Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2665-9786
  • E-ISSN: 2665-9794

Abstract

Vegetables and fruits are consumed in considerable amounts worldwide producing huge quantities of organic leftovers comprising primarily of peels. Peels of potatoes (PP) and carrots (CP), for instance, are often considered as waste, albeit they still represent a rich source of interesting phytochemicals. Traditional waste management of such materials, usually vermicomposting, therefore represents a low-value approach and also a considerable burden to the environment.

Aiming to convert some of this waste into raw materials for further applications, methods were explored to prepare suspensions of PP and CP. Antioxidant activities of these suspensions were compared to bulk-suspensions and the corresponding ethanolic extracts in anticipation of possible applications in Nutrition and Cosmetics.

The peels of potatoes and carrots were subjected to high- speed stirring (HSS) and high-pressure homogenization (HPH) to produce suspensions which were characterized for size distribution by Laser Diffraction (LD), Photon Correlation Spectroscopy (PCS), and light microscopy (LM). Ethanolic extracts of peels were also produced. Samples were evaluated for antioxidant activity employing 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay.

HPH produced suspensions of peels comprising particles with diameters in the range of 268 - 335 nm for PP and 654 - 1,560 nm for CP. These suspensions exhibited a significantly stronger antioxidant activity compared to the bulk-suspensions. Moreover, the suspension of PP (1% w/w) exhibited comparable antioxidant activity to the ethanolic extract (1% w/w) whilst the CP suspension (1% w/w) exhibited lower activity compared to the ethanolic extract.

Production of suspensions of vegetable peels may unlock some biological potential which could be optimised for applications in Nutrition, Agriculture, Medicine and Cosmetics.

Loading

Article metrics loading...

/content/journals/cnt/10.2174/2665978601999200925163905
2021-03-01
2025-01-26
Loading full text...

Full text loading...

