Skip to content
2000
Volume 2, Issue 2
  • ISSN: 2665-9786
  • E-ISSN: 2665-9794

Abstract

Microorganisms commonly employed in food industry, such as and , are also excellent natural nanotechnologists. They reduce selenite (SeO2-) to form nanoparticles of red selenium (Se0) of exceptional quality and with interesting physical and (bio-)chemical properties.

The production of these nanoparticles has been studied in several relevant microorganisms to gain a better picture of the overall properties and quality of these particles, possible differences between producers, ease of production and, in particular, biological activity.

Several common microorganisms, namely , and have been cultured under standard conditions and 1 mM concentrations of SeO have been converted into red particles of elemental selenium. These particles are characterized extensively with respect to uniformity, size, shape, consistency and, in particular, biological activity against infectious microbes.

Highly uniform amorphous spherical particles of 100 nm to 200 nm in diameter could be produced by several microorganisms, including . Although originating in bacteria and yeast, these particles exhibit antimicrobial activity when employed at concentrations of around 100 µM. This activity may in part be due to the inherent chemistry of selenium and /or of the protein coating of the particles. Interestingly, yeast also forms larger rod-like structures. These micro-needles with around 85 nm in diameter and up to 3 µm in length exhibit considerable antibacterial activity, possibly resulting from additional, physical interactions with cellular structures.

Common microorganisms traditionally employed in the preparation of food produce nanoparticles of selenium which may be harvested and explored as natural antimicrobial agents or antioxidants. These particles provide a fine example of natural nanotechnology with biological activity and applications in the food and food supplementation, medicine, agriculture and cosmetics.

Loading

Article metrics loading...

/content/journals/cnt/10.2174/2665978601999201113152144
2021-07-01
2025-01-09
Loading full text...

Full text loading...

