Skip to content
2000
Volume 2, Issue 2
  • ISSN: 2665-9786
  • E-ISSN: 2665-9794

Abstract

Various medicinal plants contain phenolic compounds, which are useful in the treatment of many diseases. Particularly, vitexin and its isomer, isovitexin, possess many pharmacological effects, including antioxidant, anti-inflammatory, anticancer, antidiabetic, neuroprotective, and antinociceptive activities. Current research has provided evidence for the prospective use of vitexin and isovitexin in the formulation of medicinal products useful in the prevention and treatment of specific ailments. The aim of this review was, therefore, to examine the influence of vitexin and isovitexin on the vascular system as well as the possible mechanisms through which the flavonoids exert their effects. The review also discussed the importance of vitexin and isovitexin in cardiovascular health through the vascular endothelium. and studies suggest that vitexin and isovitexin play a cardioprotective role during ischaemia-reperfusion injury and angiogenesis, while isovitexin decreases perfusion pressure and increases the bioavailability of nitric oxide. Taken together, vitexin and isovitexin are promising as therapeutic agents for the formulation of nutraceuticals for the prevention, management, and treatment of cardiovascular diseases.

Loading

Article metrics loading...

/content/journals/cnt/10.2174/2665978601999201105160405
2021-07-01
2025-01-09
Loading full text...

Full text loading...

References

  1. World Health Organisation. Global Health Observatory 2017, World Health Organization. 2017https://www.who.int/gho/en/
  2. YuyunM.F. SliwaK. KengneA.P. MocumbiA.O. BukhmanG. Cardiovascular diseases in sub-Saharan Africa compared to high-income countries: An epidemiological perspective.Glob. Heart20201511510.5334/gh.40332489788
    [Google Scholar]
  3. BenjaminE.J. MuntnerP. AlonsoA. BittencourtM.S. CallawayC.W. CarsonA.P. ChamberlainA.M. ChangA.R. ChengS. DasS.R. DellingF.N. DjousseL. ElkindM.S.V. FergusonJ.F. FornageM. JordanL.C. KhanS.S. KisselaB.M. KnutsonK.L. KwanT.W. LacklandD.T. LewisT.T. LichtmanJ.H. LongeneckerC.T. LoopM.S. LutseyP.L. MartinS.S. MatsushitaK. MoranA.E. MussolinoM.E. O’FlahertyM. PandeyA. PerakA.M. RosamondW.D. RothG.A. SampsonU.K.A. SatouG.M. SchroederE.B. ShahS.H. SpartanoN.L. StokesA. TirschwellD.L. TsaoC.W. TurakhiaM.P. VanWagnerL.B. WilkinsJ.T. WongS.S. ViraniS.S. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics SubcommitteeHeart Disease and Stroke Statistics-2019 Update: A Report from the American Heart Association.Circulation201913910e56e52810.1161/CIR.000000000000065930700139
    [Google Scholar]
  4. OzawaS. ShankarR. LeopoldC. OrubuS. Access to medicines through health systems in low- and middle-income countries. Health Policy Plan., 2019, 34(S3)(Supplement_3), iii1- iii3.10.1093/heapol/czz11931816069
  5. Majewska-WierzbickaM. CzeczotH. [Flavonoids in the prevention and treatment of cardiovascular diseasesPol. Merkuriusz Lek.201232187505422400181
    [Google Scholar]