References

  1. KumarJ.S. SubbaiahK.V. RaoP.V. Vermi composting--organic waste management and disposal.J. Environ. Sci. Eng.201254113413923741869
    [Google Scholar]
  2. MattielloA. ChiodiniP. BiancoE. ForgioneN. FlammiaI. GalloC. PizzutiR. PanicoS. Health effects associated with the disposal of solid waste in landfills and incinerators in populations living in surrounding areas: a systematic review.Int. J. Public Health201358572573510.1007/s00038‑013‑0496‑8 23887611
    [Google Scholar]
  3. HungríaJ. SilesJ.A. ChicaA.F. GilA. MartínM.A. Anaerobic co-digestion of winery waste: comparative assessment of grape marc waste and lees derived from organic crops.Environ. Technol.20201910.1080/09593330.2020.1737735 32114938
    [Google Scholar]
  4. LeeE. OliveiraD.S.B.L. OliveiraL.S.B.L. JimenezE. KimY. WangM. ErgasS.J. ZhangQ. Comparative environmental and economic life cycle assessment of high solids anaerobic co-digestion for biosolids and organic waste management.Water Res.202017111544310.1016/j.watres.2019.115443 31945640
    [Google Scholar]
  5. RocamoraI. WaglandS.T. VillaR. SimpsonE.W. FernándezO. Bajón-FernándezY. Dry anaerobic digestion of organic waste: A review of operational parameters and their impact on process performance.Bioresour. Technol.202029912268110.1016/j.biortech.2019.122681 31902638
    [Google Scholar]
  6. WainainaS. AwasthiM.K. SarsaiyaS. ChenH. SinghE. KumarA. RavindranB. AwasthiS.K. LiuT. DuanY. KumarS. ZhangZ. TaherzadehM.J. Resource recovery and circular economy from organic solid waste using aerobic and anaerobic digestion technologies.Bioresour. Technol.202030112277810.1016/j.biortech.2020.122778 31983580
    [Google Scholar]
  7. Pérez PastorR. SalvadorP. García AlonsoS. AlastueyA. García Dos SantosS. QuerolX. ArtíñanoB. Characterization of organic aerosol at a rural site influenced by olive waste biomass burning.Chemosphere202024812589610.1016/j.chemosphere.2020.125896 32006840
    [Google Scholar]
  8. ZhangT. FiedlerH. YuG. OchoaG.S. CarrollW.F.Jr GullettB.K. MarklundS. TouatiA. Emissions of unintentional persistent organic pollutants from open burning of municipal solid waste from developing countries.Chemosphere2011847994100110.1016/j.chemosphere.2011.04.070 21624634
    [Google Scholar]
  9. DéportesI. Benoit-GuyodJ.L. ZmirouD. Hazard to man and the environment posed by the use of urban waste compost: a review.Sci. Total Environ.19951722-31972210.1016/0048‑9697(95)04808‑1 8525355
    [Google Scholar]
  10. AngelinoD. GennariL. BlasaM. SelvagginiR. UrbaniS. EspostoS. ServiliM. NinfaliP. Chemical and cellular antioxidant activity of phytochemicals purified from olive mill waste waters.J. Agric. Food Chem.20115952011201810.1021/jf103881b 21314125
    [Google Scholar]
  11. SalvadorA.C. SimõesM.M.Q. SilvaA.M.S. SantosS.A.O. RochaS.M. SilvestreA.J.D. Vine waste valorisation: Integrated approach for the prospection of bioactive lipophilic phytochemicals.Int. J. Mol. Sci.20192017423910.3390/ijms20174239 31480214
    [Google Scholar]
  12. WagdS. YannickN. Muhammad JawadN. TorstenB. PeterM. ClausJ. Turning apparent waste into new value: Up-cycling strategies exemplified by Brewer’s spent grains (BSG).Curr. Nutraceut.2020118
    [Google Scholar]
  13. DhuratR. ChitalliaJ. MayT.W. JayaraamanA.M. MadhukaraJ. AnandanS. VaidyaP. KlenkA. An open-label randomized multicenter study assessing the noninferiority of a caffeine-based topical liquid 0.2% versus minoxidil 5% solution in male androgenetic alopecia.Skin Pharmacol. Physiol.201730629830510.1159/000481141 29055953
    [Google Scholar]
  14. da Silva LimaR. NunesI.L. BlockJ.M. Ultrasound-assisted extraction for the recovery of carotenoids from Guava’s pulp and waste powders.Plant Foods Hum. Nutr.2020751636910.1007/s11130‑019‑00784‑0 31838615
    [Google Scholar]
  15. KaraogluO. AlpdoganG. ZorS.D. BildirirH. ErtasE. Efficient solid phase extraction of α-tocopherol and β-sitosterol from sunflower oil waste by improving the mesoporosity of the zeolitic adsorbent.Food Chem.202031112589010.1016/j.foodchem.2019.125890 31757493
    [Google Scholar]
  16. PavlovićN. JokićS. JakovljevićM. BlažićM. MolnarM. Green extraction methods for active compounds from food waste-cocoa bean shell.Foods202092910.3390/foods9020140 32019261
    [Google Scholar]
  17. SengarA.S. RawsonA. MuthiahM. KalakandanS.K. Comparison of different ultrasound assisted extraction techniques for pectin from tomato processing waste.Ultrason. Sonochem.20206110481210.1016/j.ultsonch.2019.104812 31704498
    [Google Scholar]
  18. BaysalT. ErsusS. StarmansD.A. Supercritical CO(2) extraction of beta-carotene and lycopene from tomato paste waste.J. Agric. Food Chem.200048115507551110.1021/jf000311t 11087510
    [Google Scholar]
  19. de Andrade LimaM. KestekoglouI. CharalampopoulosD. ChatzifragkouA. Supercritical fluid extraction of carotenoids from vegetable waste matrices.Molecules20192432410.3390/molecules24030466 30696092
    [Google Scholar]
  20. FuH. MatthewsM.A. Comparison between supercritical carbon dioxide extraction and aqueous surfactant washing of an oily machining waste.J. Hazard. Mater.199967219721310.1016/S0304‑3894(99)00037‑0 10341302
    [Google Scholar]
  21. LazzèM.C. PizzalaR. Gutiérrez PecharrománF.J. Gatòn GarnicaP. Antolín RodríguezJ.M. FabrisN. BianchiL. Grape waste extract obtained by supercritical fluid extraction contains bioactive antioxidant molecules and induces antiproliferative effects in human colon adenocarcinoma cells.J. Med. Food200912356156810.1089/jmf.2008.0150 19627204
