Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2665-9786
  • E-ISSN: 2665-9794

Abstract

To summarize the main findings on nutraceuticals that slow aging processes by delaying and even preventing the development of multiple chronic diseases and improve productivity and quality of life in the elderly.

Literature search of the relevant papers known to the authors was conducted.

The most robust environmental manipulation for extending lifespan is caloric restriction without malnutrition. Some nutraceuticals can mimic caloric restriction effects. This review will focus on the nutraceuticals that impact insulin-like growth factor 1 receptor signaling and sirtuin activity in mediating longevity and healthspan.

Aging is considered to be synonymous with the appearance of major diseases and an overall decline in physical and mental performance. Caloric restriction is well established as a strategy to extend lifespan without malnutrition. A variety of nutraceuticals were reported to mimic the effect of caloric restriction by modulating the activity of insulin-like growth factor 1 receptor signaling and sirtuin activity and consequently promote longevity and healthspan.

Loading

Article metrics loading...

/content/journals/cnt/10.2174/2665978601666200213121512
2020-05-01
2025-01-19
Loading full text...

Full text loading...

/deliver/fulltext/cnt/1/1/CNT-1-1-18.html?itemId=/content/journals/cnt/10.2174/2665978601666200213121512&mimeType=html&fmt=ahah

References

  1. BarbieriM. BonafèM. FranceschiC. PaolissoG. Insulin/IGF-I-signaling pathway: an evolutionarily conserved mechanism of longevity from yeast to humans.Am. J. Physiol. Endocrinol. Metab.20032855E1064E107110.1152/ajpendo.00296.200314534077
    [Google Scholar]
  2. JunnilaR.K. ListE.O. BerrymanD.E. MurreyJ.W. KopchickJ.J. The GH/IGF-1 axis in ageing and longevity.Nat. Rev. Endocrinol.20139636637610.1038/nrendo.2013.6723591370
    [Google Scholar]
  3. ZhangJ. LiuF. Tissue-specific insulin signaling in the regulation of metabolism and aging.IUBMB Life201466748549510.1002/iub.129325087968
    [Google Scholar]
  4. MartinsR. LithgowG.J. LinkW. Long live FOXO: unraveling the role of FOXO proteins in aging and longevity.Aging Cell201615219620710.1111/acel.1242726643314
    [Google Scholar]
  5. CarterM.E. BrunetA. FOXO transcription factors.Curr. Biol.2007174R113R11410.1016/j.cub.2007.01.00817307039
    [Google Scholar]
  6. WolffS. DillinA. The trifecta of aging in Caenorhabditis elegans.Exp. Gerontol.2006411089490310.1016/j.exger.2006.06.05416919905
    [Google Scholar]
  7. KenyonC. A conserved regulatory system for aging.Cell2001105216516810.1016/S0092‑8674(01)00306‑311336665
    [Google Scholar]
  8. ShiR. BerkelH.J. YuH. Insulin-like growth factor-I and prostate cancer: a meta-analysis.Br. J. Cancer200185799199610.1054/bjoc.2001.196111592771
    [Google Scholar]
  9. FontanaL. PartridgeL. LongoV.D. Extending healthy life span--from yeast to humans.Science2010328597632132610.1126/science.117253920395504
    [Google Scholar]
  10. SvenssonJ. SjögrenK. FäldtJ. AnderssonN. IsakssonO. JanssonJ.O. OhlssonC. Liver-derived IGF-I regulates mean life span in mice.PLoS One201167 e2264010.1371/journal.pone.002264021799924
    [Google Scholar]
  11. HolzenbergerM. DupontJ. DucosB. LeneuveP. GéloënA. EvenP.C. CerveraP. Le BoucY. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice.Nature2003421691918218710.1038/nature0129812483226
    [Google Scholar]
  12. BokovA.F. GargN. IkenoY. ThakurS. MusiN. DeFronzoR.A. ZhangN. EricksonR.C. GelfondJ. HubbardG.B. AdamoM.L. RichardsonA. Does reduced IGF-1R signaling in Igf1r+/- mice alter aging?PLoS One2011611 e2689110.1371/journal.pone.002689122132081
    [Google Scholar]
  13. BonafèM. BarbieriM. MarchegianiF. OlivieriF. RagnoE. GiampieriC. MugianesiE. CenturelliM. FranceschiC. PaolissoG. Polymorphic variants of insulin-like growth factor I (IGF-I) receptor and phosphoinositide 3-kinase genes affect IGF-I plasma levels and human longevity: cues for an evolutionarily conserved mechanism of life span control.J. Clin. Endocrinol. Metab.20038873299330410.1210/jc.2002‑02181012843179
    [Google Scholar]
  14. BarbieriM. BoccardiV. EspositoA. PapaM. VestiniF. RizzoM.R. PaolissoG. A/ASP/VAL allele combination of IGF1R, IRS2, and UCP2 genes is associated with better metabolic profile, preserved energy expenditure parameters, and low mortality rate in longevity.Age (Dordr.)201234123524510.1007/s11357‑011‑9210‑z21340542
    [Google Scholar]
  15. TazearslanC. HuangJ. BarzilaiN. SuhY. Impaired IGF1R signaling in cells expressing longevity-associated human IGF1R alleles.Aging Cell201110355155410.1111/j.1474‑9726.2011.00697.x21388493
    [Google Scholar]
  16. SuhY. AtzmonG. ChoM.O. HwangD. LiuB. LeahyD.J. BarzilaiN. CohenP. Functionally significant insulin-like growth factor I receptor mutations in centenarians.Proc. Natl. Acad. Sci. USA200810593438344210.1073/pnas.070546710518316725
    [Google Scholar]
  17. HarperJ.M. DurkeeS.J. DyskoR.C. AustadS.N. MillerR.A. Genetic modulation of hormone levels and life span in hybrids between laboratory and wild-derived mice.J. Gerontol. A Biol. Sci. Med. Sci.200661101019102910.1093/gerona/61.10.101917077194
