Skip to content
2000
Volume 2, Issue 2
  • ISSN: 2665-9786
  • E-ISSN: 2665-9794

Abstract

Non-alcoholic fatty liver (NAFLD) is a metabolic disorder characterized by an excessive accumulation of fat in hepatocytes. It is a condition directly related to being overweight and is considered as a manifestation of metabolic syndrome. The progressive increase in its incidence due to the global increase in obesity, together with the absence of effective pharmacological treatment, makes it necessary to find new strategies to reduce or reverse its development and progression. In this sense, natural compounds can be potential targets for their remarkable biological activity and low toxicity. Hydroxytyrosol (HT) is a phenolic compound mainly found in olive oil and olive leaves with antioxidant, anti-inflammatory and cardiovascular properties, among others.

This document analyses the available information on the potential beneficial effects of the administration of HT against NAFLD.

Studies with animal models have shown promising results by reducing the degree of steatosis, oxidative stress, inflammation, and improving liver function. The effects of HT derive from its direct antioxidant and anti-inflammatory activity, but also from regulating the activity of various signalling pathways.

The consumption of HT, preferably associated with virgin olive oil, combined with an adequate diet and a healthy lifestyle, may be a strategy to consider preventing or reversing liver steatosis. However, well-designed clinical trials are still necessary to determine their real effectiveness in human patients.

Loading

Article metrics loading...

/content/journals/cnt/10.2174/2665978601999201026202507
2021-07-01
2025-01-10
Loading full text...

Full text loading...

References

  1. MathurP. PillaiR. Overnutrition: Current scenario & combat strategies.Indian J. Med. Res.2019149669570510.4103/ijmr.IJMR_1703_18 31496522
    [Google Scholar]
  2. Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee.World Health Organ. Tech. Rep. Ser.19958541452 8594834
    [Google Scholar]
  3. World Health Organization. Fact sheet—obesity and overweight.2018
  4. EnginA. The Definition and Prevalence of Obesity and Metabolic Syndrome.Obes. Lipotoxicity, Adv. Exp. Med. Biol. Adv. Exp. Med. Biol., 2017, 960.
    [Google Scholar]
  5. WangY.C. McPhersonK. MarshT. GortmakerS.L. BrownM. Health and economic burden of the projected obesity trends in the USA and the UK.Lancet2011378979381582510.1016/S0140‑6736(11)60814‑3 21872750
    [Google Scholar]
  6. LiL. LiuD.W. YanH.Y. WangZ.Y. ZhaoS.H. WangB. Obesity is an independent risk factor for non-alcoholic fatty liver disease: evidence from a meta-analysis of 21 cohort studies.Obes. Rev.201617651051910.1111/obr.12407 27020692
    [Google Scholar]
  7. MauriceJ. ManousouP. Non-alcoholic fatty liver disease.Clin. Med. J. R. Coll. Physicians London201818324525010.7861/clinmedicine.18‑3‑245 29858436
    [Google Scholar]
  8. PolyzosS.A. KountourasJ. MantzorosC.S. Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics.Metabolism201992829710.1016/j.metabol.2018.11.014 30502373
    [Google Scholar]
  9. Neuschwander-TetriB.A. Non-alcoholic fatty liver disease.BMC Med.20171514510.1186/s12916‑017‑0806‑8 28241825
