Skip to content
2000
image of Protein Misfolding and Aggregation of Pathological Igg Light Chains in Oncohematological Dyscrasias: From Molecular Pathways to Clinical Implications

Abstract

Neoplastic transformation of B cells of the post-germinative center can lead to oncohematological dyscrasias, which often results in an abnormal production of monoclonal immunoglobulin light chains. The non-physiological production of large amounts of IgG light chains leads to the formation of extracellular deposits called 'aggregomas' and rare conditions such as light chain crystal deposition disease. Kidney manifestations and heavy-chain deposition disease can also occur in plasma cell dyscrasias, emphasizing the role of IgG misfolding and aggregation. This minireview describes molecular mechanisms of IgG light-chain aggregation, as well as the consequences and therapeutic implications of IgG light chain misfolding in these disorders. By elucidating the mechanisms of IgG light chain misfolding and aggregation, researchers can identify specific molecular and cellular pathways. This knowledge opens the door to novel therapeutic targets, offering the potential for interventions that can either prevent the initial misfolding events, promote the proper folding and processing of immunoglobulins, or enhance the clearance of misfolded proteins and aggregates. These protein folding-related issues persist even after the successful elimination of the malignant B cells. Such targeted protein-folding therapies could significantly improve patients' quality of life and contribute to their recovery. Thus, a deep understanding of IgG light chain misfolding and its consequences not only sheds light on the complex biology of oncohematological dyscrasias but also opens the way for innovative treatment strategies that could transform patient care in these conditions, instilling hope and motivation in the healthcare professionals and researchers in this field.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037336731241029075530
2025-01-02
2025-05-16
Loading full text...

Full text loading...

References

  1. Rostagno A. Frizzera G. Ylagan L. Kumar A. Ghiso J. Gallo G. Tumoral non‐amyloidotic monoclonal immunoglobulin light chain deposits (‘aggregoma’): Presenting feature of B‐cell dyscrasia in three cases with immunohistochemical and biochemical analyses. Br. J. Haematol. 2002 119 1 62 69 10.1046/j.1365‑2141.2002.03781.x 12358904
    [Google Scholar]
  2. Harris L.J. Larson S.B. Hasel K.W. McPherson A. Refined structure of an intact IgG2a monoclonal antibody. Biochemistry 1997 36 7 1581 1597 10.1021/bi962514+ 9048542
    [Google Scholar]
  3. Morgan G.J. Yan N.L. Mortenson D.E. Rennella E. Blundon J.M. Gwin R.M. Lin C.Y. Stanfield R.L. Brown S.J. Rosen H. Spicer T.P. Fernandez-Vega V. Merlini G. Kay L.E. Wilson I.A. Kelly J.W. Stabilization of amyloidogenic immunoglobulin light chains by small molecules. Proc. Natl. Acad. Sci. USA 2019 116 17 8360 8369 10.1073/pnas.1817567116 30971495
    [Google Scholar]
  4. Džupponová V. Huntošová V. Žoldák G. A kinetic coupling between protein unfolding and aggregation controls time‐dependent solubility of the human myeloma antibody light chain. Protein Sci. 2020 29 12 2408 2421 10.1002/pro.3968 33030218