    [Google Scholar]
  18. MurakamiS. Stress resistance in long-lived mouse models.Exp. Gerontol.200641101014101910.1016/j.exger.2006.06.06116962277
    [Google Scholar]
  19. FuldaS. GormanA.M. HoriO. SamaliA. Cellular stress responses: cell survival and cell death.Int. J. Cell Biol.20102010 21407410.1155/2010/21407420182529
    [Google Scholar]
  20. WullschlegerS. LoewithR. HallM.N. TOR signaling in growth and metabolism.Cell2006124347148410.1016/j.cell.2006.01.01616469695
    [Google Scholar]
  21. Guevara-AguirreJ. BalasubramanianP. Guevara-AguirreM. WeiM. MadiaF. ChengC.W. HwangD. Martin-MontalvoA. SaavedraJ. InglesS. de CaboR. CohenP. LongoV.D. Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans.Sci. Transl. Med.2011370 70ra1310.1126/scitranslmed.300184521325617
    [Google Scholar]
  22. WillcoxB.J. DonlonT.A. HeQ. ChenR. GroveJ.S. YanoK. MasakiK.H. WillcoxD.C. RodriguezB. CurbJ.D. FOXO3A genotype is strongly associated with human longevity.Proc. Natl. Acad. Sci. USA200810537139871399210.1073/pnas.080103010518765803
    [Google Scholar]
  23. van HeemstD. BeekmanM. MooijaartS.P. HeijmansB.T. BrandtB.W. ZwaanB.J. SlagboomP.E. WestendorpR.G. Reduced insulin/IGF-1 signalling and human longevity.Aging Cell200542798510.1111/j.1474‑9728.2005.00148.x15771611
    [Google Scholar]
  24. PawlikowskaL. HuD. HuntsmanS. SungA. ChuC. ChenJ. JoynerA.H. SchorkN.J. HsuehW.C. ReinerA.P. PsatyB.M. AtzmonG. BarzilaiN. CummingsS.R. BrownerW.S. KwokP.Y. ZivE. Study of Osteoporotic Fractures Association of common genetic variation in the insulin/IGF1 signaling pathway with human longevity.Aging Cell20098446047210.1111/j.1474‑9726.2009.00493.x19489743
    [Google Scholar]
  25. AnselmiC.V. MaloviniA. RoncaratiR. NovelliV. VillaF. CondorelliG. BellazziR. PucaA.A. Association of the FOXO3A locus with extreme longevity in a southern Italian centenarian study.Rejuvenation Res.20091229510410.1089/rej.2008.082719415983
    [Google Scholar]
  26. SaneseP. ForteG. DisciglioV. GrossiV. SimoneC. FOXO3 on the Road to Longevity: Lessons From SNPs and Chromatin Hubs.Comput. Struct. Biotechnol. J.20191773774510.1016/j.csbj.2019.06.01131303978
    [Google Scholar]
  27. McCayC.M. CrowellM.F. MaynardL.A. The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935.Nutrition1989531551712520283
    [Google Scholar]
  28. OmodeiD. FontanaL. Calorie restriction and prevention of age-associated chronic disease.FEBS Lett.2011585111537154210.1016/j.febslet.2011.03.01521402069
    [Google Scholar]
  29. Larson-MeyerD.E. NewcomerB.R. HeilbronnL.K. VolaufovaJ. SmithS.R. AlfonsoA.J. LefevreM. RoodJ.C. WilliamsonD.A. RavussinE. Pennington CALERIE Team Effect of 6-month calorie restriction and exercise on serum and liver lipids and markers of liver function.Obesity (Silver Spring)20081661355136210.1038/oby.2008.20118421281
    [Google Scholar]
  30. HeilbronnL.K. de JongeL. FrisardM.I. DeLanyJ.P. Larson-MeyerD.E. RoodJ. NguyenT. MartinC.K. VolaufovaJ. MostM.M. GreenwayF.L. SmithS.R. DeutschW.A. WilliamsonD.A. RavussinE. Pennington CALERIE Team Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial.JAMA2006295131539154810.1001/jama.295.13.153916595757
    [Google Scholar]
  31. ColmanR.J. AndersonR.M. JohnsonS.C. KastmanE.K. KosmatkaK.J. BeasleyT.M. AllisonD.B. CruzenC. SimmonsH.A. KemnitzJ.W. WeindruchR. Caloric restriction delays disease onset and mortality in rhesus monkeys.Science2009325593720120410.1126/science.117363519590001
    [Google Scholar]
  32. MattisonJ.A. RothG.S. BeasleyT.M. TilmontE.M. HandyA.M. HerbertR.L. LongoD.L. AllisonD.B. YoungJ.E. BryantM. BarnardD. WardW.F. QiW. IngramD.K. de CaboR. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study.Nature2012489741531832110.1038/nature1143222932268
    [Google Scholar]
  33. KapahiP. KaeberleinM. HansenM. Dietary restriction and lifespan: Lessons from invertebrate models.Ageing Res. Rev.20173931410.1016/j.arr.2016.12.00528007498
    [Google Scholar]
  34. HarrelaM. KoistinenH. KaprioJ. LehtovirtaM. TuomilehtoJ. ErikssonJ. ToivanenL. KoskenvuoM. LeinonenP. KoistinenR. SeppäläM. Genetic and environmental components of interindividual variation in circulating levels of IGF-I, IGF-II, IGFBP-1, and IGFBP-3.J. Clin. Invest.199698112612261510.1172/JCI1190818958225
    [Google Scholar]
  35. HongY. PedersenN.L. BrismarK. HallK. de FaireU. Quantitative genetic analyses of insulin-like growth factor I (IGF-I), IGF-binding protein-1, and insulin levels in middle-aged and elderly twins.J. Clin. Endocrinol. Metab.1996815179117978626837
    [Google Scholar]
  36. ThissenJ.P. KetelslegersJ.M. UnderwoodL.E. Nutritional regulation of the insulin-like growth factors.Endocr. Rev.1994151801018156941
    [Google Scholar]
  37. UnderwoodL.E. Nutritional regulation of IGF-I and IGFBPs.J. Pediatr. Endocrinol. Metab.19969Suppl. 33033128887175
    [Google Scholar]
  38. ChenW. SudjiI.R. WangE. JoubertE. van WykB.E. WinkM. Ameliorative effect of aspalathin from rooibos (Aspalathus linearis) on acute oxidative stress in Caenorhabditis elegans.Phytomedicine2013203-438038623218401
    [Google Scholar]
  39. PietschK. SaulN. MenzelR. StürzenbaumS.R. SteinbergC.E. Quercetin mediated lifespan extension in Caenorhabditis elegans is modulated by age-1, daf-2, sek-1 and unc-43.Biogerontology200910556557810.1007/s10522‑008‑9199‑619043800