    [Google Scholar]
  10. PolyzosS.A. KountourasJ. MantzorosC.S. Adipose tissue, obesity and non-alcoholic fatty liver disease.Minerva Endocrinol.201742292108 27711029
    [Google Scholar]
  11. YounossiZ.M. KoenigA.B. AbdelatifD. FazelY. HenryL. WymerM. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes.Hepatology2016641738410.1002/hep.28431 26707365
    [Google Scholar]
  12. Moctezuma-VelázquezC. Current treatment for non-alcoholic fatty liver disease.Rev. Gastroenterol. Mex.2018832125133 29655574
    [Google Scholar]
  13. SinghS. OsnaN.A. KharbandaK.K. Treatment options for alcoholic and non-alcoholic fatty liver disease: A review.World J. Gastroenterol.201723366549657010.3748/wjg.v23.i36.6549 29085205
    [Google Scholar]
  14. BagherniyaM. NobiliV. BlessoC.N. SahebkarA. Medicinal plants and bioactive natural compounds in the treatment of non-alcoholic fatty liver disease: A clinical review.Pharmacol. Res.201813021324010.1016/j.phrs.2017.12.020 29287685
    [Google Scholar]
  15. AbenavoliL. MilanovićM. MilićN. LuzzaF. GiuffrèA.M. Olive oil antioxidants and non-alcoholic fatty liver disease.Expert Rev. Gastroenterol. Hepatol.201913873974910.1080/17474124.2019.1634544 31215262
    [Google Scholar]
  16. BertelliM. KianiA.K. PaolacciS. ManaraE. KurtiD. DhuliK. BushatiV. MiertusJ. PangalloD. BaglivoM. BeccariT. MicheliniS. Hydroxytyrosol: A natural compound with promising pharmacological activities.J. Biotechnol.2020309293310.1016/j.jbiotec.2019.12.016 31884046
    [Google Scholar]
  17. TejadaS. PinyaS. del Mar BibiloniM. TurJ.A. PonsA. SuredaA. Cardioprotective Effects of the Polyphenol Hydroxytyrosol from Olive Oil.Curr. Drug Targets201718(13),1477-1486 27719659
    [Google Scholar]
  18. PeyrolJ. RivaC. AmiotM.J. Hydroxytyrosol in the prevention of the metabolic syndrome and related disorders.Nutrients20179330610.3390/nu9030306 28335507
    [Google Scholar]
  19. López-MirandaJ. Pérez-JiménezF. RosE. De CaterinaR. BadimónL. CovasM.I. EscrichE. OrdovásJ.M. SoriguerF. AbiáR. de la LastraC.A. BattinoM. CorellaD. Chamorro-QuirósJ. Delgado-ListaJ. GiuglianoD. EspositoK. EstruchR. Fernandez-RealJ.M. GaforioJ.J. La VecchiaC. LaironD. López-SeguraF. MataP. MenéndezJ.A. MurianaF.J. OsadaJ. PanagiotakosD.B. PaniaguaJ.A. Pérez-MartinezP. PeronaJ. PeinadoM.A. Pineda-PriegoM. PoulsenH.E. QuilesJ.L. Ramírez-TortosaM.C. RuanoJ. Serra-MajemL. SoláR. SolanasM. SolfrizziV. de la Torre-FornellR. TrichopoulouA. UcedaM. Villalba-MontoroJ.M. Villar-OrtizJ.R. VisioliF. YiannakourisN. Olive oil and health: summary of the II international conference on olive oil and health consensus report, Jaén and Córdoba (Spain) 2008.Nutr. Metab. Cardiovasc. Dis.201020428429410.1016/j.numecd.2009.12.007 20303720
    [Google Scholar]
  20. de la Torre-CarbotK. Chávez-ServínJ.L. JaúreguiO. CastelloteA.I. Lamuela-RaventósR.M. FitóM. CovasM.I. Muñoz-AguayoD. López-SabaterM.C. Presence of virgin olive oil phenolic metabolites in human low density lipoprotein fraction: determination by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry.Anal. Chim. Acta2007583240241010.1016/j.aca.2006.10.029 17386573
    [Google Scholar]