    [Google Scholar]
  5. Džupponová V. Žoldák G. Aggregation mechanism and branched 3D morphologies of pathological human light chain proteins under reducing conditions. Colloids Surf. B Biointerfaces 2023 221 112983 10.1016/j.colsurfb.2022.112983 36401959
    [Google Scholar]
  6. Dul J.L. Davis D.P. Williamson E.K. Stevens F.J. Argon Y. Hsp70 and antifibrillogenic peptides promote degradation and inhibit intracellular aggregation of amyloidogenic light chains. J. Cell Biol. 2001 152 4 705 716 10.1083/jcb.152.4.705 11266462
    [Google Scholar]
  7. Katz A. Zent R. Bargman J. IgG heavy-chain deposition disease. Mod. Pathol. 7 8 874 878 7838842
    [Google Scholar]
  8. Picken M.M. Shen S. Immunoglobulin light chains and the kidney: An overview. Ultrastruct. Pathol. 1994 18 1-2 105 112 10.3109/01913129409016279 8191615
    [Google Scholar]
  9. Mosmann T. Williamson A.R. Structural mutations in a mouse immunoglobulin light chain resulting in failure to be secreted. Cell 1980 20 2 283 292 10.1016/0092‑8674(80)90614‑5 6156005
    [Google Scholar]
  10. Mosmann T.R. Baumal R. Williamson A.R. Mutations affecting immunoglobulin light chain secretion by myeloma cells I. Functional analysis by cell fusion. Eur. J. Immunol. 1979 9 7 511 516 10.1002/eji.1830090705 115698
    [Google Scholar]
  11. Seidman J.G. Max E.E. Leder P. A κ-immunoglobulin gene is formed by site-specific recombination without further somatic mutation. Nature 1979 280 5721 370 375 10.1038/280370a0 111146
    [Google Scholar]
  12. van der Burg M. Tümkaya T. Boerma M. de Bruin-Versteeg S. Langerak A.W. van Dongen J.J.M. Ordered recombination of immunoglobulin light chain genes occurs at the IGK locus but seems less strict at theIGL locus. Blood 2001 97 4 1001 1008 10.1182/blood.V97.4.1001 11159529
    [Google Scholar]
  13. Davis D.P. Gallo G. Vogen S.M. Dul J.L. Sciarretta K.L. Kumar A. Raffen R. Stevens F.J. Argon Y. Both the environment and somatic mutations govern the aggregation pathway of pathogenic immunoglobulin light chain. J. Mol. Biol. 313 5 1021 1034 10.1006/jmbi.2001.5092 11700059
    [Google Scholar]
  14. Misra P. Blancas-Mejia L.M. Ramirez-Alvarado M. Mechanistic insights into the early events in the aggregation of immunoglobulin light chains. Biochemistry 2019 58 29 3155 3168 10.1021/acs.biochem.9b00311 31287666
    [Google Scholar]
  15. Van Buren N. Rehder D. Gadgil H. Matsumura M. Jacob J. Elucidation of two major aggregation pathways in an IgG2 antibody. J. Pharm. Sci. 2009 98 9 3013 3030 10.1002/jps.21514 18680168
    [Google Scholar]
  16. Bellesia G. Shea J.E. Diversity of kinetic pathways in amyloid fibril formation. J. Chem. Phys. 2009 131 11 111102 10.1063/1.3216103 19778093
    [Google Scholar]
  17. Andrich K. Hegenbart U. Kimmich C. Kedia N. Bergen H.R. Schönland S. Wanker E. Bieschke J. Aggregation of full-length immunoglobulin light chains from systemic light chain amyloidosis (AL) Patients is remodeled by epigallocatechin-3-gallate. J. Biol. Chem. 2017 292 6 2328 2344 10.1074/jbc.M116.750323 28031465
    [Google Scholar]