    [Google Scholar]
  40. HadaB. YooM.R. SeongK.M. JinY.W. MyeongH.K. MinK.J. D-chiro-inositol and pinitol extend the life span of Drosophila melanogaster.J. Gerontol. A Biol. Sci. Med. Sci.201368322623410.1093/gerona/gls15622843669
    [Google Scholar]
  41. SiH. FuZ. BabuP.V. ZhenW. LeroithT. MeaneyM.P. VoelkerK.A. JiaZ. GrangeR.W. LiuD. Dietary epicatechin promotes survival of obese diabetic mice and Drosophila melanogaster.J. Nutr.201114161095110010.3945/jn.110.13427021525262
    [Google Scholar]
  42. BaurJ.A. PearsonK.J. PriceN.L. JamiesonH.A. LerinC. KalraA. PrabhuV.V. AllardJ.S. Lopez-LluchG. LewisK. PistellP.J. PoosalaS. BeckerK.G. BossO. GwinnD. WangM. RamaswamyS. FishbeinK.W. SpencerR.G. LakattaE.G. Le CouteurD. ShawR.J. NavasP. PuigserverP. IngramD.K. de CaboR. SinclairD.A. Resveratrol improves health and survival of mice on a high-calorie diet.Nature2006444711733734210.1038/nature0535417086191
    [Google Scholar]
  43. PearsonK.J. BaurJ.A. LewisK.N. PeshkinL. PriceN.L. LabinskyyN. SwindellW.R. KamaraD. MinorR.K. PerezE. JamiesonH.A. ZhangY. DunnS.R. SharmaK. PleshkoN. WoollettL.A. CsiszarA. IkenoY. Le CouteurD. ElliottP.J. BeckerK.G. NavasP. IngramD.K. WolfN.S. UngvariZ. SinclairD.A. de CaboR. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span.Cell Metab.20088215716810.1016/j.cmet.2008.06.01118599363
    [Google Scholar]
  44. MillerR.A. HarrisonD.E. AstleC.M. BaurJ.A. BoydA.R. de CaboR. FernandezE. FlurkeyK. JavorsM.A. NelsonJ.F. OrihuelaC.J. PletcherS. SharpZ.D. SinclairD. StarnesJ.W. WilkinsonJ.E. NadonN.L. StrongR. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice.J. Gerontol. A Biol. Sci. Med. Sci.201166219120110.1093/gerona/glq17820974732
    [Google Scholar]
  45. LiuC. LianF. SmithD.E. RussellR.M. WangX.D. Lycopene supplementation inhibits lung squamous metaplasia and induces apoptosis via up-regulating insulin-like growth factor-binding protein 3 in cigarette smoke-exposed ferrets.Cancer Res.200363123138314412810641
    [Google Scholar]
  46. KarasM. AmirH. FishmanD. DanilenkoM. SegalS. NahumA. KoifmannA. GiatY. LevyJ. SharoniY. Lycopene interferes with cell cycle progression and insulin-like growth factor I signaling in mammary cancer cells.Nutr. Cancer200036110111110.1207/S15327914NC3601_1410798222
    [Google Scholar]
  47. KucukO. SarkarF.H. SakrW. DjuricZ. PollakM.N. KhachikF. LiY.W. BanerjeeM. GrignonD. BertramJ.S. CrissmanJ.D. PontesE.J. WoodD.P.Jr Phase II randomized clinical trial of lycopene supplementation before radical prostatectomy.Cancer Epidemiol. Biomarkers Prev.200110886186811489752
    [Google Scholar]
  48. MaJ. GiovannucciE. PollakM. ChanJ.M. GazianoJ.M. WillettW. StampferM.J. Milk intake, circulating levels of insulin-like growth factor-I, and risk of colorectal cancer in men.J. Natl. Cancer Inst.200193171330133610.1093/jnci/93.17.133011535708
    [Google Scholar]
  49. HolmesM.D. PollakM.N. WillettW.C. HankinsonS.E. Dietary correlates of plasma insulin-like growth factor I and insulin-like growth factor binding protein 3 concentrations.Cancer Epidemiol. Biomarkers Prev.200211985286112223429
    [Google Scholar]
  50. DienerA. RohrmannS. Associations of serum carotenoid concentrations and fruit or vegetable consumption with serum insulin-like growth factor (IGF)-1 and IGF binding protein-3 concentrations in the Third National Health and Nutrition Examination Survey (NHANES III).J. Nutr. Sci.2016 5e1310.1017/jns.2016.127313849
    [Google Scholar]
  51. ZhuZ. JiangW. ThompsonH.J. Mechanisms by which energy restriction inhibits rat mammary carcinogenesis: in vivo effects of corticosterone on cell cycle machinery in mammary carcinomas.Carcinogenesis20032471225123110.1093/carcin/bgg07712807724
    [Google Scholar]
  52. EdwardsC. CanfieldJ. CopesN. RehanM. LippsD. BradshawP.C. D-beta-hydroxybutyrate extends lifespan in C. elegans.Aging (Albany NY)20146862164410.18632/aging.10068325127866
    [Google Scholar]
  53. VeechR.L. BradshawP.C. ClarkeK. CurtisW. PawloskyR. KingM.T. Ketone bodies mimic the life span extending properties of caloric restriction.IUBMB Life201769530531410.1002/iub.162728371201
    [Google Scholar]
  54. NewmanJ.C. VerdinE. Ketone bodies as signaling metabolites.Trends Endocrinol. Metab.2014251425210.1016/j.tem.2013.09.00224140022
    [Google Scholar]
  55. MonteroJ.C. SeoaneS. OcañaA. PandiellaA. Inhibition of SRC family kinases and receptor tyrosine kinases by dasatinib: possible combinations in solid tumors.Clin. Cancer Res.201117175546555221670084
    [Google Scholar]
  56. ChangQ. JorgensenC. PawsonT. HedleyD.W. Effects of dasatinib on EphA2 receptor tyrosine kinase activity and downstream signalling in pancreatic cancer.Br. J. Cancer20089971074108210.1038/sj.bjc.660467618797457
    [Google Scholar]
  57. OlaveN.C. GrenettM.H. CadeirasM. GrenettH.E. HigginsP.J. Upstream stimulatory factor-2 mediates quercetin-induced suppression of PAI-1 gene expression in human endothelial cells.J. Cell. Biochem.2010111372072610.1002/jcb.2276020626032
    [Google Scholar]
  58. BruningA. Inhibition of mTOR signaling by quercetin in cancer treatment and prevention.Anticancer. Agents Med. Chem.20131371025103110.2174/1871520611313999011423272907