  21. Robles-AlmazanM. Pulido-MoranM. Moreno-FernandezJ. Ramirez-TortosaC. Rodriguez-GarciaC. QuilesJ.L. Ramirez-TortosaM. Hydroxytyrosol: Bioavailability, toxicity, and clinical applications.Food Res. Int.201810565466710.1016/j.foodres.2017.11.053 29433260
    [Google Scholar]
  22. EstiM. CinquantaL. La NotteE. La NotteE. Phenolic Compounds in Different Olive Varieties.J. Agric. Food Chem.1998461323510.1021/jf970391+ 10554192
    [Google Scholar]
  23. OkogeriO. Tasioula-MargariM. Changes occurring in phenolic compounds and α-tocopherol of virgin olive oil during storage.J. Agric. Food Chem.20025051077108010.1021/jf010895e 11853484
    [Google Scholar]
  24. RomeroC. BrenesM. YousfiK. GarcíaP. GarcíaA. GarridoA. Effect of cultivar and processing method on the contents of polyphenols in table olives.J. Agric. Food Chem.200452347948410.1021/jf030525l 14759136
    [Google Scholar]
  25. BorgesT.H. SernaA. LópezL.C. LaraL. NietoR. SeiquerI. Composition and antioxidant properties of Spanish extra virgin olive oil regarding cultivar, harvest year and crop stage.Antioxidants20198721710.3390/antiox8070217 31373316
    [Google Scholar]
  26. TripoliE. GiammancoM. TabacchiG. Di MajoD. GiammancoS. La GuardiaM. The phenolic compounds of olive oil: structure, biological activity and beneficial effects on human health.Nutr. Res. Rev.20051819811210.1079/NRR200495 19079898
    [Google Scholar]
  27. CharoenprasertS. MitchellA. Factors influencing phenolic compounds in table olives (Olea europaea).J. Agric. Food Chem.201260297081709510.1021/jf3017699 22720792
    [Google Scholar]
  28. Pérez-BonillaM. SalidoS. van BeekT.A. AltarejosJ. Radical-scavenging compounds from olive tree (Olea europaea L.) wood.J. Agric. Food Chem.201462114415110.1021/jf403998t 24328093
    [Google Scholar]
  29. VisioliF. CarusoD. PlasmatiE. PatelliR. MulinacciN. RomaniA. GalliG. GalliC. Hydroxytyrosol, as a component of olive mill waste water, is dose- dependently absorbed and increases the antioxidant capacity of rat plasma.Free Radic. Res.200134330130510.1080/10715760100300271 11264904
    [Google Scholar]
  30. MinutiL. PellegrinoR.M. TeseiI. Simple extraction method and gas chromatography-mass spectrometry in the selective ion monitoring mode for the determination of phenols in wine.J. Chromatogr. A20061114226326810.1016/j.chroma.2006.02.068 16545822
    [Google Scholar]
  31. Fernández-MarM.I. MateosR. García-ParrillaM.C. PuertasB. Cantos-VillarE. Bioactive compounds in wine: Resveratrol, hydroxytyrosol and melatonin: A review.Food Chem.201213079781310.1016/j.foodchem.2011.08.023
    [Google Scholar]
  32. TuckK.L. FreemanM.P. HayballP.J. StretchG.L. StupansI. The in vivo fate of hydroxytyrosol and tyrosol, antioxidant phenolic constituents of olive oil, after intravenous and oral dosing of labeled compounds to rats.J. Nutr.200113171993199610.1093/jn/131.7.1993 11435519
    [Google Scholar]
  33. Karković MarkovićA. TorićJ. BarbarićM. Jakobušić BralaC. Hydroxytyrosol, tyrosol and derivatives and their potential effects on human health.Molecules201924102410.3390/molecules24102001 31137753
    [Google Scholar]
  34. Domínguez-PerlesR. AuñónD. FerreresF. Gil-IzquierdoA. Gender differences in plasma and urine metabolites from Sprague-Dawley rats after oral administration of normal and high doses of hydroxytyrosol, hydroxytyrosol acetate, and DOPAC.Eur. J. Nutr.201756121522410.1007/s00394‑015‑1071‑2 26463517