  18. Morris A.M. Finke R.G. α-Synuclein aggregation variable temperature and variable pH kinetic data: A re-analysis using the Finke–Watzky 2-step model of nucleation and autocatalytic growth. Biophys. Chem. 2009 140 1-3 9 15 10.1016/j.bpc.2008.11.003 19101068
    [Google Scholar]
  19. Morris A.M. Watzky M.A. Agar J.N. Finke R.G. Fitting neurological protein aggregation kinetic data via a 2-step, minimal/“Ockham’s razor” model: The Finke-Watzky mechanism of nucleation followed by autocatalytic surface growth. Biochemistry 2008 47 8 2413 2427 10.1021/bi701899y 18247636
    [Google Scholar]
  20. Morris A.M. Watzky M.A. Finke R.G. Protein aggregation kinetics, mechanism, and curve-fitting: A review of the literature. Biochim. Biophys. Acta. Proteins Proteomics 2009 1794 3 375 397 10.1016/j.bbapap.2008.10.016 19071235
    [Google Scholar]
  21. Watzky M.A. Morris A.M. Ross E.D. Finke R.G. Fitting yeast and mammalian prion aggregation kinetic data with the Finke-Watzky two-step model of nucleation and autocatalytic growth. Biochemistry 2008 47 40 10790 10800 10.1021/bi800726m 18785757
    [Google Scholar]
  22. del Pozo Yauner L. Ortiz E. Becerril B. The CDR1 of the human λVI light chains adopts a new canonical structure. Proteins 2006 62 1 122 129 10.1002/prot.20779 16288453
    [Google Scholar]
  23. del Pozo Yauner L. Ortiz E. Sánchez R. Sánchez-López R. Güereca L. Murphy C.L. Allen A. Wall J.S. Fernández-Velasco D.A. Solomon A. Becerril B. Influence of the germline sequence on the thermodynamic stability and fibrillogenicity of human lambda 6 light chains. Proteins 2008 72 2 684 692 10.1002/prot.21934 18260098
    [Google Scholar]
  24. González-Andrade M. Becerril-Luján B. Sánchez-López R. Ceceña-Álvarez H. Pérez-Carreón J.I. Ortiz E. Fernández-Velasco D.A. del Pozo-Yauner L. Mutational and genetic determinants of λ6 light chain amyloidogenesis. FEBS J. 2013 280 23 6173 6183 10.1111/febs.12538 24107228
    [Google Scholar]
  25. Mishima T. Ohkuri T. Monji A. Kanemaru T. Abe Y. Ueda T. Residual structures in the acid-unfolded states of Vlambda6 proteins affect amyloid fibrillation. J. Mol. Biol. 2009 392 4 1033 1043 10.1016/j.jmb.2009.07.078 19647748
    [Google Scholar]
  26. Pokkuluri P.R. Solomon A. Weiss D.T. Stevens F.J. Schiffer M. Tertiary structure of human γ6 light chains. Amyloid 1999 6 3 165 171 10.3109/13506129909007322 10524280
    [Google Scholar]
  27. Wall J. Schell M. Murphy C. Hrncic R. Stevens F.J. Solomon A. Thermodynamic instability of human lambda 6 light chains: Correlation with fibrillogenicity. Biochemistry 1999 38 42 14101 14108 10.1021/bi991131j 10529258
    [Google Scholar]
  28. Wall J.S. Gupta V. Wilkerson M. Schell M. Loris R. Adams P. Solomon A. Stevens F. Dealwis C. Structural basis of light chain amyloidogenicity: Comparison of the thermodynamic properties, fibrillogenic potential and tertiary structural features of four V λ 6 proteins. J. Mol. Recognit. 2004 17 4 323 331 10.1002/jmr.681 15227639
    [Google Scholar]
  29. Wolwertz M.L. Nguyen P.T. Quittot N. Bourgault S. Probing the role of λ6 immunoglobulin light chain dimerization in amyloid formation. Biochim. Biophys. Acta. Proteins Proteomics 2016 1864 4 409 418 10.1016/j.bbapap.2016.01.009 26802902