    [Google Scholar]
  59. ZhuY. TchkoniaT. PirtskhalavaT. GowerA.C. DingH. GiorgadzeN. PalmerA.K. IkenoY. HubbardG.B. LenburgM. O’HaraS.P. LaRussoN.F. MillerJ.D. RoosC.M. VerzosaG.C. LeBrasseurN.K. WrenJ.D. FarrJ.N. KhoslaS. StoutM.B. McGowanS.J. Fuhrmann-StroissniggH. GurkarA.U. ZhaoJ. ColangeloD. DorronsoroA. LingY.Y. BarghouthyA.S. NavarroD.C. SanoT. RobbinsP.D. NiedernhoferL.J. KirklandJ.L. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs.Aging Cell201514464465810.1111/acel.1234425754370
    [Google Scholar]
  60. XuM. PirtskhalavaT. FarrJ.N. WeigandB.M. PalmerA.K. WeivodaM.M. InmanC.L. OgrodnikM.B. HachfeldC.M. FraserD.G. OnkenJ.L. JohnsonK.O. VerzosaG.C. LanghiL.G.P. WeiglM. GiorgadzeN. LeBrasseurN.K. MillerJ.D. JurkD. SinghR.J. AllisonD.B. EjimaK. HubbardG.B. IkenoY. CubroH. GarovicV.D. HouX. WerohaS.J. RobbinsP.D. NiedernhoferL.J. KhoslaS. TchkoniaT. KirklandJ.L. Senolytics improve physical function and increase lifespan in old age.Nat. Med.20182481246125610.1038/s41591‑018‑0092‑929988130
    [Google Scholar]
  61. MaoK. QuipildorG.F. TabrizianT. NovajA. GuanF. WaltersR.O. DelahayeF. HubbardG.B. IkenoY. EjimaK. LiP. AllisonD.B. Salimi-MoosaviH. BeltranP.J. CohenP. BarzilaiN. HuffmanD.M. Late-life targeting of the IGF-1 receptor improves healthspan and lifespan in female mice.Nat. Commun.201891239410.1038/s41467‑018‑04805‑529921922
    [Google Scholar]
  62. GuarenteL. PicardF. Calorie restriction--the SIR2 connection.Cell2005120447348210.1016/j.cell.2005.01.02915734680
    [Google Scholar]
  63. PouloseN. RajuR. Sirtuin regulation in aging and injury.Biochim. Biophys. Acta20151852112442245510.1016/j.bbadis.2015.08.01726303641
    [Google Scholar]
  64. Bosch-PreseguéL. VaqueroA. Sirtuin-dependent epigenetic regulation in the maintenance of genome integrity.FEBS J.201528291745176710.1111/febs.1305325223884
    [Google Scholar]
  65. Barcena de ArellanoM.L. PozdniakovaS. KühlA.A. BaczkoI. LadilovY. Regitz-ZagrosekV. Sex differences in the aging human heart: decreased sirtuins, pro-inflammatory shift and reduced anti-oxidative defense.Aging (Albany NY)20191171918193310.18632/aging.10188130964749
    [Google Scholar]
  66. VerdinE. HirscheyM.D. FinleyL.W. HaigisM.C. Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling.Trends Biochem. Sci.2010351266967510.1016/j.tibs.2010.07.00320863707
    [Google Scholar]
  67. ChangH.C. GuarenteL. SIRT1 and other sirtuins in metabolism.Trends Endocrinol. Metab.201425313814510.1016/j.tem.2013.12.00124388149
    [Google Scholar]
  68. GuarenteL. Sirtuins in aging and disease.Cold Spring Harb. Symp. Quant. Biol.20077248348810.1101/sqb.2007.72.02418419308
    [Google Scholar]
  69. MasriS. Sassone-CorsiP. Sirtuins and the circadian clock: bridging chromatin and metabolism.Sci. Signal.20147342re610.1126/scisignal.200568525205852
    [Google Scholar]
  70. FryeR.A. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins.Biochem. Biophys. Res. Commun.2000273279379810.1006/bbrc.2000.300010873683
    [Google Scholar]
  71. LeeS.H. LeeJ.H. LeeH.Y. MinK.J. Sirtuin signaling in cellular senescence and aging.BMB Rep.2019521243410.5483/BMBRep.2019.52.1.29030526767
    [Google Scholar]
  72. VaqueroA. ScherM.B. LeeD.H. SuttonA. ChengH.L. AltF.W. SerranoL. SternglanzR. ReinbergD. SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis.Genes Dev.200620101256126110.1101/gad.141270616648462
    [Google Scholar]
  73. MichishitaE. ParkJ.Y. BurneskisJ.M. BarrettJ.C. HorikawaI. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins.Mol. Biol. Cell200516104623463510.1091/mbc.e05‑01‑003316079181
    [Google Scholar]
  74. OsborneB. BentleyN.L. MontgomeryM.K. TurnerN. The role of mitochondrial sirtuins in health and disease.Free Radic. Biol. Med.201610016417410.1016/j.freeradbiomed.2016.04.19727164052
    [Google Scholar]
  75. MorigiM. PericoL. BenigniA. Sirtuins in renal health and disease.J. Am. Soc. Nephrol.20182971799180910.1681/ASN.201711121829712732
    [Google Scholar]
  76. NishidaY. RardinM.J. CarricoC. HeW. SahuA.K. GutP. NajjarR. FitchM. HellersteinM. GibsonB.W. VerdinE. SIRT5 Regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target.Mol. Cell201559232133210.1016/j.molcel.2015.05.02226073543
    [Google Scholar]
  77. ParkJ. ChenY. TishkoffD.X. PengC. TanM. DaiL. XieZ. ZhangY. ZwaansB.M. SkinnerM.E. LombardD.B. ZhaoY. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways.Mol. Cell201350691993010.1016/j.molcel.2013.06.00123806337
    [Google Scholar]
  78. TanM. PengC. AndersonK.A. ChhoyP. XieZ. DaiL. ParkJ. ChenY. HuangH. ZhangY. RoJ. WagnerG.R. GreenM.F. MadsenA.S. SchmiesingJ. PetersonB.S. XuG. IlkayevaO.R. MuehlbauerM.J. BraulkeT. MühlhausenC. BackosD.S. OlsenC.A. McGuireP.J. PletcherS.D. LombardD.B. HirscheyM.D. ZhaoY. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5.Cell Metab.201419460561710.1016/j.cmet.2014.03.01424703693
    [Google Scholar]
  79. LisztG. FordE. KurtevM. GuarenteL. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase.J. Biol. Chem.200528022213132132010.1074/jbc.M41329620015795229
    [Google Scholar]