    [Google Scholar]
  35. CoronaG. TzounisX. Assunta DessìM. DeianaM. DebnamE.S. VisioliF. SpencerJ.P.E. The fate of olive oil polyphenols in the gastrointestinal tract: implications of gastric and colonic microflora-dependent biotransformation.Free Radic. Res.200640664765810.1080/10715760500373000 16753843
    [Google Scholar]
  36. MannaC. GallettiP. MaistoG. CucciollaV. D’AngeloS. ZappiaV. Transport mechanism and metabolism of olive oil hydroxytyrosol in Caco-2 cells.FEBS Lett.2000470334134410.1016/S0014‑5793(00)01350‑8 10745093
    [Google Scholar]
  37. VissersM.N. ZockP.L. RoodenburgA.J.C. LeenenR. KatanM.B. Olive oil phenols are absorbed in humans.J. Nutr.2002132340941710.1093/jn/132.3.409 11880564
    [Google Scholar]
  38. CovasM.I. de la TorreR. FitóM. Virgin olive oil: a key food for cardiovascular risk protection.Br. J. Nutr.2015113Suppl. 2S19S2810.1017/S0007114515000136 26148918
    [Google Scholar]
  39. VisioliF. GalliC. BornetF. MatteiA. PatelliR. GalliG. CarusoD. Olive oil phenolics are dose-dependently absorbed in humans.FEBS Lett.20004682-315916010.1016/S0014‑5793(00)01216‑3 10692578
    [Google Scholar]
  40. SuárezM. VallsR.M. RomeroM.P. MaciàA. FernándezS. GiraltM. SolàR. MotilvaM.J. Bioavailability of phenols from a phenol-enriched olive oil.Br. J. Nutr.2011106111691170110.1017/S0007114511002200 21736768
    [Google Scholar]
  41. MoseleJ.I. Martín-PeláezS. MaciàA. FarràsM. VallsR.M. CatalánÚ. MotilvaM.J. Faecal microbial metabolism of olive oil phenolic compounds: in vitro and in vivo approaches.Mol. Nutr. Food Res.20145891809181910.1002/mnfr.201400124 24990102
    [Google Scholar]
  42. López de las HazasM.C. PiñolC. MaciàA. RomeroM.P. PedretA. SolàR. RubióL. MotilvaM.J. Differential absorption and metabolism of hydroxytyrosol and its precursors oleuropein and secoiridoids.J. Funct. Foods201622526310.1016/j.jff.2016.01.030
    [Google Scholar]
  43. de BockM. ThorstensenE.B. DerraikJ.G.B. HendersonH.V. HofmanP.L. CutfieldW.S. Human absorption and metabolism of oleuropein and hydroxytyrosol ingested as olive (Olea europaea L.) leaf extract.Mol. Nutr. Food Res.201357112079208510.1002/mnfr.201200795 23766098
    [Google Scholar]
  44. Alemán-JiménezC. Domínguez-PerlesR. MedinaS. PrgometI. López-GonzálezI. Simonelli-MuñozA. Campillo-CanoM. AuñónD. FerreresF. Gil-IzquierdoÁ. Pharmacokinetics and bioavailability of hydroxytyrosol are dependent on the food matrix in humans.Eur. J. Nutr.202010.1007/s00394‑020‑02295‑0 32524230
    [Google Scholar]
  45. SerraA. RubióL. BorràsX. MaciàA. RomeroM.P. MotilvaM.J. Distribution of olive oil phenolic compounds in rat tissues after administration of a phenolic extract from olive cake.Mol. Nutr. Food Res.201256348649610.1002/mnfr.201100436 22183818
    [Google Scholar]
  46. VisioliF. GalliC. GrandeS. ColonnelliK. PatelliC. GalliG. CarusoD. Hydroxytyrosol excretion differs between rats and humans and depends on the vehicle of administration.J. Nutr.200313382612261510.1093/jn/133.8.2612 12888646
    [Google Scholar]