  6. KesavanR. ChandelS. UpadhyayS. BendreR. GanugulaR. PotunuruU.R. GiriH. SahuG. KumarP.U. ReddyG.B. JoksicG. BeraA.K. DixitM. Gentiana lutea exerts anti-atherosclerotic effects by preventing endothelial inflammation and smooth muscle cell migration.Nutr. Metab. Cardiovasc. Dis.201626429330110.1016/j.numecd.2015.12.01626868432
    [Google Scholar]
  7. MudgeE.M. LiuY. LundJ.A. BrownP.N. Single-laboratory validation for the determination of flavonoids in hawthorn leaves and finished products by LC–UV.Planta Med.201682171487149210.1055/s‑0042‑11846327776376
    [Google Scholar]
  8. DurandM.J. GuttermanD.D. Diversity in mechanisms of endothelium-dependent vasodilation in health and disease.Microcirculation201320323924710.1111/micc.1204023311975
    [Google Scholar]
  9. RajendranP. RengarajanT. ThangavelJ. NishigakiY. SakthisekaranD. SethiG. NishigakiI. The vascular endothelium and human diseases.Int. J. Biol. Sci.20139101057106910.7150/ijbs.750224250251
    [Google Scholar]
  10. VerhammeP. HoylaertsM.F. The pivotal role of the endothelium in haemostasis and thrombosis.Acta Clin. Belg.200661521321910.1179/acb.2006.03617240734
    [Google Scholar]
  11. ShimokawaH. Primary endothelial dysfunction: atherosclerosis.J. Mol. Cell. Cardiol.1999311233710.1006/jmcc.1998.084110072713
    [Google Scholar]
  12. Tomás‐BarberánF.A. CliffordM.N. Flavanones, chalcones and dihydrochalcones – nature, occurrence and dietary burden.J. Agric. Food Chem.20008071073108010.1002/(SICI)1097‑0010(20000515)80:7<1073:AID‑JSFA568>3.0.CO;2‑B
    [Google Scholar]
  13. TanakaT. Flavonoids for allergic diseases: present evidence and future perspective.Curr. Pharm. Des.201420687988510.2174/1381612811319999006023701574
    [Google Scholar]
  14. WangL. ZhangX.T. ZhangH.Y. YaoH.Y. ZhangH. Effect of Vaccinium bracteatum Thunb. leaves extract on blood glucose and plasma lipid levels in streptozotocin-induced diabetic mice.J. Ethnopharmacol.2010130346546910.1016/j.jep.2010.05.03120553830
    [Google Scholar]
  15. ZucolottoS.M. FagundesC. ReginattoF.H. RamosF.A. CastellanosL. DuqueC. SchenkelE.P. Analysis of C-glycosyl flavonoids from South American Passiflora species by HPLC-DAD and HPLC-MS.Phytochem. Anal.201223323223910.1002/pca.134821858882
    [Google Scholar]
  16. HeM. MinJ.W. KongW.L. HeX.H. LiJ.X. PengB.W. A review on the pharmacological effects of vitexin and isovitexin.Fitoterapia2016115748510.1016/j.fitote.2016.09.01127693342
    [Google Scholar]
  17. GaitanE. LindsayR.H. ReichertR.D. IngbarS.H. CookseyR.C. LeganJ. MeydrechE.F. HillJ. KubotaK. Antithyroid and goitrogenic effects of millet: role of C-glycosylflavones.J. Clin. Endocrinol. Metab.198968470771410.1210/jcem‑68‑4‑7072921306
    [Google Scholar]
  18. HajdúZ. HohmannJ. ForgoP. MartinekT. DervaricsM. ZupkóI. FalkayG. CossutaD. MáthéI. Diterpenoids and flavonoids from the fruits of Vitex agnus-castus and antioxidant activity of the fruit extracts and their constituents.Phytother. Res.200721439139410.1002/ptr.202117262892
    [Google Scholar]
  19. LeeH.J. KimK.A. KangK.D. LeeE.H. KimC.Y. UmB.H. JungS.H. The compound isolated from the leaves of Phyllostachys nigra protects oxidative stress-induced retinal ganglion cells death.Food Chem. Toxicol.20104861721172710.1016/j.fct.2010.03.05220381571