  80. van de VenR.A.H. SantosD. HaigisM.C. Mitochondrial sirtuins and molecular mechanisms of aging.Trends Mol. Med.201723432033110.1016/j.molmed.2017.02.00528285806
    [Google Scholar]
  81. PoljsakB. MilisavI. NAD+ as the link between oxidative stress, inflammation, caloric restriction, exercise, DNA repair, longevity, and health span.Rejuvenation Res.201619540641510.1089/rej.2015.176726725653
    [Google Scholar]
  82. CostfordS.R. BajpeyiS. PasaricaM. AlbaradoD.C. ThomasS.C. XieH. ChurchT.S. JubriasS.A. ConleyK.E. SmithS.R. Skeletal muscle NAMPT is induced by exercise in humans.Am. J. Physiol. Endocrinol. Metab.20102981E117E12610.1152/ajpendo.00318.200919887595
    [Google Scholar]
  83. BittermanK.J. AndersonR.M. CohenH.Y. Latorre-EstevesM. SinclairD.A. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1.J. Biol. Chem.200227747450994510710.1074/jbc.M20567020012297502
    [Google Scholar]
  84. ImaiS. GuarenteL. NAD+ and sirtuins in aging and disease.Trends Cell Biol.201424846447110.1016/j.tcb.2014.04.00224786309
    [Google Scholar]
  85. SasakiT. MaierB. BartkeA. ScrableH. Progressive loss of SIRT1 with cell cycle withdrawal.Aging Cell20065541342210.1111/j.1474‑9726.2006.00235.x16939484
    [Google Scholar]
  86. StamatovicS.M. Martinez-RevollarG. HuA. ChoiJ. KeepR.F. AndjelkovicA.V. Decline in Sirtuin-1 expression and activity plays a critical role in blood-brain barrier permeability in aging.Neurobiol. Dis.201912610511610.1016/j.nbd.2018.09.00630196051
    [Google Scholar]
  87. RimmeléP. BigarellaC.L. LiangR. IzacB. Dieguez-GonzalezR. BarbetG. DonovanM. BrugnaraC. BlanderJ.M. SinclairD.A. GhaffariS. Aging-like phenotype and defective lineage specification in SIRT1-deleted hematopoietic stem and progenitor cells.Stem Cell Reports201431445910.1016/j.stemcr.2014.04.01525068121
    [Google Scholar]
  88. GongH. PangJ. HanY. DaiY. DaiD. CaiJ. ZhangT.M. Age-dependent tissue expression patterns of Sirt1 in senescence-accelerated mice.Mol. Med. Rep.20141063296330210.3892/mmr.2014.264825323555
    [Google Scholar]
  89. Lafontaine-LacasseM. RichardD. PicardF. Effects of age and gender on Sirt 1 mRNA expressions in the hypothalamus of the mouse.Neurosci. Lett.201048011310.1016/j.neulet.2010.01.00820074616
    [Google Scholar]
  90. YamashitaS. OgawaK. IkeiT. UdonoM. FujikiT. KatakuraY. SIRT1 prevents replicative senescence of normal human umbilical cord fibroblast through potentiating the transcription of human telomerase reverse transcriptase gene.Biochem. Biophys. Res. Commun.2012417163063410.1016/j.bbrc.2011.12.02122197555
    [Google Scholar]
  91. WątrobaM. DudekI. SkodaM. StangretA. RzodkiewiczP. SzukiewiczD. Sirtuins, epigenetics and longevity.Ageing Res. Rev.201740111910.1016/j.arr.2017.08.00128789901
    [Google Scholar]
  92. BrunetA. SweeneyL.B. SturgillJ.F. ChuaK.F. GreerP.L. LinY. TranH. RossS.E. MostoslavskyR. CohenH.Y. HuL.S. ChengH.L. JedrychowskiM.P. GygiS.P. SinclairD.A. AltF.W. GreenbergM.E. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase.Science200430356662011201510.1126/science.109463714976264
    [Google Scholar]
  93. LangleyE. PearsonM. FarettaM. BauerU.M. FryeR.A. MinucciS. PelicciP.G. KouzaridesT. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence.EMBO J.200221102383239610.1093/emboj/21.10.238312006491
    [Google Scholar]
  94. VaqueroA. The conserved role of sirtuins in chromatin regulation.Int. J. Dev. Biol.2009532-330332210.1387/ijdb.082675av19378253
    [Google Scholar]
  95. DasC. LuciaM.S. HansenK.C. TylerJ.K. CBP/p300-mediated acetylation of histone H3 on lysine 56.Nature2009459724311311710.1038/nature0786119270680
    [Google Scholar]
  96. SinclairD.A. GuarenteL. Extrachromosomal rDNA circles--a cause of aging in yeast.Cell19979171033104210.1016/S0092‑8674(00)80493‑69428525
    [Google Scholar]
  97. TissenbaumH.A. GuarenteL. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans.Nature2001410682522723010.1038/3506563811242085
    [Google Scholar]
  98. RoginaB. HelfandS.L. Sir2 mediates longevity in the fly through a pathway related to calorie restriction.Proc. Natl. Acad. Sci. USA200410145159981600310.1073/pnas.040418410115520384
    [Google Scholar]
  99. KanfiY. NaimanS. AmirG. PeshtiV. ZinmanG. NahumL. Bar-JosephZ. CohenH.Y. The sirtuin SIRT6 regulates lifespan in male mice.Nature2012483738821822110.1038/nature1081522367546
    [Google Scholar]
  100. SatohA. BraceC.S. RensingN. CliftenP. WozniakD.F. HerzogE.D. YamadaK.A. ImaiS. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH.Cell Metab.201318341643010.1016/j.cmet.2013.07.01324011076
    [Google Scholar]
  101. VazquezB.N. ThackrayJ.K. SimonetN.G. Kane-GoldsmithN. Martinez-RedondoP. NguyenT. BuntingS. VaqueroA. TischfieldJ.A. SerranoL. SIRT7 promotes genome integrity and modulates non-homologous end joining DNA repair.EMBO J.201635141488150310.15252/embj.20159349927225932
    [Google Scholar]
  102. MostoslavskyR. ChuaK.F. LombardD.B. PangW.W. FischerM.R. GellonL. LiuP. MostoslavskyG. FrancoS. MurphyM.M. MillsK.D. PatelP. HsuJ.T. HongA.L. FordE. ChengH.L. KennedyC. NunezN. BronsonR. FrendeweyD. AuerbachW. ValenzuelaD. KarowM. HottigerM.O. HurstingS. BarrettJ.C. GuarenteL. MulliganR. DempleB. YancopoulosG.D. AltF.W. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6.Cell2006124231532910.1016/j.cell.2005.11.04416439206
