Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2665-9786
  • E-ISSN: 2665-9794

Abstract

This work aimed to reveal some mechanisms of influence of three basil EO on the microglial cells, as recently, research data stated that these oils have anti-aging and neuroprotective properties, and they are found to be effective against some forms of neurodegeneration.

The microglial cells play a pivotal role as the neuroprotective agents against neuroinflammation. Ocimum subspecies are a rich source of essential oils (EO) and used to be applied since antiquity for different purposes, including the prevention and treatment of various diseases.

In this study, the influence of the essential oils extracted from three basil cultivars (O. basilicum var. purpureum, O. basilicum var. thyrsiflora, and O. x citriodorum), possessing remarkable antioxidant activity, on the activity of the main antioxidant enzymes in microglial BV-2 wild type (WT) and Acetyl-CoA oxidase deficient cell lines (Acox1-/-) was evaluated.

All manipulations were carried out using murine microglial BV-2 cell lines (BV-2, Acyl- CoA oxidase type 1 (ACOX1) deficient mutants (Acox1-/-), and WT cells).

Data included in the present article state that plant origin substances can play a role in the regulation of enzymatic antioxidant activity of cells. EOs extracted from the Ocimum different cultivars are able to trigger the activity of acetyl-CoA oxidase type 1 (or palmitoyl-CoA oxidase type 1), which can serve as a basis for the regulation of redox deviation in WT cells.

Thus, it can be suggested to apply them for the prevention of some processes, which can influence aging, as the process of ageing is commonly associated with mitochondrial dysfunction, oxidative stress caused by the increased level of free radical production, dysfunction of the microglia, high blood pressure, and so on.

The microglial cells play a pivotal role as the neuroprotective agents against neuroinflammation. Different data included in the present article described that plant origin substances can play a role in regulating the enzymatic antioxidant activity of cells. EOs extracted from different cultivars of Ocimum are able to trigger the activity of acetyl-CoA oxidase type 1 (palmitoyl-CoA oxidase type 1), which can serve as a basis for the regulation of redox deviation in WT cells. Therefore, it can be proposed to apply them as prevention of some processes, which can influence aging, since the process of aging is commonly associated with mitochondrial dysfunction, oxidative stress caused by the increased level of free radical production, dysfunction of the microglia, high blood pressure and so on.

Loading

Article metrics loading...

/content/journals/cnt/10.2174/2665978602666211217143112
2022-02-01
2025-01-09
Loading full text...

Full text loading...