    [Google Scholar]
  20. CaoD. LiH. YiJ. ZhangJ. CheH. CaoJ. YangL. ZhuC. JiangW. Antioxidant properties of the mung bean flavonoids on alleviating heat stress.PLoS One201166, e21071.10.1371/journal.pone.002107121695166
    [Google Scholar]
  21. MohebA. IbrahimR.K. RoyR. SarhanF. Changes in wheat leaf phenolome in response to cold acclimation.Phytochemistry201172182294230710.1016/j.phytochem.2011.08.02121955620
    [Google Scholar]
  22. ZhangJ. YuanK. ZhouW.L. ZhouJ. YangP. Studies on the active components and antioxidant activities of the extracts of Mimosa pudica Linn. from southern China.Pharmacogn. Mag.2011725353910.4103/0973‑1296.7589921472077
    [Google Scholar]
  23. MaL.Y. LiuR.H. XuX.D. YuM.Q. ZhangQ. LiuH.L. The pharmacokinetics of C-glycosyl flavones of Hawthorn leaf flavonoids in rat after single dose oral administration.Phytomedicine2010178-964064510.1016/j.phymed.2009.12.01020096549
    [Google Scholar]
  24. GanesanK. XuB. Molecular targets of vitexin and isovitexin in cancer therapy: a critical review.Ann. N. Y. Acad. Sci.20171401110211310.1111/nyas.13428891090
    [Google Scholar]
  25. BieskiI.G.C. Rios SantosF. de OliveiraR.M. EspinosaM.M. MacedoM. AlbuquerqueU.P. de Oliveira MartinsD.T. Ethnopharmacology of medicinal plants of the pantanal region (mato grosso, Brazil). Evid. Based Complement. Alternat. Med., 2012, 2012272749.10.1155/2012/27274922474496
  26. RosaS.I.G. Rios-SantosF. BalogunS.O. MartinsD.T. Vitexin reduces neutrophil migration to inflammatory focus by down-regulating pro-inflammatory mediators via inhibition of p38, ERK1/2 and JNK pathway.Phytomedicine201623191710.1016/j.phymed.2015.11.00326902402
    [Google Scholar]
  27. DongL.Y. LiS. ZhenY.L. WangY.N. ShaoX. LuoZ.G. Cardioprotection of vitexin on myocardial ischemia/reperfusion injury in rat via regulating inflammatory cytokines and MAPK pathway.Am. J. Chin. Med.20134161251126610.1142/S0192415X1350084524228599
    [Google Scholar]
  28. DongL.Y. ChenZ.W. GuoY. ChengX.P. ShaoX. Mechanisms of vitexin preconditioning effects on cultured neonatal rat cardiomyocytes with anoxia and reoxygenation.Am. J. Chin. Med.200836238539710.1142/S0192415X0800584918457368
    [Google Scholar]
  29. LuC.C. XuY.Q. WuJ.C. HangP.Z. WangY. WangC. WuJ.W. QiJ.C. ZhangY. DuZ.M. Vitexin protects against cardiac hypertrophy via inhibiting calcineurin and CaMKII signaling pathways.Naunyn Schmiedebergs Arch. Pharmacol.2013386874775510.1007/s00210‑013‑0873‑023624753
    [Google Scholar]
  30. JeH.G. HongS.M. JeH.D. SohnU.D. ChoiY.S. SeoS.Y. MinY.S. ChungS.J. ShinY.K. LeeT.J. ParkE.S. JeongJ.H. The inhibitory effect of vitexin on the agonist-induced regulation of vascular contractility.Pharmazie201469322422824716414
    [Google Scholar]
  31. MaliV.R. MohanV. BodhankarS.L. Antihypertensive and cardioprotective effects of the Lagenaria siceraria fruit in NG-nitro-L-arginine methyl ester (L-NAME) induced hypertensive rats.Pharm. Biol.201250111428143510.3109/13880209.2012.68406422994444
    [Google Scholar]