  47. Rodríguez-MoratóJ. BoronatA. KotronoulasA. PujadasM. PastorA. OlestiE. Pérez-MañáC. KhymenetsO. FitóM. FarréM. de la TorreR. Metabolic disposition and biological significance of simple phenols of dietary origin: hydroxytyrosol and tyrosol.Drug Metab. Rev.201648221823610.1080/03602532.2016.1179754 27186796
    [Google Scholar]
  48. Auñon-CallesD. CanutL. VisioliF. Toxicological evaluation of pure hydroxytyrosol.Food Chem. Toxicol.20135549850410.1016/j.fct.2013.01.030 23380205
    [Google Scholar]
  49. SoniM.G. BurdockG.A. ChristianM.S. BitlerC.M. CreaR. Safety assessment of aqueous olive pulp extract as an antioxidant or antimicrobial agent in foods.Food Chem. Toxicol.200644790391510.1016/j.fct.2006.01.008 16530907
    [Google Scholar]
  50. HeilmanJ. AnyangweN. TranN. EdwardsJ. BeilsteinP. LópezJ. Toxicological evaluation of an olive extract, H35: Subchronic toxicity in the rat.Food Chem. Toxicol.201584182810.1016/j.fct.2015.07.007 26184542
    [Google Scholar]
  51. ZwaneR.E. ParkerA. KudangaT. DavidsL.M. BurtonS.G. Novel, biocatalytically produced hydroxytyrosol dimer protects against ultraviolet-induced cell death in human immortalized keratinocytes.J. Agric. Food Chem.20126046115091151710.1021/jf300883h 23072558
    [Google Scholar]
  52. HydroxytyrosolO.A. Inhibition of Peroxynitrite Dependent Dna Base Modification.199926762769
    [Google Scholar]
  53. Granados-PrincipalS. El-AzemN. PamplonaR. Ramirez-TortosaC. Pulido-MoranM. Vera-RamirezL. QuilesJ.L. Sanchez-RoviraP. NaudíA. Portero-OtinM. Perez-LopezP. Ramirez-TortosaM. Hydroxytyrosol ameliorates oxidative stress and mitochondrial dysfunction in doxorubicin-induced cardiotoxicity in rats with breast cancer.Biochem. Pharmacol.2014901253310.1016/j.bcp.2014.04.001 24727461
    [Google Scholar]
  54. SarsourE.H. KumarM.G. KalenA.L. GoswamiM. BuettnerG.R. GoswamiP.C. MnSOD activity regulates hydroxytyrosol-induced extension of chronological lifespan.Age (Omaha)20123419510910.1007/s11357‑011‑9223‑7 21384152
    [Google Scholar]
  55. CookeM.S. EvansM.D. DizdarogluM. LunecJ. Oxidative DNA damage: mechanisms, mutation, and disease.FASEB J.200317101195121410.1096/fj.02‑0752rev 12832285
    [Google Scholar]
  56. D’AngeloS. IngrossoD. MigliardiV. SorrentinoA. DonnarummaG. BaroniA. MasellaL. TufanoM.A. ZappiaM. GallettiP. Hydroxytyrosol, a natural antioxidant from olive oil, prevents protein damage induced by long-wave ultraviolet radiation in melanoma cells.Free Radic. Biol. Med.200538790891910.1016/j.freeradbiomed.2004.12.015 15749387
    [Google Scholar]
  57. González-CorreaJ.A. NavasM.D. Lopez-VillodresJ.A. TrujilloM. EsparteroJ.L. De La CruzJ.P. Neuroprotective effect of hydroxytyrosol and hydroxytyrosol acetate in rat brain slices subjected to hypoxia-reoxygenation.Neurosci. Lett.20084462-314314610.1016/j.neulet.2008.09.022 18809463
    [Google Scholar]
  58. Muñoz-MarínJ. De La CruzJ.P. GuerreroA. López-LeivaI. López-VillodresJ.A. ReyesJ.J. EsparteroJ.L. MadronaA. LabajosM.T. González-CorreaJ.A. Cytoprotective effect of hydroxytyrosyl alkyl ether derivatives after oral administration to rats in a model of glucose-oxygen deprivation in brain slices.J. Agric. Food Chem.201260317659766410.1021/jf3007097 22809331
    [Google Scholar]
