Liu W. Li Z. T59, a new compound reconstructed from curcumin, induces cell apoptosis through reactive oxygen species activation in human lung cancer cells. Molecules 2018 23 6 1251 10.3390/molecules23061251 29882920
    [Google Scholar]
  8. Eng C. Rogers J.E. Current synthetic pharmacotherapy for treatment-resistant colorectal cancer: When urgent action is required. Expert Opin. Pharmacother. 2019 20 5 523 534 10.1080/14656566.2018.1561866 30590946
    [Google Scholar]
  9. Hernandez Dominguez O. Yilmaz S. Steele S.R. Stage IV colorectal cancer management and treatment. J. Clin. Med. 2023 12 5 2072 10.3390/jcm12052072 36902858
    [Google Scholar]
  10. Gatti L. Zunino F. Overview of tumor cell chemoresistance mechanisms. Methods Mol. Med. 2005 111 127 148 15911977
    [Google Scholar]
  11. Al Bitar S. El-Sabban M. Doughan S. Abou-Kheir W. Molecular mechanisms targeting drug-resistance and metastasis in colorectal cancer: Updates and beyond. World J. Gastroenterol. 2023 29 9 1395 1426 10.3748/wjg.v29.i9.1395 36998426
    [Google Scholar]
  12. Fares Amer N. Luzzatto Knaan T. Natural products of marine origin for the treatment of colorectal and pancreatic cancers: Mechanisms and potential. Int. J. Mol. Sci. 2022 23 14 8048 10.3390/ijms23148048 35887399
    [Google Scholar]
  13. Baindara P. Mandal S.M. Bacteria and bacterial anticancer agents as a promising alternative for cancer therapeutics. Biochimie 2020 177 164 189 10.1016/j.biochi.2020.07.020 32827604
    [Google Scholar]
  14. Chauhan S. Dhawan D.K. Saini A. Preet S. Antimicrobial peptides against colorectal cancer-a focused review. Pharmacol. Res. 2021 167 105529 10.1016/j.phrs.2021.105529 33675962
    [Google Scholar]
  15. Ye G. Wu H. Huang J. Wang W. Ge K. Li G. Zhong J. Huang Q. LAMP2: A major update of the database linking antimicrobial peptides. Database (Oxford) 2020 2020 baaa061 10.1093/database/baaa061 32844169
    [Google Scholar]
  16. Zupin L. Santos-Silva C.A. Al Mughrbi A.R.H. Vilela L.M.B. Benko-Iseppon A.M. Crovella S. Bioactive anti-microbial peptides: A new weapon to counteract zoonosis. Microorganisms 2022 10 8 1591 10.3390/microorganisms10081591 36014009
    [Google Scholar]
  17. Thapa R.K. Diep D.B. Tønnesen H.H. Topical antimicrobial peptide formulations for wound healing: Current developments and future prospects. Acta Biomater. 2020 103 52 67 10.1016/j.actbio.2019.12.025 31874224
    [Google Scholar]
  18. Haney E.F. Mansour S.C. Hilchie A.L. de la Fuente-Núñez C. Hancock R.E.W. High throughput screening methods for assessing antibiofilm and immunomodulatory activities of synthetic peptides. Peptides 2015 71 276 285 10.1016/j.peptides.2015.03.015 25836992
    [Google Scholar]
  19. Lu F. Zhu Y. Zhang G. Liu Z. Renovation as innovation: Repurposing human antibacterial peptide LL-37 for cancer therapy. Front. Pharmacol. 2022 13 944147 10.3389/fphar.2022.944147 36081952
    [Google Scholar]
  20. Saleh R.O. Essia I.N.A. Jasim S.A. The anti-cancer effect of a conjugated anti-microbial peptide against colorectal cancer (CRC) cells. J. Gastrointest. Cancer 2023 54 1 165 170 10.1007/s12029‑021‑00799‑4 35217999
    [Google Scholar]
  21. Wei P.L. Lin J.C. Hung C.S. Makondi P.T. Batzorig U. Chang T.C. Huang C.Y. Chang Y.J. Human α-defensin 6 (HD6) suppresses CRC proliferation and metastasis through abolished EGF/EGFR signaling pathway. Int. J. Med. Sci. 2022 19 1 34 46 10.7150/ijms.64850 34975297
    [Google Scholar]
  22. Jafari A. Babajani A. Sarrami Forooshani R. Yazdani M. Rezaei-Tavirani M. Clinical applications and anti-cancer effects of anti-microbial peptides: From bench to bedside. Front. Oncol. 2022 12 819563 10.3389/fonc.2022.819563 35280755
    [Google Scholar]
  23. Avilés-Gaxiola S. Gutiérrez-Grijalva E.P. León-Felix J. Angulo-Escalante M.A. Heredia J.B. Peptides in colorectal cancer: Current state of knowledge. Plant Foods Hum. Nutr. 2020 75 4 467 476 10.1007/s11130‑020‑00856‑6 32964320
    [Google Scholar]
  24. Maijaroen S. Klaynongsruang S. Roytrakul S. Konkchaiyaphum M. Taemaitree L. Jangpromma N. An integrated proteomics and bioinformatics analysis of the anti-cancer properties of RT2 anti-microbial peptide on human colon cancer (Caco-2) cells. Molecules 2022 27 4 1426 10.3390/molecules27041426 35209215
    [Google Scholar]