  32. AfifiF.U. Abu-DahabR. Phytochemical screening and biological activities of Eminium spiculatum (Blume) Kuntze (family Araceae).Nat. Prod. Res.201226987888210.1080/14786419.2011.56555821809948
    [Google Scholar]
  33. WangY. ZhenY. WuX. JiangQ. LiX. ChenZ. ZhangG. DongL. Vitexin protects brain against ischemia/reperfusion injury via modulating mitogen-activated protein kinase and apoptosis signaling in mice.Phytomedicine201522337938410.1016/j.phymed.2015.01.00925837275
    [Google Scholar]
  34. TouyzR.M. Alves-LopesR. RiosF.J. CamargoL.L. AnagnostopoulouA. ArnerA. MontezanoA.C. Vascular smooth muscle contraction in hypertension.Cardiovasc. Res.2018114452953910.1093/cvr/cvy02329394331
    [Google Scholar]
  35. CuiY.H. ZhangX.Q. WangN.D. ZhengM.D. YanJ. Vitexin protects against ischemia/reperfusion-induced brain endothelial permeability.Eur. J. Pharmacol.201985321021910.1016/j.ejphar.2019.03.01530876978
    [Google Scholar]
  36. JonesS.P. BolliR. The ubiquitous role of nitric oxide in cardioprotection.J. Mol. Cell. Cardiol.2006401162310.1016/j.yjmcc.2005.09.01116288777
    [Google Scholar]
  37. FengJ. ChenX. ShenJ. Reactive nitrogen species as therapeutic targets for autophagy: implication for ischemic stroke.Expert Opin. Ther. Targets201721330531710.1080/14728222.2017.128125028081644
    [Google Scholar]
  38. JugduttB.I. Nitric oxide and cardioprotection during ischemia-reperfusion.Heart Fail. Rev.20027439140510.1023/A:102071861915512379824
    [Google Scholar]
  39. YingZ. XieX. ChenM. YiK. RajagopalanS. Alpha-lipoic acid activates eNOS through activation of PI3-kinase/Akt signaling pathway.Vascul. Pharmacol.201564283510.1016/j.vph.2014.11.00425460366
    [Google Scholar]
  40. FitzpatrickD.F. FlemingR.C. BingB. MaggiD.A. O’MalleyR.M. Isolation and characterization of endothelium-dependent vasorelaxing compounds from grape seeds.J. Agric. Food Chem.200048126384639010.1021/jf000934711312812
    [Google Scholar]
  41. LiuQ. YuS. ZhaoW. QinS. ChuQ. WuK. EGFR-TKIs resistance via EGFR-independent signaling pathways.Mol. Cancer20181715310.1186/s12943‑018‑0793‑129455669
    [Google Scholar]
  42. TirloniC.A.S. PaloziR.A.C. TomazettoT.A. VasconcelosP.C.P. SouzaR.I.C. Dos SantosA.C. de AlmeidaV.P. BudelJ.M. de SouzaL.M. GasparottoJunior,A. Ethnopharmacological approaches to kidney disease-prospecting an indigenous species from Brazilian Pantanal.J. Ethnopharmacol.2018211475710.1016/j.jep.2017.09.02028942138
    [Google Scholar]
  43. BeckmanJ.S. KoppenolW.H. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly.Am. J. Physiol.19962715 Pt 1C1424C143710.1152/ajpcell.1996.271.5.C14248944624
    [Google Scholar]
  44. BernhardtJ. ZorowitzR.D. BeckerK.J. KellerE. SaposnikG. StrbianD. DichgansM. WooD. ReevesM. ThriftA. KidwellC.S. OlivotJ.M. GoyalM. PierotL. BennettD.A. HowardG. FordG.A. GoldsteinL.B. PlanasA.M. YenariM.A. GreenbergS.M. PantoniL. Amin-HanjaniS. TymianskiM. Advances in Stroke 2017.Stroke2018495e174e19910.1161/STROKEAHA.118.02138029669874
    [Google Scholar]
  45. World Health OrganizationIntegrated management of cardiovascular risk.Report of a WHO meeting, Geneva, 9-12 July.2002