    [Google Scholar]
  22. LeazerJ.L.Jr GantS. HouckA. LeonardW. WelchC.J. Removal of common organic solvents from aqueous waste streams via supercritical C02 extraction: A potential green approach to sustainable waste management in the pharmaceutical industry.Environ. Sci. Technol.20094362018202110.1021/es802607a 19368207
    [Google Scholar]
  23. ZhangY.J. GanR.Y. LiS. ZhouY. LiA.N. XuD.P. LiH.B. Antioxidant Phytochemicals for the Prevention and Treatment of Chronic Diseases.Molecules20152012211382115610.3390/molecules201219753 26633317
    [Google Scholar]
  24. ForniC. FacchianoF. BartoliM. PierettiS. FacchianoA. D’ArcangeloD. NorelliS. ValleG. NisiniR. BeninatiS. TabolacciC. JadejaR.N. Beneficial role of phytochemicals on oxidative stress and age-related diseases.BioMed Res. Int.201910.1155/2019/8748253
    [Google Scholar]
  25. SchieberM. ChandelN.S. ROS function in redox signaling and oxidative stress.Curr. Biol.20142410R453R46210.1016/j.cub.2014.03.034 24845678
    [Google Scholar]
  26. PisoschiA.M. PopA. The role of antioxidants in the chemistry of oxidative stress: A review.Eur. J. Med. Chem.201597557410.1016/j.ejmech.2015.04.040 25942353
    [Google Scholar]
  27. PavlovićI. KhatebS. MilisavI. MahajnaJ. Nutraceuticals for promoting longevity.Curr. Nutr.20201118
    [Google Scholar]
  28. SharmaK.D. KarkiS. ThakurN.S. AttriS. Chemical composition, functional properties and processing of carrot-a review.J. Food Sci. Technol.2012491223210.1007/s13197‑011‑0310‑7 23572822
    [Google Scholar]
  29. MontillaE.C. ArzabaM.R. HillebrandS. WinterhalterP. Anthocyanin composition of black carrot (Daucus carota ssp. sativus var. atrorubens Alef.) cultivars Antonina, Beta Sweet, Deep Purple, and Purple Haze.J. Agric. Food Chem.20115973385339010.1021/jf104724k 21381748
    [Google Scholar]
  30. Bolton-SmithC. McMurdoM.E. PatersonC.R. MoleP.A. HarveyJ.M. FentonS.T. PrynneC.J. MishraG.D. ShearerM.J. Two-year randomized controlled trial of vitamin K1 (phylloquinone) and vitamin D3 plus calcium on the bone health of older women.J. Bone Miner. Res.200722450951910.1359/jbmr.070116 17243866
    [Google Scholar]
  31. LiangN. KittsD.D. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions.Nutrients201581810.3390/nu8010016 26712785
    [Google Scholar]
  32. PriednieceV. SpalvinsK. IvanovsK. PubuleJ. BlumbergaD. Bioproducts from potatoes. A review.Environ. Clim. Technol.201721182710.1515/rtuect‑2017‑0013
    [Google Scholar]
  33. SchieberA. SaldañaM.D.A. Potato peels: A source of nutritionally and pharmacologically interesting compounds - A review.Food200932329
    [Google Scholar]
  34. GriffinS. TittikpinaN.K. Al-MarbyA. AlkhayerR. DenezhkinP. WitekK. GbogboK.A. BatawilaK. DuvalR.E. NasimM.J. Awadh-AliN.A. KirschG. ChaimbaultP. SchäferK.H. KeckC.M. HandzlikJ. JacobC. Turning waste into value: Nanosized natural plant materials of solanum incanum l. and pterocarpus erinaceus poir with promising antimicrobial activities.Pharmaceutics201682810.3390/pharmaceutics8020011 27104554
    [Google Scholar]
  35. GriffinS. AlkhayerR. MirzoyanS. TurabyanA. ZuccaP. SarfrazM. NasimM.J. TrchounianA. RescignoA. KeckC.M. JacobC. Nanosizing cynomorium: Thumbs up for potential antifungal applications. inventions, 2017, 2, 24.10.3390/inventions2030024
    [Google Scholar]
  36. GriffinS. SarfrazM. FaridaV. NasimM.J. EbokaiweA.P. KeckC.M. JacobC. No time to waste organic waste: Nanosizing converts remains of food processing into refined materials.J. Environ. Manage.201821011412110.1016/j.jenvman.2017.12.084 29331852
    [Google Scholar]
  37. MagwazaL.S. OparaU.L. CronjeP.J. LandahlS. OrtizJ.O. TerryL.A. Rapid methods for extracting and quantifying phenolic compounds in citrus rinds.Food Sci. Nutr.20154141010.1002/fsn3.210 26788305
    [Google Scholar]
  38. Sabeena FarvinK.H. GrejsenH.D. JacobsenC. Potato peel extract as a natural antioxidant in chilled storage of minced horse mackerel (Trachurus trachurus): Effect on lipid and protein oxidation.Food Chem.201213184385110.1016/j.foodchem.2011.09.056
    [Google Scholar]
  39. SharmaO.P. BhatT.K. DPPH antioxidant assay revisited.Food Chem.20091131202120510.1016/j.foodchem.2008.08.008
    [Google Scholar]
  40. BandonieneD. MurkovicM. PfannhauserW. VenskutonisP.R. GruzdieneD. Detection and activity evaluation of radical scavenging compounds by using DPPH free radical and on-line HPLC-DPPH methods.Eur. Food Res. Technol.200221414314710.1007/s00217‑001‑0430‑9
    [Google Scholar]
  41. VasoM. AliW. MasoodM.I. NasimM.J. LilischkisR. SchäferK-H. SchneiderM. PapajaniV.T. Jacob. C. Nanosizing Nigella: A cool alternative to liberate biological activity.Current Nutraceuticlas2020[Epub Ahead of Print10.2174/2665978601999200930143010
    [Google Scholar]
  42. GriffinS. SarfrazM. HartmannS.F. PinnapireddyS.R. NasimM.J. BakowskyU. KeckC.M. JacobC. Resuspendable powders of lyophilized chalcogen particles with activity against microorganisms. Antioxidants, 2018, 7(2), 7.10.3390/antiox702002329382037
    [Google Scholar]
/content/journals/cnt/10.2174/2665978601999200925163905
Loading
/content/journals/cnt/10.2174/2665978601999200925163905
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Antioxidants; carrots; extracts; homogenization; potatoes; suspensions; up-cycling
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test