    [Google Scholar]
  103. FerrerC.M. AldersM. PostmaA.V. ParkS. KleinM.A. CetinbasM. PajkrtE. GlasA. van KoningsbruggenS. ChristoffelsV.M. MannensM.M.A.M. KnegtL. EtchegarayJ.P. SadreyevR.I. DenuJ.M. MostoslavskyG. van MaarleM.C. MostoslavskyR. An inactivating mutation in the histone deacetylase SIRT6 causes human perinatal lethality.Genes Dev.2018325-637338810.1101/gad.307330.11729555651
    [Google Scholar]
  104. GhoshH.S. McBurneyM. RobbinsP.D. SIRT1 negatively regulates the mammalian target of rapamycin.PLoS One201052 e919910.1371/journal.pone.000919920169165
    [Google Scholar]
  105. NisoliE. TonelloC. CardileA. CozziV. BracaleR. TedescoL. FalconeS. ValerioA. CantoniO. ClementiE. MoncadaS. CarrubaM.O. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS.Science2005310574631431710.1126/science.111772816224023
    [Google Scholar]
  106. CohenH.Y. MillerC. BittermanK.J. WallN.R. HekkingB. KesslerB. HowitzK.T. GorospeM. de CaboR. SinclairD.A. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase.Science2004305568239039210.1126/science.109919615205477
    [Google Scholar]
  107. CivitareseA.E. CarlingS. HeilbronnL.K. HulverM.H. UkropcovaB. DeutschW.A. SmithS.R. RavussinE. CALERIE Pennington Team Calorie restriction increases muscle mitochondrial biogenesis in healthy humans.PLoS Med.200743 e7610.1371/journal.pmed.004007617341128
    [Google Scholar]
  108. LanF. CacicedoJ.M. RudermanN. IdoY. SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation.J. Biol. Chem.200828341276282763510.1074/jbc.M80571120018687677
    [Google Scholar]
  109. McCubreyJ.A. LertpiriyapongK. SteelmanL.S. AbramsS.L. YangL.V. MurataR.M. RosalenP.L. ScalisiA. NeriL.M. CoccoL. RattiS. MartelliA.M. LaidlerP. Dulińska-LitewkaJ. RakusD. GizakA. LombardiP. NicolettiF. CandidoS. LibraM. MontaltoG. CervelloM. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs.Aging (Albany NY)2017961477153610.18632/aging.10125028611316
    [Google Scholar]
  110. HowitzK.T. BittermanK.J. CohenH.Y. LammingD.W. LavuS. WoodJ.G. ZipkinR.E. ChungP. KisielewskiA. ZhangL.L. SchererB. SinclairD.A. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan.Nature2003425695419119610.1038/nature0196012939617
    [Google Scholar]
  111. MorrisB.J. Seven sirtuins for seven deadly diseases of aging.Free Radic. Biol. Med.20135613317110.1016/j.freeradbiomed.2012.10.52523104101
    [Google Scholar]
  112. UmJ.H. ParkS.J. KangH. YangS. ForetzM. McBurneyM.W. KimM.K. ViolletB. ChungJ.H. AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol.Diabetes201059355456310.2337/db09‑048219934007
    [Google Scholar]
  113. ParkS.J. AhmadF. PhilpA. BaarK. WilliamsT. LuoH. KeH. RehmannH. TaussigR. BrownA.L. KimM.K. BeavenM.A. BurginA.B. ManganielloV. ChungJ.H. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases.Cell2012148342143310.1016/j.cell.2012.01.01722304913
    [Google Scholar]
  114. GiovanniniL. BianchiS. Role of nutraceutical SIRT1 modulators in AMPK and mTOR pathway: Evidence of a synergistic effect.Nutrition201734829610.1016/j.nut.2016.09.00828063518
    [Google Scholar]
  115. GambiniJ. InglésM. OlasoG. Lopez-GruesoR. Bonet-CostaV. Gimeno-MallenchL. Mas-BarguesC. AbdelazizK.M. Gomez-CabreraM.C. VinaJ. BorrasC. Properties of resveratrol: In Vitro and In Vivo Studies about metabolism, bioavailability, and biological effects in animal models and humans.Oxid. Med. Cell. Longev.20152015 83704210.1155/2015/83704226221416
    [Google Scholar]
  116. MartinC.K. BhapkarM. PittasA.G. PieperC.F. DasS.K. WilliamsonD.A. ScottT. RedmanL.M. SteinR. GilhoolyC.H. StewartT. RobinsonL. RobertsS.B. Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy (CALERIE) Phase 2 Study Group Effect of calorie restriction on mood, quality of life, sleep, and sexual function in healthy nonobese adults: The calerie 2 randomized clinical trial.JAMA Intern. Med.2016176674375210.1001/jamainternmed.2016.118927136347
    [Google Scholar]
  117. RoggerioA. StrunzC.M.C. PacanaroA.P. LealD.P. TakadaJ.Y. AvakianS.D. MansurA.P. Gene expression of sirtuin-1 and endogenous secretory receptor for advanced glycation end products in healthy and slightly overweight subjects after caloric restriction and resveratrol administration.Nutrients2018107 E93710.3390/nu1007093730037068
    [Google Scholar]
  118. Zamora-RosR. Urpi-SardaM. Lamuela-RaventósR.M. Martínez-GonzálezM.A. Salas-SalvadóJ. ArósF. FitóM. LapetraJ. EstruchR. Andres-LacuevaC. PREDIMED Study Investigators High urinary levels of resveratrol metabolites are associated with a reduction in the prevalence of cardiovascular risk factors in high-risk patients.Pharmacol. Res.201265661562010.1016/j.phrs.2012.03.00922465220
    [Google Scholar]
  119. Tomé-CarneiroJ. GonzálvezM. LarrosaM. Yáñez-GascónM.J. García-AlmagroF.J. Ruiz-RosJ.A. García-ConesaM.T. Tomás-BarberánF.A. EspínJ.C. One-year consumption of a grape nutraceutical containing resveratrol improves the inflammatory and fibrinolytic status of patients in primary prevention of cardiovascular disease.Am. J. Cardiol.2012110335636310.1016/j.amjcard.2012.03.03022520621
    [Google Scholar]