  59. González-SantiagoM. Martín-BautistaE. CarreroJ.J. FonolláJ. BaróL. BartoloméM.V. Gil-LoyzagaP. López-HuertasE. One-month administration of hydroxytyrosol, a phenolic antioxidant present in olive oil, to hyperlipemic rabbits improves blood lipid profile, antioxidant status and reduces atherosclerosis development.Atherosclerosis20061881354210.1016/j.atherosclerosis.2005.10.022 16300770
    [Google Scholar]
  60. Granados-PrincipalS. QuilesJ.L. Ramirez-TortosaC.L. Ochoa-HerreraJ. Perez-LopezP. Pulido-MoranM. Ramirez-TortosaM.C. Squalene ameliorates atherosclerotic lesions through the reduction of CD36 scavenger receptor expression in macrophages.Mol. Nutr. Food Res.201256573374010.1002/mnfr.201100703 22648620
    [Google Scholar]
  61. JemaiH. BouazizM. FkiI. El FekiA. SayadiS. Hypolipidimic and antioxidant activities of oleuropein and its hydrolysis derivative-rich extracts from Chemlali olive leaves.Chem. Biol. Interact.20081762-3889810.1016/j.cbi.2008.08.014 18823963
    [Google Scholar]
  62. PoudyalH. CampbellF. BrownL. Olive leaf extract attenuates cardiac, hepatic, and metabolic changes in high carbohydrate-, high fat-fed rats.J. Nutr.2010140594695310.3945/jn.109.117812 20335636
    [Google Scholar]
  63. de BockM. DerraikJ.G.B. BrennanC.M. BiggsJ.B. MorganP.E. HodgkinsonS.C. HofmanP.L. CutfieldW.S. Olive (Olea europaea L.) leaf polyphenols improve insulin sensitivity in middle-aged overweight men: a randomized, placebo-controlled, crossover trial.PLoS One201383e5762210.1371/journal.pone.0057622 23516412
    [Google Scholar]
  64. ZhangX. CaoJ. ZhongL. Hydroxytyrosol inhibits pro-inflammatory cytokines, iNOS, and COX-2 expression in human monocytic cells.Naunyn Schmiedebergs Arch. Pharmacol.2009379658158610.1007/s00210‑009‑0399‑7 19198806
    [Google Scholar]
  65. FitóM. CladellasM. de la TorreR. MartíJ. MuñozD. SchröderH. AlcántaraM. Pujadas-BastardesM. MarrugatJ. López-SabaterM.C. BrugueraJ. CovasM.I. SOLOS InvestigatorsAnti-inflammatory effect of virgin olive oil in stable coronary disease patients: a randomized, crossover, controlled trial.Eur. J. Clin. Nutr.200862457057410.1038/sj.ejcn.1602724 17375118
    [Google Scholar]
  66. MedinaE. de CastroA. RomeroC. BrenesM. Comparison of the concentrations of phenolic compounds in olive oils and other plant oils: correlation with antimicrobial activity.J. Agric. Food Chem.200654144954496110.1021/jf0602267 16819902
    [Google Scholar]
  67. BisignanoG. TomainoA. Lo CascioR. CrisafiG. UccellaN. SaijaA. On the in-vitro antimicrobial activity of oleuropein and hydroxytyrosol.J. Pharm. Pharmacol.199951897197410.1211/0022357991773258 10504039
    [Google Scholar]
  68. KyriazisJ.D. AligiannisN. PolychronopoulosP. SkaltsounisA.L. DotsikaE. Leishmanicidal activity assessment of olive tree extracts.Phytomedicine2013203-427528110.1016/j.phymed.2012.11.013 23273752
    [Google Scholar]
  69. VisioliF. BellomoG. GalliC. Free radical-scavenging properties of olive oil polyphenols.Biochem. Biophys. Res. Commun.19982471606410.1006/bbrc.1998.8735 9636654
    [Google Scholar]
  70. López de Las HazasM.C. PiñolC. MaciàA. MotilvaM.J. Hydroxytyrosol and the Colonic Metabolites Derived from Virgin Olive Oil Intake Induce Cell Cycle Arrest and Apoptosis in Colon Cancer Cells.J. Agric. Food Chem.201765316467647610.1021/acs.jafc.6b04933 28071050