    [Google Scholar]
  30. Džupponová V. Tomášková N. Antošová A. Sedlák E. Žoldák G. Salt-specific suppression of the cold denaturation of thermophilic multidomain initiation factor 2. Int. J. Mol. Sci. 2023 24 7 6787 10.3390/ijms24076787 37047761
    [Google Scholar]
  31. Cohen G. Hörl W.H. Free immunoglobulin light chains as a risk factor in renal and extrarenal complications. Semin. Dial. 2009 22 4 369 372 10.1111/j.1525‑139X.2009.00582.x 19708983
    [Google Scholar]
  32. Cohen G. Immunoglobulin light chains in uremia. Kidney Int. 2003 63 84 S15 S18 10.1046/j.1523‑1755.63.s84.8.x 12694299
    [Google Scholar]
  33. Wang P.X. Sanders P.W. Immunoglobulin light chains generate hydrogen peroxide. J. Am. Soc. Nephrol. 2007 18 4 1239 1245 10.1681/ASN.2006111299 17360948
    [Google Scholar]
  34. Basnayake K. Ying W.Z. Wang P.X. Sanders P.W. Immunoglobulin light chains activate tubular epithelial cells through redox signaling. J. Am. Soc. Nephrol. 2010 21 7 1165 1173 10.1681/ASN.2009101089 20558542
    [Google Scholar]
  35. Ying W.Z. Li X. Rangarajan S. Feng W. Curtis L.M. Sanders P.W. Immunoglobulin light chains generate proinflammatory and profibrotic kidney injury. J. Clin. Invest. 2019 129 7 2792 2806 10.1172/JCI125517 31205024
    [Google Scholar]
  36. Kdimati S. Mullins C.S. Linnebacher M. Cancer-cell-derived IgG and its potential role in tumor development. Int. J. Mol. Sci. 2021 22 21 11597 10.3390/ijms222111597 34769026
    [Google Scholar]
  37. Shah D.D. Zhang J. Maity H. Mallela K.M.G. Effect of photo-degradation on the structure, stability, aggregation, and function of an IgG1 monoclonal antibody. Int. J. Pharm. 2018 547 1-2 438 449 10.1016/j.ijpharm.2018.06.007 29883793
    [Google Scholar]
  38. Randall R.E. Williamson W.C. Mullinax F. Tung M.Y. Still W.J.S. Manifestations of systemic light chain deposition. Am. J. Med. 1976 60 2 293 299 10.1016/0002‑9343(76)90440‑X 814812
    [Google Scholar]
  39. Robles M.D.M. García-Braga J.M.N.-O. Caro J.L.M. Alonso J.V. Lagunas I.L. Jaundice secondary to intrahepatic deposit of light chains as a presenting form of multiple myeloma. An. Med. Interna 12 2
    [Google Scholar]
  40. Baptista B. Casian A. Gunawardena H. D’Cruz D. Rice C.M. Neurological manifestations of IgG4-related disease. Curr. Treat. Options Neurol. 2017 19 4 74 76 10.1007/s11940‑017‑0450‑9 28374231
    [Google Scholar]
  41. Park K. Choi Y.W. Kang B-K. Lee J.Y. Park J.S. Shin S-J. Koo H.R. Systemic manifestations of immunoglobulin G4-related disease: A pictorial essay. J. Korean Soc. Radiol. 2021 82 3 575 10.3348/jksr.2020.0141
    [Google Scholar]
  42. Khosroshahi A. Deshpande V. Stone J.H. The clinical and pathological features of IgG4-related disease. Curr. Rheumatol. Rep. 2011 13 6 473 481 10.1007/s11926‑011‑0213‑7 21964954
    [Google Scholar]
  43. Backhus J. Seufferlein T. Perkhofer L. Hermann P.C. Kleger A. IgG4-related diseases in the gastrointestinal tract: Clinical presentation, diagnosis and treatment challenges. Digestion 2019 100 1 1 14 10.1159/000492814 30384361
    [Google Scholar]