  120. YousefzadehM.J. ZhuY. McGowanS.J. AngeliniL. Fuhrmann-StroissniggH. XuM. LingY.Y. MelosK.I. PirtskhalavaT. InmanC.L. McGuckianC. WadeE.A. KatoJ.I. GrassiD. WentworthM. BurdC.E. ArriagaE.A. LadigesW.L. TchkoniaT. KirklandJ.L. RobbinsP.D. NiedernhoferL.J. Fisetin is a senotherapeutic that extends health and lifespan.EBioMedicine201836182810.1016/j.ebiom.2018.09.01530279143
    [Google Scholar]
  121. AhmadA. AliT. ParkH.Y. BadshahH. RehmanS.U. KimM.O. Neuroprotective effect of fisetin against amyloid-beta-induced cognitive/synaptic dysfunction, neuroinflammation, and neurodegeneration in adult mice.Mol. Neurobiol.20175432269228510.1007/s12035‑016‑9795‑426944285
    [Google Scholar]
  122. EhrenJ.L. MaherP. Concurrent regulation of the transcription factors Nrf2 and ATF4 mediates the enhancement of glutathione levels by the flavonoid fisetin.Biochem. Pharmacol.201385121816182610.1016/j.bcp.2013.04.01023618921
    [Google Scholar]
  123. SinghS. SinghA.K. GargG. RizviS.I. Fisetin as a caloric restriction mimetic protects rat brain against aging induced oxidative stress, apoptosis and neurodegeneration.Life Sci.201819317117910.1016/j.lfs.2017.11.00429122553
    [Google Scholar]
  124. ZhengW. FengZ. YouS. ZhangH. TaoZ. WangQ. ChenH. WuY. Fisetin inhibits IL-1β-induced inflammatory response in human osteoarthritis chondrocytes through activating SIRT1 and attenuates the progression of osteoarthritis in mice.Int. Immunopharmacol.20174513514710.1016/j.intimp.2017.02.00928213268
    [Google Scholar]
  125. KimA. LeeW. YunJ.M. Luteolin and fisetin suppress oxidative stress by modulating sirtuins and forkhead box O3a expression under in vitro diabetic conditions.Nutr. Res. Pract.201711543043410.4162/nrp.2017.11.5.43028989580
    [Google Scholar]
  126. JungH.Y. LeeD. RyuH.G. ChoiB.H. GoY. LeeN. LeeD. SonH.G. JeonJ. KimS.H. YoonJ.H. ParkS.M. LeeS.V. LeeI.K. ChoiK.Y. RyuS.H. NoharaK. YooS.H. ChenZ. KimK.T. Myricetin improves endurance capacity and mitochondrial density by activating SIRT1 and PGC-1α.Sci. Rep.201771623710.1038/s41598‑017‑05303‑228740165
    [Google Scholar]
  127. AkindehinS. JungY.S. KimS.N. SonY.H. LeeI. SeongJ.K. JeongH.W. LeeY.H. Myricetin exerts anti-obesity effects through upregulation of sirt3 in adipose tissue.Nutrients20181012 E196210.3390/nu1012196230545041
    [Google Scholar]
  128. ZhuY. WangK. MaZ. LiuD. YangY. SunM. WenA. HaoY. MaS. RenF. XinZ. LiY. DiS. LiuJ. SIRT1 activation by butein attenuates sepsis-induced brain injury in mice subjected to cecal ligation and puncture via alleviating inflammatory and oxidative stress.Toxicol. Appl. Pharmacol.2019363344610.1016/j.taap.2018.10.01330336174
    [Google Scholar]
  129. PadmavathiG. RoyN.K. BordoloiD. ArfusoF. MishraS. SethiG. Butein in health and disease: A comprehensive review.Phytomedicine20172511812710.1016/j.phymed.2016.12.002
    [Google Scholar]
  130. PadmavathiG. RathnakaramS.R. MonishaJ. BordoloiD. RoyN.K. KunnumakkaraA.B. Potential of butein, a tetrahydroxychalcone to obliterate cancer.Phytomedicine201522131163117110.1016/j.phymed.2015.08.015
    [Google Scholar]
  131. KangD.G. KimY.C. SohnE.J. LeeY.M. LeeA.S. YinM.H. LeeH.S. Hypotensive effect of butein via the inhibition of angiotensin converting enzyme.Biol. Pharm. Bull.20032691345134710.1248/bpb.26.134512951484
    [Google Scholar]
  132. SongN.J. YoonH.J. KimK.H. JungS.R. JangW.S. SeoC.R. LeeY.M. KweonD.H. HongJ.W. LeeJ.S. ParkK.M. LeeK.R. ParkK.W. Butein is a novel anti-adipogenic compound.J. Lipid Res.20135451385139610.1194/jlr.M03557623468131
    [Google Scholar]
  133. Carmona-GutierrezD. ZimmermannA. KainzK. PietrocolaF. ChenG. MaglioniS. SchiaviA. NahJ. MertelS. BeuschelC.B. CastoldiF. SicaV. TrausingerG. RamlR. SommerC. SchroederS. HoferS.J. BauerM.A. PendlT. TadicJ. DammbrueckC. HuZ. RuckenstuhlC. EisenbergT. DurandS. BossutN. AprahamianF. AbdellatifM. SedejS. EnotD.P. WolinskiH. DengjelJ. KeppO. MagnesC. SinnerF. PieberT.R. SadoshimaJ. VenturaN. SigristS.J. KroemerG. MadeoF. The flavonoid 4,4′-dimethoxychalcone promotes autophagy-dependent longevity across species.Nat. Commun.201910165110.1038/s41467‑019‑08555‑w30783116
    [Google Scholar]
  134. MorselliE. MaiuriM.C. MarkakiM. MegalouE. PasparakiA. PalikarasK. CriolloA. GalluzziL. MalikS.A. VitaleI. MichaudM. MadeoF. TavernarakisN. KroemerG. Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy.Cell Death Dis.20101 e1010.1038/cddis.2009.821364612
    [Google Scholar]
  135. ZimmermannA. KainzK. HoferS.J. BauerM.A. SchroederS. DengjelJ. PietrocolaF. KeppO. RuckenstuhlC. EisenbergT. SigristS.J. MadeoF. Carmona-GutierrezD. KroemerG. 4,4'Dimethoxychalcone: a natural flavonoid that promotes health through autophagy-dependent and -independent effects.Autophagy20191591662166410.1080/15548627.2019.163262331248332
    [Google Scholar]
  136. ShenL.R. ParnellL.D. OrdovasJ.M. LaiC.Q. Curcumin and aging.Biofactors201339113314010.1002/biof.108623325575
    [Google Scholar]
  137. KitaniK. OsawaT. YokozawaT. The effects of tetrahydrocurcumin and green tea polyphenol on the survival of male C57BL/6 mice.Biogerontology20078556757310.1007/s10522‑007‑9100‑z17516143
    [Google Scholar]
  138. SunY. HuX. HuG. XuC. JiangH. curcumin attenuates hydrogen peroxide-induced premature senescence via the activation of SIRT1 in human umbilical vein endothelial cells.Biol. Pharm. Bull.20153881134114110.1248/bpb.b15‑0001226235577