    [Google Scholar]
  71. Granados-PrincipalS. QuilesJ.L. Ramirez-TortosaC.L. Sanchez-RoviraP. Ramirez-TortosaM.C. Hydroxytyrosol: from laboratory investigations to future clinical trials.Nutr. Rev.201068419120610.1111/j.1753‑4887.2010.00278.x 20416016
    [Google Scholar]
  72. AnguloP. Nonalcoholic fatty liver disease.N. Engl. J. Med.2002346161221123110.1056/NEJMra011775 11961152
    [Google Scholar]
  73. PanM.H. LaiC.S. TsaiM.L. HoC.T. Chemoprevention of nonalcoholic fatty liver disease by dietary natural compounds.Mol. Nutr. Food Res.201458114717110.1002/mnfr.201300522 24302567
    [Google Scholar]
  74. HashimotoE. TaniaiM. TokushigeK. Characteristics and diagnosis of NAFLD/NASH.J. Gastroenterol. Hepatol.201328Suppl. 4647010.1111/jgh.12271 24251707
    [Google Scholar]
  75. SookoianS. CastañoG.O. ScianR. Fernández GianottiT. DopazoH. RohrC. GajG. San MartinoJ. SevicI. FlichmanD. PirolaC.J. Serum aminotransferases in nonalcoholic fatty liver disease are a signature of liver metabolic perturbations at the amino acid and Krebs cycle level.Am. J. Clin. Nutr.2016103242243410.3945/ajcn.115.118695 26791191
    [Google Scholar]
  76. VanWagnerL.B. RinellaM.E. Extrahepatic Manifestations of Nonalcoholic Fatty Liver Disease.Curr. Hepatol. Rep.2016152758510.1007/s11901‑016‑0295‑9 27218012
    [Google Scholar]
  77. TanaC. BallestriS. RicciF. Di VincenzoA. TicinesiA. GallinaS. GiamberardinoM.A. CipolloneF. SuttonR. VettorR. FedorowskiA. MeschiT. Cardiovascular risk in non-alcoholic fatty liver disease: Mechanisms and therapeutic implications.Int. J. Environ. Res. Public Health201916171610.3390/ijerph16173104 31455011
    [Google Scholar]
  78. MarcuccilliM. ChoncholM. NAFLD and chronic kidney disease.Int. J. Mol. Sci.201617456210.3390/ijms17040562 27089331
    [Google Scholar]
  79. BhattH.B. SmithR.J. Fatty liver disease in diabetes mellitus.Hepatobiliary Surg. Nutr.201542101108 26005676
    [Google Scholar]
  80. FinckB.N. Targeting metabolism, insulin resistance, and diabetes to treat nonalcoholic steatohepatitis.Diabetes201867122485249310.2337/dbi18‑0024 30459251
    [Google Scholar]
  81. SuredaA. MartorellM. CapóX. Monserrat-MesquidaM. Quetglas-LlabrésM.M. RasekhianM. NabaviS.M. TejadaS. Antitumor effects of triterpenes in hepatocellular carcinoma.Curr. Med. Chem.20202710.2174/0929867327666200602132000 32484765
    [Google Scholar]
  82. FarzanegiP. DanaA. EbrahimpoorZ. AsadiM. AzarbayjaniM.A. Mechanisms of beneficial effects of exercise training on non-alcoholic fatty liver disease (NAFLD): Roles of oxidative stress and inflammation.Eur. J. Sport Sci.2019197994100310.1080/17461391.2019.1571114 30732555
    [Google Scholar]
  83. SumidaY. NikiE. NaitoY. YoshikawaT. Involvement of free radicals and oxidative stress in NAFLD/NASH.Free Radic. Res.2013471186988010.3109/10715762.2013.837577 24004441
    [Google Scholar]
  84. AsrihM. JornayvazF.R. Metabolic syndrome and nonalcoholic fatty liver disease: Is insulin resistance the link?Mol. Cell. Endocrinol.2015418Pt 1556510.1016/j.mce.2015.02.018 25724480
    [Google Scholar]
  85. MollerD.E. FlierJ.S. FlierJ.S. Insulin resistance--mechanisms, syndromes, and implications.N. Engl. J. Med.19913251393894810.1056/NEJM199109263251307 1881419