  44. Carruthers M.N. Stone J.H. Khosroshahi A. The latest on IgG4-RD: A rapidly emerging disease. Curr. Opin. Rheumatol. 2012 24 1 60 69 10.1097/BOR.0b013e32834ddb4a 22157413
    [Google Scholar]
  45. Ronco P. Plaisier E. Mougenot B.C.A.A. Aucouturier P. Immunoglobulin light (heavy)-chain deposition disease: From molecular medicine to pathophysiology-driven therapy. Clin. J. Am. Soc. Nephrol. 2006 1 6 1342 1350 10.2215/CJN.01730506 17699367
    [Google Scholar]
  46. Iaccarino L. Talarico R. Scirè C.A. Amoura Z. Burmester G. Doria A. Faiz K. Frank C. Hachulla E. Hie M. Launay D. Montecucco C. Monti S. Mouthon L. Tincani A. Toniati P. Van Hagen P.M. Van Vollenhoven R.F. Bombardieri S. Mueller-Ladner U. Schneider M. Smith V. Cutolo M. Mosca M. Alexander T. IgG4-related diseases: State of the art on clinical practice guidelines. RMD Open 2019 4 Suppl. 1 e000787 10.1136/rmdopen‑2018‑000787 30729031
    [Google Scholar]
  47. Kamisawa T. Zen Y. Pillai S. Stone J.H. IgG4-related disease. Lancet 2015 385 9976 1460 1471 10.1016/S0140‑6736(14)60720‑0 25481618
    [Google Scholar]
  48. Yadlapati S. Verheyen E. Efthimiou P. IgG4-related disease: A complex under-diagnosed clinical entity. Rheumatol. Int. 2018 38 2 169 177 10.1007/s00296‑017‑3765‑7 28681251
    [Google Scholar]
  49. Grados A. Ebbo M. Boucraut J. Vély F. Aucouturier P. Rigolet A. Terrier B. Saadoun D. Ghillani-Dalbin P. Costedoat-Chalumeau N. Harlé J.R. Schleinitz N. Serum immunoglobulin free light chain assessment in IgG4-related disease. Int. J. Rheumatol. 2013 2013 1 6 10.1155/2013/426759 23878543
    [Google Scholar]
  50. Magnano L. Fernández de Larrea C. Elena M. Cibeira M.T. Tovar N. Aróstegui J.I. Pedrosa F. Rosiñol L. Filella X. Yagüe J. Bladé J. Prognostic impact of serum heavy/light chain pairs in patients with monoclonal gammopathy of undetermined significance and smoldering myeloma: Long-term results from a single institution. Clin. Lymphoma Myeloma Leuk. 2016 16 6 e71 e77 10.1016/j.clml.2016.02.034 27013181
    [Google Scholar]
  51. AvetLoiseau H. Harousseau J-L. Moreau P. Mathiot C. Facon T. Attal M. Bradwell A. Harding S. Heavy/light chain specific immunoglobulin ratios at presentation are prognostic for progression free survival in the IFM 2005-01 myeloma trial. Blood 2009 114 22 1818 1818 10.1182/blood.V114.22.1818.1818
    [Google Scholar]
  52. Lopez-Anglada L. Cueto-Felgueroso C. Rosiñol L. Oriol A. Teruel A.I. Lopez de la Guia A. Bengoechea E. Palomera L. de Arriba F. Hernandez J.M. Granell M. Peñalver F.J. Garcia-Sanz R. Besalduch J. Gonzalez Y. Martinez R.B. Hernandez M.T. Gutierrez N.C. Puerta P. Valeri A. Paiva B. Blade J. Mateos M.V. San Miguel J. Lahuerta J.J. Martinez-Lopez J. Prognostic utility of serum free light chain ratios and heavy-light chain ratios in multiple myeloma in three PETHEMA/GEM phase III clinical trials. PLoS One 2018 13 9 e0203392 10.1371/journal.pone.0203392 30192814
    [Google Scholar]
  53. Bradwell A. Harding S. Fourrier N. Mathiot C. Attal M. Moreau P. Harousseau J-L. Avet-Loiseau H. Prognostic utility of intact immunoglobulin Ig′κ/Ig′λ ratios in multiple myeloma patients. Leukemia 2013 27 1 202 207 10.1038/leu.2012.159 22699454
    [Google Scholar]