References

  1. Carović-StankoK. PetekM. GrdišaM. PintarJ. BedekovićD. Herak ĆustićM. SatovicZ. Medicinal plants of the family Lamiaceae as functional foods - a review.Czech J. Food Sci.20163437739010.17221/504/2015‑CJFS
    [Google Scholar]
  2. UrituC.M. MihaiC.T. StanciuG.D. DodiG. Alexa-StratulatT. LucaA. Leon-ConstantinM.M. StefanescuR. BildV. MelnicS. TambaB.I. Medicinal plants of the family Lamiaceae in pain therapy: A review.Pain Res. Manag.20182018780154310.1155/2018/780154329854039
    [Google Scholar]
  3. AvetisyanA. MarkosianA. PetrosyanM. SahakyanN. BabayanA. AloyanS. TrchounianA. Chemical composition and some biological activities of the essential oils from basil Ocimum different cultivars.BMC Complement. Altern. Med.20171716010.1186/s12906‑017‑1587‑528103929
    [Google Scholar]
  4. JoshiR.K. Chemical Composition, in vitro antimicrobial and antioxidant activities of the essential oils of Ocimum Gratissimum, O. Sanctum and their major constituents.Indian J. Pharm. Sci.201375445746210.4103/0250‑474X.11983424302801
    [Google Scholar]
  5. PattanayakP. BeheraP. DasD. PandaS.K. Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview.Pharmacogn. Rev.2010479510510.4103/0973‑7847.6532322228948
    [Google Scholar]
  6. CohenM.M. Tulsi - Ocimum sanctum: A herb for all reasons.J. Ayurveda Integr. Med.20145425125910.4103/0975‑9476.14655425624701
    [Google Scholar]
  7. LawrenceB.M. A further examination of the variation of Ocimum basilicum. In: Flavors and fragrances: A world perspective. LawrenceB.M. MookerjeeB.D. WillisB.J. AmsterdamElsevier Sci. Publ. B.V1988161170
    [Google Scholar]
  8. TsasiG. MailisT. DaskalakiA. SakadaniE. RazisP. SamarasY. SkaltsaH. The effect of harvesting on the composition of essential oils from five varieties of Ocimum basilicum L. Cultivated in the Island of Kefalonia, Greece.Plants2017634110.3390/plants603004128927018
    [Google Scholar]
  9. SahakyanN. PetrosyanM. Koss-MikołajczykI. BartoszekA. Gabour SadT. NasimM.J. VanidzeM. KalandiaA. JacobC. TrchounianA. The Caucasian flora: A still-to-be-discovered rich source of antioxidants.Free Rad. Res.201953sup11153116210.1080/10715762.2019.1648799
    [Google Scholar]
  10. KrugerH. WetzelS.B. ZeigerB. The chemical variability of Ocimum species.J. Herbs Spices Med. Plants2002933534410.1300/J044v09n04_11
    [Google Scholar]
  11. KlimankovaE. HoladovaK. HajslovaJ.C ajkaT. PoustkaJ. KoudelaM. Aroma profile of five basil (Ocimum basilicum L.) cultivars grown under conventional and organic conditions.Food Chem.200810746447210.1016/j.foodchem.2007.07.062
    [Google Scholar]
  12. JoshiR.K. Chemical composition and antimicrobial activity of the essential oil of Ocimum basilicum L. (sweet basil) from Western Ghats of North West Karnataka, India.Anc. Sci. Life201433315115610.4103/0257‑7941.14461825538349
    [Google Scholar]
  13. AyazM. SadiqA. JunaidM. UllahF. SubhanF. AhmedJ. Neuroprotective and anti-aging potentials of essential oils from aromatic and medicinal plants.Front. Aging Neurosci.2017916810.3389/fnagi.2017.0016828611658
    [Google Scholar]
  14. ZuoA.R. DongH.H. YuY.Y. ShuQ.L. ZhengL.X. YuX.Y. CaoS.W. The antityrosinase and antioxidant activities of flavonoids dominated by the number and location of phenolic hydroxyl groups.Chin. Med.2018135110.1186/s13020‑018‑0206‑930364385
    [Google Scholar]
  15. HindleJ.V. Ageing, neurodegeneration and Parkinson’s disease.Age Ageing201039215616110.1093/ageing/afp22320051606
    [Google Scholar]
  16. Rubio-PerezJ.M. Morillas-RuizJ.M. A review: inflammatory process in Alzheimer’s disease, role of cytokines.Sci. World J.,2012201275635710.1100/2012/75635722566778
    [Google Scholar]
  17. MiglioreL. CoppedèF. Environmental-induced oxidative stress in neurodegenerative disorders and aging.Mutat Res. Genet Toxicol Environ Mutagen.20096741-2738410.1016/j.mrgentox.2008.09.013
    [Google Scholar]
  18. SahakyanN. AndreolettiP. Cherkaoui-MalkiM. PetrosyanM. TrchounianA. Artemisia dracunculus L. essential oil phytochemical components trigger the activity of cellular antioxidant enzymes.J. Food Biochem.2021454e1369110.1111/jfbc.1369133694172
    [Google Scholar]
  19. JohnsonI.P. Age-related neurodegenerative disease research needs aging models.Front. Aging Neurosci.20157716810.3389/fnagi.2015.0016826388766
    [Google Scholar]
  20. FernstromJ.D. FernstromM.H. Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain.J. Nutr.20071376Suppl. 11539S1547S10.1093/jn/137.6.1539S17513421