    [Google Scholar]
  46. CassellaC.R. JagodaA. Ischemic Stroke: Advances in Diagnosis and Management.Emerg. Med. Clin. North Am.201735491193010.1016/j.emc.2017.07.00728987436
    [Google Scholar]
  47. Abu BakarA.R. RipenA.M. MericanA.F. MohamadS.B. Enzymatic inhibitory activity of Ficus deltoidea leaf extract on matrix metalloproteinase-2, 8 and 9.Nat. Prod. Res.201933121765176810.1080/14786419.2018.143463129394875
    [Google Scholar]
  48. TirloniC.A.S. PaloziR.A.C. SchaedlerM.I. GuarnierL.P. SilvaA.O. MarquesM.A. GasparottoF.M. LourençoE.L.B. de SouzaL.M. GasparottoJunior, A. Influence of Luehea divaricata Mart. extracts on peripheral vascular resistance and the role of nitric oxide and both Ca+2-sensitive and Kir6.1 ATP-sensitive K+ channels in the vasodilatory effects of isovitexin on isolated perfused mesenteric beds.Phytomedicine201956748210.1016/j.phymed.2018.08.01430668356
    [Google Scholar]
  49. PennacchioM. SyahY.M. AlexanderE. GhisalbertiE.L. Mechanism of action of verbascoside on the isolated rat heart: increases in level of prostacyclin.Phytother. Res.199913325425510.1002/(SICI)1099‑1573(199905)13:3<254:AID‑PTR430>3.0.CO;2‑110353173
    [Google Scholar]
  50. ChenW. JadhavV. TangJ. ZhangJ.H. HIF-1alpha inhibition ameliorates neonatal brain injury in a rat pup hypoxic-ischemic model.Neurobiol. Dis.200831343344110.1016/j.nbd.2008.05.02018602008
    [Google Scholar]
  51. MinJ.W. HuJ.J. HeM. SanchezR.M. HuangW.X. LiuY.Q. BsoulN.B. HanS. YinJ. LiuW.H. HeX.H. PengB.W. Vitexin reduces hypoxia-ischemia neonatal brain injury by the inhibition of HIF-1alpha in a rat pup model.Neuropharmacology201599385010.1016/j.neuropharm.2015.07.00726187393
    [Google Scholar]
  52. FanC. YanJ. QianY. WoX. GaoL. Regulation of lipoprotein lipase expression by effect of hawthorn flavonoids on peroxisome proliferator response element pathway.J. Pharmacol. Sci.20061001515810.1254/jphs.FP005074816404131
    [Google Scholar]
  53. Claesson-WelshL. Vascular permeability--the essentials.Ups. J. Med. Sci.2015120313514310.3109/03009734.2015.106450126220421
    [Google Scholar]
  54. NörJ.E. ChristensenJ. MooneyD.J. PolveriniP.J. Vascular endothelial growth factor (VEGF)-mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression.Am. J. Pathol.1999154237538410.1016/S0002‑9440(10)65284‑410027396
    [Google Scholar]
  55. NgC.T. FongL.Y. TanJ.J. RajabN.F. AbasF. ShaariK. ChanK.M. JulianaF. YongY.K. Water extract of Clinacanthus nutans leaves exhibits in vitro, ex vivo and in vivo anti-angiogenic activities in endothelial cell via suppression of cell proliferation.BMC Complement. Altern. Med.201818121010.1186/s12906‑018‑2270‑129980198
    [Google Scholar]
  56. AlokeC. EzeigboI.I. OhanenyeI.C. UdenigweC.C. JacobC. EjikeC.E.C.C. A small green red-ox carries a bright medical future for sub-Saharan Africa.Curr. Pharmacol. Rep.2019524525410.1007/s40495‑019‑00182‑9
    [Google Scholar]
/content/journals/cnt/10.2174/2665978601999201105160405
Loading
/content/journals/cnt/10.2174/2665978601999201105160405
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test