References

  1. PokrowieckiR. PałkaK. MielczarekA. Nanomaterials in dentistry: a cornerstone or a black box?Nanomedicine (Lond.)201813663966710.2217/nnm‑2017‑032929417862
    [Google Scholar]
  2. SantilloD. MillerK. JohnstonP. Microplastics as contaminants in commercially important seafood species.Integr. Environ. Assess. Manag.201713351652110.1002/ieam.190928440928
    [Google Scholar]
  3. CoxK.D. CoverntonG.A. DaviesH.L. DowerJ.F. JuanesF. DudasS.E. Human Consumption of Microplastics.Environ. Sci. Technol.201953127068707410.1021/acs.est.9b0151731184127
    [Google Scholar]
  4. YazdiM.H. MahdaviM. KheradmandE. ShahverdiA.R. The preventive oral supplementation of a selenium nanoparticle-enriched probiotic increases the immune response and lifespan of 4T1 breast cancer bearing mice.Arzneimittelforschung2012621152553110.1055/s‑0032‑132370022945771
    [Google Scholar]
  5. MirjaniR. FaramarziM.A. SharifzadehM. SetayeshN. KhoshayandM.R. ShahverdiA.R. Biosynthesis of tellurium nanoparticles by Lactobacillus plantarum and the effect of nanoparticle-enriched probiotics on the lipid profiles of mice.IET Nanobiotechnol.20159530030510.1049/iet‑nbt.2014.005726435284
    [Google Scholar]
  6. Mohd YusofH. MohamadR. ZaidanU.H. RahmanN.A. Sustainable microbial cell nanofactory for zinc oxide nanoparticles production by zinc-tolerant probiotic Lactobacillus plantarum strain TA4.Microb. Cell Fact.20201911010.1186/s12934‑020‑1279‑631941498
    [Google Scholar]
  7. KorbekandiH. MohseniS. Mardani JouneghaniR. PourhosseinM. IravaniS. Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae.Artif. Cells Nanomed. Biotechnol.201644123523910.3109/21691401.2014.93787025101816
    [Google Scholar]
  8. LimH.A. MishraA. YunS.I. Effect of pH on the extra cellular synthesis of gold and silver nanoparticles by Saccharomyces cerevisae.J. Nanosci. Nanotechnol.201111151852210.1166/jnn.2011.326621446488
    [Google Scholar]
  9. SinghJ. DuttaT. KimK.H. RawatM. SamddarP. KumarP. ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation.J. Nanobiotechnology20181618410.1186/s12951‑018‑0408‑430373622
    [Google Scholar]
  10. GavamukulyaY. El-ShemyH.A. MerokaA.M. MadivoliE.S. MainaE.N. WamunyokoliF. MagomaG. Advances in green nanobiotechnology: Data for synthesis and characterization of silver nanoparticles from ethanolic extracts of fruits and leaves of Annona muricata. Data Brief20192510419410.1016/j.dib.2019.10419431321276
    [Google Scholar]
  11. GourA. JainN.K. Advances in green synthesis of nanoparticles.Artif. Cells Nanomed. Biotechnol.201947184485110.1080/21691401.2019.157787830879351
    [Google Scholar]
  12. AbdelghanyT.M. Al-RajhiA.M.H. Al AbboudM.A. AlawlaqiM.M. MagdahA.G. HelmyE.A.M. MabroukA.S. Recent Advances in Green Synthesis of Silver Nanoparticles and Their Applications: About Future Directions. A Review.Bionanoscience2018851610.1007/s12668‑017‑0413‑3
    [Google Scholar]
  13. Imran DinM. RaniA. Recent advances in the synthesis and stabilization of nickel and nickel oxide nanoparticles: a green adeptness.Int. J. Anal. Chem.20162016351214510.1155/2016/351214527413375
    [Google Scholar]
  14. HouN. XiaY. WangX. LiuH. LiuH. XunL. H2S biotreatment with sulfide-oxidizing heterotrophic bacteria.Biodegradation201829651152410.1007/s10532‑018‑9849‑630141069
    [Google Scholar]
  15. KimberR.L. LewisE.A. ParmeggianiF. SmithK. BagshawH. StarborgT. JoshiN. FigueroaA.I. van der LaanG. CibinG. GianolioD. HaighS.J. PattrickR.A.D. TurnerN.J. LloydJ.R. Biosynthesis and characterization of copper nanoparticles using shewanella oneidensis: application for click chemistry.Small201814101410.1002/smll.20170314529359400
    [Google Scholar]
  16. SiddiqiK.S. HusenA. RaoR.A.K. A review on biosynthesis of silver nanoparticles and their biocidal properties.J. Nanobiotechnol.20181611410.1186/s12951‑018‑0334‑529452593
    [Google Scholar]
  17. DasR.K. PachapurV.L. LonappanL. NaghdiM. PulicharlaR. MaitiS. CledonM. DalilaL.M.A. SarmaS.J. BrarS.K. Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects.Nanotechnol. Environ. Eng.201721810.1007/s41204‑017‑0029‑4
    [Google Scholar]
  18. LengkeM.F. FleetM.E. SouthamG. Synthesis of platinum nanoparticles by reaction of filamentous cyanobacteria with platinum(IV)-chloride complex.Langmuir200622177318732310.1021/la060873s16893232
    [Google Scholar]
  19. PrasadK. JhaA.K. KulkarniA.R. Lactobacillus assisted synthesis of titanium nanoparticles.Nanoscale Res. Lett.2007224825010.1007/s11671‑007‑9060‑x
    [Google Scholar]
  20. SinghR. MannB. SharmaR. SinghS. Application of nanotechnology in functional foods. Nanosci. Sustainable Agric.2019547579