    [Google Scholar]
  21. RizviT.A. HuangY. SidaniA. AtitR. LargaespadaD.A. BoissyR.E. RatnerN. A novel cytokine pathway suppresses glial cell melanogenesis after injury to adult nerve.J. Neurosci.200222229831984010.1523/JNEUROSCI.22‑22‑09831.200212427839
    [Google Scholar]
  22. ElufioyeT.O. BeridaT.I. HabtemariamS. Plants-derived neuroprotective agents: Cutting the cycle of cell death through multiple mechanisms.Evid. Based Complement. Alternat. Med.20172017357401210.1155/2017/357401228904554
    [Google Scholar]
  23. Abdel-NaimA.B. AlghamdiA.A. AlgandabyM.M. Al-AbbasiF.A. Al-AbdA.M. AbdallahH.M. El-HalawanyA.M. HattoriM. Phenolics isolated from Aframomum meleguta enhance proliferation and ossification markers in bone cells.Molecules2017229146710.3390/molecules2209146728869564
    [Google Scholar]
  24. SmithP.K. KrohnR.I. HermansonG.T. MalliaA.K. GartnerF.H. ProvenzanoM.D. FujimotoE.K. GoekeN.M. OlsonB.J. KlenkD.C. Measurement of protein using bicinchoninic acid.Anal. Biochem.19851501768510.1016/0003‑2697(85)90442‑73843705
    [Google Scholar]
  25. Cherkaoui MalkiM. BardotO. LhuguenotJ.C. LatruffeN. Expression of liver peroxisomal proteins as compared to other organelle marker enzymes in rats treated with hypolipidemic agents.Biol. Cell1990692839210.1111/j.1768‑322X.1990.tb00002.x2271901
    [Google Scholar]
  26. Oaxaca-CastilloD. AndreolettiP. VluggensA. YuS. van VeldhovenP.P. ReddyJ.K. Cherkaoui-MalkiM. Biochemical characterization of two functional human liver acyl-CoA oxidase isoforms 1a and 1b encoded by a single gene.Biochem. Biophys. Res. Commun.2007360231431910.1016/j.bbrc.2007.06.05917603022
    [Google Scholar]
  27. BeauchampC. FridovichI. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels.Anal. Biochem.197144127628710.1016/0003‑2697(71)90370‑84943714
    [Google Scholar]
  28. SaihF.E. AndreolettiP. MandardS. LatruffeN. El KebbajM.S. LizardG. NasserB. Cherkaoui-MalkiM. Protective effect of Cactus cladode extracts on peroxisomal functions in microglial BV-2 cells activated by different lipopolysaccharides.Molecules201722110210.3390/molecules2201010228067864
    [Google Scholar]
  29. KarapetyanT.D. MirzoyanV.S. HanisyanR.M. SahakyanN. In vitro antimicrobial activity of dried and fresh leaf extracts of old and young apricot trees (Prunus armeniaca).New Armen. Med. J.2011544449
    [Google Scholar]
  30. ZhaoY. WuY. WangM. Bioactive Substances of Plant Origin. In: Handbook of Food Chemistry CheungP. MehtaB. SpringerBerlin, Heidelberg2015967100810.1007/978‑3‑642‑36605‑5_13
    [Google Scholar]
  31. SahakyanN. PetrosyanM. TrchounianA. The activity of alkanna species in vitro culture and intact plant extracts against antibiotic resistant bacteria.Curr. Pharm. Des.201925161861186510.2174/138161282566619071611251031333091
    [Google Scholar]
  32. SahakyanN. BartoszekA. JacobC. PetrosyanM. TrchounianA. Bioavailability of tannins and other oligomeric polyphenols: A still to be studied phenomenon.Curr. Pharmacol. Rep.2020613113610.1007/s40495‑020‑00217‑6
    [Google Scholar]
  33. OrzechowskiA. OstaszewskiP. JankM. BerwidS.J. Bioactive substances of plant origin in food-impact on genomics.Reprod. Nutr. Dev.200242546147710.1051/rnd:200203712537256
    [Google Scholar]
  34. MoghrovyanA. SahakyanN. BabayanA. ChichoyanN. PetrosyanM. TrchounianA. Essential oil and ethanol extract of oregano (Origanum vulgare L.) from Armenian flora as a natural source of terpenes, flavonoids and other phytochemicals with antiradical, antioxidant, metal chelating, tyrosinase inhibitory and antibacterial activity.Curr. Pharm. Des.201925161809181610.2174/138161282566619070209561231267860
    [Google Scholar]
  35. ChouhanS. SharmaK. GuleriaS. Antimicrobial activity of some essential oils-Present status and future perspectives.Medicines (Basel)2017435810.3390/medicines4030058
    [Google Scholar]
  36. BezmaternykhK.V. ShirshovaT.I. BeshleyI.V. BeshleiI. MatistovN. SmirnovaG. Oktyabr’skiiO. VolodinV. Antioxidant activity of extracts from Allium schoenoprasum L. and Rubus chamaemorus L. growing in the Komi Republic.Pharm. Chem. J.201451320020410.1007/s11094‑017‑1582‑7
    [Google Scholar]
/content/journals/cnt/10.2174/2665978602666211217143112
Loading
/content/journals/cnt/10.2174/2665978602666211217143112
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Brazil; essential oil; microglia; Ocimum; oxygenated monoterpenes; palmitoyl-CoA oxidase
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test