  54. Rajkumar S.V. Dimopoulos M.A. Palumbo A. Blade J. Merlini G. Mateos M.V. Kumar S. Hillengass J. Kastritis E. Richardson P. Landgren O. Paiva B. Dispenzieri A. Weiss B. LeLeu X. Zweegman S. Lonial S. Rosinol L. Zamagni E. Jagannath S. Sezer O. Kristinsson S.Y. Caers J. Usmani S.Z. Lahuerta J.J. Johnsen H.E. Beksac M. Cavo M. Goldschmidt H. Terpos E. Kyle R.A. Anderson K.C. Durie B.G.M. Miguel J.F.S. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014 15 12 e538 e548 10.1016/S1470‑2045(14)70442‑5 25439696
    [Google Scholar]
  55. Falini B. Martelli M.P. Comparison of the International Consensus and 5th WHO edition classifications of adult myelodysplastic syndromes and acute myeloid leukemia. Am. J. Hematol. 2023 98 3 481 492 10.1002/ajh.26812 36606297
    [Google Scholar]
  56. Zeidan A.M. Platzbecker U. Bewersdorf J.P. Stahl M. Adès L. Borate U. Bowen D. Buckstein R. Brunner A. Carraway H.E. Daver N. Díez-Campelo M. de Witte T. DeZern A.E. Efficace F. Garcia-Manero G. Garcia J.S. Germing U. Giagounidis A. Griffiths E.A. Hasserjian R.P. Hellström-Lindberg E. Iastrebner M. Komrokji R. Kulasekararaj A.G. Malcovati L. Miyazaki Y. Odenike O. Santini V. Sanz G. Scheinberg P. Stauder R. van de Loosdrecht A.A. Wei A.H. Sekeres M.A. Fenaux P. Consensus proposal for revised International Working Group 2023 response criteria for higher-risk myelodysplastic syndromes. Blood 2023 141 17 2047 2061 36724453
    [Google Scholar]
  57. Fontana D. Elli E.M. Pagni F. Piazza R. Myelodysplastic syndromes/myeloproliferative overlap neoplasms and differential diagnosis in the WHO and ICC 2022 Era: A focused review. Cancers (Basel) 2023 15 12 3175 10.3390/cancers15123175 37370785
    [Google Scholar]
  58. Mouawad N. Capasso G. Ruggeri E. Martinello L. Severin F. Visentin A. Facco M. Trentin L. Frezzato F. Is it still possible to think about HSP70 as a therapeutic target in onco-hematological diseases? Biomolecules 2023 13 4 604 10.3390/biom13040604 37189352
    [Google Scholar]
  59. Singh R.B. Singhal S. Sinha S. Cho J. Nguyen A.X.L. Dhingra L.S. Kaur S. Sharma V. Agarwal A. Ocular complications of plasma cell dyscrasias. Eur. J. Ophthalmol. 2023 33 5 1786 1800 10.1177/11206721231155974 36760117
    [Google Scholar]
  60. Mandala E. Lafara K. Kokkinovasilis D. Kalafatis I. Koukoulitsa V. Katodritou E. Lafaras C. Applied cardio-oncology in hematological malignancies: A narrative review. Life (Basel) 2024 14 4 524 10.3390/life14040524 38672794
    [Google Scholar]
  61. Wiebke R. Altenbuchinger M. Baeßler B. Beissbarth T. Beutel T. Bock R. Bubnoff N.V. Eckardt J.-N. Foersch S. Loeffler C.M.L. An overview and a roadmap for artificial intelligence in hematology and oncology. J. Cancer Res. Clin. Oncol. 10 149 7997 8006 10.1007/s00432‑023‑04667‑5 36920563
    [Google Scholar]
  62. Haroun E. Kumar P.A. Saba L. Kassab J. Ghimire K. Dutta D. Lim S.H. Intestinal barrier functions in hematologic and oncologic diseases. J. Transl. Med. 2023 21 1 233 10.1186/s12967‑023‑04091‑w 37004099
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037336731241029075530
Loading
/content/journals/cpps/10.2174/0113892037336731241029075530
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test