    [Google Scholar]
  21. GonzalezKYG PlazaBAH ParraGA Nutrition in exercise and sports activity: functional foods with nanotechnology, potential applications.Revista Iberoamericana De Ciencias De La Actividad Fisica Y El Deporte20198118130
    [Google Scholar]
  22. BromleyP.J. Nanotechnology and nonpolar active compounds in functional foods: an application note. Bio-nanotechnology: a revolution in food.Biomed. Health Sci.2013697703
    [Google Scholar]
  23. NagyG. PinczesG. PinterG. PocsiI. ProkischJ. BanfalviG. In Situ Electron Microscopy of Lactomicroselenium Particles in Probiotic Bacteria.Int. J. Mol. Sci.20161771710.3390/ijms1707104727376279
    [Google Scholar]
  24. PereiraA.G. GerolisL.G.L. GoncalvesL.S. PedrosaT.A. NevesM.J. Selenized Saccharomyces cerevisiae cells are a green dispenser of nanoparticles.Biomed. Phys. Eng. Express201834,03502810.1088/2057‑1976/aab524
    [Google Scholar]
  25. RoggliV.L. The So-called Short-Fiber Controversy: Literature Review and Critical Analysis.Arch. Pathol. Lab. Med.201513981052105710.5858/arpa.2014‑0466‑RA26230599
    [Google Scholar]
  26. SwansonH.E. MorrisM.C. StinchfieldR.P. EvansE.H. Standard X-ray Diffraction Powder PatternsUnited StatesNational Bureau of Standards1955
    [Google Scholar]
  27. EstevamE.C. GriffinS. NasimM.J. DenezhkinP. SchneiderR. LilischkisR. Dominguez-AlvarezE. WitekK. LataczG. KeckC. SchäferK.H. Kieć-KononowiczK. HandzlikJ. JacobC. Natural selenium particles from staphylococcus carnosus: hazards or particles with particular promise?J. Hazard. Mater.2017324Pt A223010.1016/j.jhazmat.2016.02.00126897703
    [Google Scholar]
  28. GriffinS. MasoodM.I. NasimM.J. SarfrazM. EbokaiweA.P. SchäferK.H. KeckC.M. JacobC. Natural nanoparticles: a particular matter inspired by nature.Antioxidants201771710.3390/antiox701000329286304
    [Google Scholar]
  29. GriffinS. SarfrazM. HartmannS.F. PinnapireddyS.R. NasimM.J. BakowskyU. KeckC.M. JacobC. Resuspendable powders of lyophilized chalcogen particles with activity against microorganisms.Antioxidants201872710.3390/antiox702002329382037
    [Google Scholar]
  30. O’NeillB. Franck Ribery eating a gold steak has p*ssed off a lot of people   it’s hilarious. 2019
    [Google Scholar]
  31. NasimM.J. AliW. AlvarezE.D. JuniorE.D.S. SaleemR.S.Z. JacobC. Reactive selenium species: redox modulation, antioxidant, antimicrobial and anticancer activities. Organoselenium Compounds in Biology and Medicine: Synthesis, Biological and Therapeutic Treatments.The Royal Society of chemistry2017277302
    [Google Scholar]
  32. BansalM.P. KaurP. Selenium, a versatile trace element: current research implications.Indian J. Exp. Biol.200543121119112916359122
    [Google Scholar]
  33. QuivyD. NèveJ. AdlerM. Intake of essential trace elements (selenium, copper and iron) in the nutrition of patients hospitalized with liver cirrhosis.Acta Gastroenterol. Belg.19905332862912077793
    [Google Scholar]
  34. MánikováD. LetavayováL.M. VlasákováD. KošíkP. EstevamE.C. NasimM.J. GruhlkeM. SlusarenkoA. BurkholzT. JacobC. ChovanecM. Intracellular diagnostics: hunting for the mode of action of redox-modulating selenium compounds in selected model systems.Molecules2014198122581227910.3390/molecules19081225825123189
    [Google Scholar]
  35. EstevamE.C. WitekK. FaulstichL. NasimM.J. LataczG. Domínguez-ÁlvarezE. Kieć-KononowiczK. DemasiM. HandzlikJ. JacobC. Aspects of a distinct cytotoxicity of selenium salts and organic selenides in living cells with possible implications for drug design.Molecules2015208138941391210.3390/molecules20081389426263963
    [Google Scholar]
  36. BrodinO. EksborgS. WallenbergM. Asker-HagelbergC. LarsenE.H. MohlkertD. Lenneby-HelledayC. JacobssonH. LinderS. MisraS. BjörnstedtM. Pharmacokinetics and toxicity of sodium selenite in the treatment of patients with carcinoma in a phase i clinical trial: the SECAR Study.Nutrients2015764978499410.3390/nu706497826102212
    [Google Scholar]
  37. VallabaniN.V.S. SinghS. Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics.3 Biotech.20188279
    [Google Scholar]
  38. PresentatoA. PiacenzaE. DarbandiA. AnikovskiyM. CappellettiM. ZannoniD. TurnerR.J. Assembly, growth and conductive properties of tellurium nanorods produced by rhodococcus aetherivorans BCP1.Sci. Rep.201881392310.1038/s41598‑018‑22320‑x29500440
    [Google Scholar]
/content/journals/cnt/10.2174/2665978601999201113152144
Loading
/content/journals/cnt/10.2174/2665978601999201113152144
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test