    [Google Scholar]
  139. HuA. HuangJ.J. LiR.L. LuZ.Y. DuanJ.L. XuW.H. ChenX.P. FanJ.P. Curcumin as therapeutics for the treatment of head and neck squamous cell carcinoma by activating SIRT1.Sci. Rep.201551342910.1038/srep1342926299580
    [Google Scholar]
  140. YangY. DuanW. LinY. YiW. LiangZ. YanJ. WangN. DengC. ZhangS. LiY. ChenW. YuS. YiD. JinZ. SIRT1 activation by curcumin pretreatment attenuates mitochondrial oxidative damage induced by myocardial ischemia reperfusion injury.Free Radic. Biol. Med.20136566767910.1016/j.freeradbiomed.2013.07.00723880291
    [Google Scholar]
  141. NavrotskayaV. OxenkrugG. VorobyovaL. SummergradP. Berberine Attenuated aging-accelerating effect of high temperature in drosophila model.Am. J. Plant Sci.20145327527810.4236/ajps.2014.5303726167393
    [Google Scholar]
  142. XuZ. FengW. ShenQ. YuN. YuK. WangS. ChenZ. ShiodaS. GuoY. Rhizoma coptidis and berberine as a natural drug to combat aging and aging-related diseases via anti-oxidation and ampk activation.Aging Dis.20178676077710.14336/AD.2016.062029344415
    [Google Scholar]
  143. ZhuX. GuoX. MaoG. GaoZ. WangH. HeQ. LiD. Hepatoprotection of berberine against hydrogen peroxide-induced apoptosis by upregulation of Sirtuin 1.Phytother. Res.201327341742110.1002/ptr.472822628222
    [Google Scholar]
  144. YuY. ZhaoY. TengF. LiJ. GuanY. XuJ. LvX. GuanF. ZhangM. ChenL. Berberine improves cognitive deficiency and muscular dysfunction via activation of the AMPK/SIRT1/PGC-1a pathway in skeletal muscle from naturally aging ratS.J. Nutr. Health Aging201822671071710.1007/s12603‑018‑1015‑729806860
    [Google Scholar]
  145. Di EmidioG. RossiG. BonomoI. AlonsoG.L. SferraR. VetuschiA. ArtiniP.G. ProvenzaniA. FaloneS. CartaG. D’AlessandroA.M. AmicarelliF. TatoneC. The natural carotenoid crocetin and the synthetic tellurium compound as101 protect the ovary against cyclophosphamide by modulating sirt1 and mitochondrial markers.Oxid. Med. Cell. Longev.20172017 892860410.1155/2017/892860429270246
    [Google Scholar]
  146. GuoY. XingL. ChenN. GaoC. DingZ. JinB. Total flavonoids from the Carya cathayensis Sarg. leaves inhibit HUVEC senescence through the miR-34a/SIRT1 pathway.J. Cell. Biochem.201912010172401724910.1002/jcb.2898631106472
    [Google Scholar]
  147. KidaY. GoligorskyM.S. Sirtuins, Cell Senescence, and Vascular Aging.Can. J. Cardiol.201632563464110.1016/j.cjca.2015.11.02226948035
    [Google Scholar]
  148. KissT. BalasubramanianP. Valcarcel-AresM.N. TarantiniS. YabluchanskiyA. CsipoT. LipeczA. ReglodiD. ZhangX.A. BariF. FarkasE. CsiszarA. UngvariZ. Nicotinamide mononucleotide (NMN) treatment attenuates oxidative stress and rescues angiogenic capacity in aged cerebromicrovascular endothelial cells: a potential mechanism for the prevention of vascular cognitive impairment.Geroscience201941561963010.1007/s11357‑019‑00074‑231144244
    [Google Scholar]
  149. GomesA.P. PriceN.L. LingA.J. MoslehiJ.J. MontgomeryM.K. RajmanL. WhiteJ.P. TeodoroJ.S. WrannC.D. HubbardB.P. MerckenE.M. PalmeiraC.M. de CaboR. RoloA.P. TurnerN. BellE.L. SinclairD.A. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging.Cell201315571624163810.1016/j.cell.2013.11.03724360282
    [Google Scholar]
  150. BoganK.L. BrennerC. Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition.Annu. Rev. Nutr.20082811513010.1146/annurev.nutr.28.061807.15544318429699
    [Google Scholar]
  151. PoljsakB. MilisavI. Restoring NAD(+) Levels with NAD(+) Intermediates, the Second Law of Thermodynamics, and Aging Delay.Rejuvenation Res.201821650650910.1089/rej.2017.203729695187
    [Google Scholar]
  152. KnipM. DouekI.F. MooreW.P. GillmorH.A. McLeanA.E. BingleyP.J. GaleE.A. European Nicotinamide Diabetes Intervention Trial Group Safety of high-dose nicotinamide: a review.Diabetologia200043111337134510.1007/s00125005153611126400
    [Google Scholar]
  153. TrammellS.A. SchmidtM.S. WeidemannB.J. RedpathP. JakschF. DellingerR.W. LiZ. AbelE.D. MigaudM.E. BrennerC. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans.Nat. Commun.201671294810.1038/ncomms1294827721479
    [Google Scholar]
  154. MartensC.R. DenmanB.A. MazzoM.R. ArmstrongM.L. ReisdorphN. McQueenM.B. ChoncholM. SealsD.R. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults.Nat. Commun.201891128610.1038/s41467‑018‑03421‑729599478
    [Google Scholar]
  155. DollerupO.L. TrammellS.A.J. HartmannB. HolstJ.J. ChristensenB. MøllerN. GillumM.P. TreebakJ.T. JessenN. Effects of nicotinamide riboside on endocrine pancreatic function and incretin hormones in nondiabetic men with obesity.J. Clin. Endocrinol. Metab.2019104115703571410.1210/jc.2019‑0108131390002
    [Google Scholar]
  156. TsubotaK. The first human clinical study for NMN has started in Japan.NPJ Aging Mech. Dis.201621602110.1038/npjamd.2016.2128721273
    [Google Scholar]
  157. KatsyubaE. AuwerxJ. Modulating NAD+ metabolism, from bench to bedside.EMBO J.201736182670268310.15252/embj.20179713528784597
    [Google Scholar]
/content/journals/cnt/10.2174/2665978601666200213121512
Loading
/content/journals/cnt/10.2174/2665978601666200213121512
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test