  25. Al Kashgry N.A.T. Abulreesh H.H. El-Sheikh I.A. Almaroai Y.A. Salem R. Mohamed I. Waly F.R. Osman G. Mohamed M.S.M. Utilization of a recombinant defensin from Maize (Zea mays L.) as a potential antimicrobial peptide. AMB Express 2020 10 1 208 10.1186/s13568‑020‑01146‑9 33237335
    [Google Scholar]
  26. González-Montiel G.A. Kaweesa E.N. Feau N. Hamelin R.C. Stone J.K. Loesgen S. Chemical, bioactivity, and biosynthetic screening of epiphytic fungus Zasmidium pseudotsugae. Molecules 2020 25 10 2358 10.3390/molecules25102358 32438585
    [Google Scholar]
  27. Waghu F.H. Idicula-Thomas S. Collection of antimicrobial peptides database and its derivatives: Applications and beyond. Protein Sci. 2020 29 1 36 42 10.1002/pro.3714 31441165
    [Google Scholar]
  28. Zhang K. Teng D. Mao R. Yang N. Hao Y. Wang J. Thinking on the construction of anti-microbial peptide databases: Powerful tools for the molecular design and screening. Int. J. Mol. Sci. 2023 24 4 3134 10.3390/ijms24043134 36834553
    [Google Scholar]
  29. UniProt Consortium UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019 47 D1 D506 D515 10.1093/nar/gky1049 30395287
    [Google Scholar]
  30. Sievers F. Wilm A. Dineen D. Gibson T.J. Karplus K. Li W. Lopez R. McWilliam H. Remmert M. Söding J. Thompson J.D. Higgins D.G. Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011 7 1 539 10.1038/msb.2011.75 21988835
    [Google Scholar]
  31. Beaufils C. Hernandez J.F. Rodriguez M. Rational design of antimicrobial peptides: Current advances and limitations. Appl. Microbiol. Biotechnol. 2012 96 6 1381 1395
    [Google Scholar]
  32. Abraham M.J. Murtola T. Schulz R. Páll S. Smith J.C. Hess B. Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015 1-2 19 25 10.1016/j.softx.2015.06.001
    [Google Scholar]
  33. Berendsen H.J.C. van der Spoel D. van Drunen R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 1995 91 1-3 43 56 10.1016/0010‑4655(95)00042‑E
    [Google Scholar]
  34. Oostenbrink C. Soares T.A. van der Vegt N.F.A. van Gunsteren W.F. Validation of the 53A6 GROMOS force field. Eur. Biophys. J. 2005 34 4 273 284 10.1007/s00249‑004‑0448‑6 15803330
    [Google Scholar]
  35. Muttenthaler M. King G.F. Adams D.J. Alewood P.F. Trends in peptide drug discovery. Nat. Rev. Drug Discov. 2021 20 4 309 325 10.1038/s41573‑020‑00135‑8 33536635
    [Google Scholar]
  36. Brix N. Samaga D. Belka C. Zitzelsberger H. Lauber K. Analysis of clonogenic growth in vitro. Nat. Protoc. 2021 16 11 4963 4991 10.1038/s41596‑021‑00615‑0 34697469
    [Google Scholar]
  37. Grasl-Kraupp B. Ruttkay-Nedecky B. Koudelka H. Bukowska K. Bursch W. Schulte-Hermann R. In situ detection of fragmented DNA (TUNEL assay) fails to discriminate among apoptosis, necrosis, and autolytic cell death: A cautionary note. Hepatology 1995 21 5 1465 1468 7737654
    [Google Scholar]
  38. Schneider C.A. Rasband W.S. Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012 9 7 671 675 10.1038/nmeth.2089 22930834
    [Google Scholar]
  39. Yang X. Hua C. Lin L. Ganting Z. Antimicrobial peptides as potential therapy for gastrointestinal cancers. Naunyn Schmiedebergs Arch. Pharmacol. 2023 396 11 2831 2841 10.1007/s00210‑023‑02536‑z 37249612
    [Google Scholar]
  40. Xu Y. Yao Y. Wang L. Chen H. Tan N. Hyaluronic acid coated liposomes co-delivery of natural cyclic peptide RA-XII and mitochondrial targeted photosensitizer for highly selective precise combined treatment of colon cancer. Int. J. Nanomedicine 2021 16 4929 4942 10.2147/IJN.S311577 34326635
    [Google Scholar]
  41. Tornesello A.L. Borrelli A. Buonaguro L. Buonaguro F.M. Tornesello M.L. Anti-microbial peptides as anti-cancer agents: Functional properties and biological activities. Molecules 2020 25 12 2850 10.3390/molecules25122850 32575664
    [Google Scholar]
  42. Deng Z. Gao Y. Nguyen T. Chai J. Wu J. Li J. Abdel-Rahman M.A. Xu X. Chen X. The potent antitumor activity of Smp43 against non-small-cell lung cancer A549 cells via inducing membranolysis and mitochondrial dysfunction. Toxins (Basel) 2023 15 5 347 10.3390/toxins15050347 37235381
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037363898250110053529
Loading
/content/journals/cpps/10.2174/0113892037363898250110053529
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test