    [Google Scholar]
  86. SmithB.W. AdamsL.A. Nonalcoholic fatty liver disease and diabetes mellitus: pathogenesis and treatment.Nat. Rev. Endocrinol.20117845646510.1038/nrendo.2011.72 21556019
    [Google Scholar]
  87. TarantinoG. CaputiA. JNKs, insulin resistance and inflammation: A possible link between NAFLD and coronary artery disease.World J. Gastroenterol.201117333785379410.3748/wjg.v17.i33.3785 21987620
    [Google Scholar]
  88. SchwabeR.F. UchinamiH. QianT. BennettB.L. LemastersJ.J. BrennerD.A. Differential requirement for c-Jun NH2-terminal kinase in TNFalpha- and Fas-mediated apoptosis in hepatocytes.FASEB J.200418672072210.1096/fj.03‑0771fje 14766793
    [Google Scholar]
  89. TilgH. MoschenA.R. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis.Hepatology20105251836184610.1002/hep.24001 21038418
    [Google Scholar]
  90. AbenavoliL.D.I. RenzoL. GuzziP.H. PellicanoR. MilicN.D.E. LorenzoA. Non-alcoholic fatty liver disease severity, central fat mass and adinopectin: a close relationship.Clujul Med.2015884489493 26733747
    [Google Scholar]
  91. M, M.; V, R.; M, D.; AG, G.; A, A.; C, L.; A, F.; M, P. Role of Oxidative Stress in Pathophysiology of Nonalcoholic Fatty Liver Disease. Oxid. Med. Cell. Longev.,2018
  92. GutteridgeJ.M.C. HalliwellB. Comments on review of free radicals in biology and medicineby Barry Halliwell and John M.C. Gutteridge. Free Radic. Biol. Med, second edition; , 1992, 12, pp. 93-94.
  93. AlkhouriN. DixonL.J. FeldsteinA.E. Lipotoxicity in nonalcoholic fatty liver disease: not all lipids are created equal.Expert Rev. Gastroenterol. Hepatol.20093444545110.1586/egh.09.32 19673631
    [Google Scholar]
  94. AshrafN.U. SheikhT.A. Endoplasmic reticulum stress and Oxidative stress in the pathogenesis of Non-alcoholic fatty liver disease.Free Radic. Res.201549121405141810.3109/10715762.2015.1078461 26223319
    [Google Scholar]
  95. AronisA. MadarZ. TiroshO. Mechanism underlying oxidative stress-mediated lipotoxicity: exposure of J774.2 macrophages to triacylglycerols facilitates mitochondrial reactive oxygen species production and cellular necrosis.Free Radic. Biol. Med.20053891221123010.1016/j.freeradbiomed.2005.01.015 15808420
    [Google Scholar]
  96. YasutakeK. KohjimaM. KotohK. NakashimaM. NakamutaM. EnjojiM. Dietary habits and behaviors associated with nonalcoholic fatty liver disease.World J. Gastroenterol.20142071756176710.3748/wjg.v20.i7.1756 24587653
    [Google Scholar]
  97. TrovatoF.M. CatalanoD. MartinesG.F. PaceP. TrovatoG.M. Mediterranean diet and non-alcoholic fatty liver disease: the need of extended and comprehensive interventions.Clin. Nutr.2015341868810.1016/j.clnu.2014.01.018 24529325
    [Google Scholar]
  98. BarattaF. PastoriD. PolimeniL. BucciT. CeciF. CalabreseC. ErnestiI. PannitteriG. VioliF. AngelicoF. Del BenM. Adherence to Mediterranean Diet and Non-Alcoholic Fatty Liver Disease: Effect on Insulin Resistance.Am. J. Gastroenterol.2017112121832183910.1038/ajg.2017.371 29063908
    [Google Scholar]
  99. AllerR. IzaolaO. de la FuenteB. de LuisD. La dieta mediterránea se asocia con la histología hepática en pacientes con enfermedad del hígado graso no alcohólico.Nutr. Hosp.20153225182524 26667698
    [Google Scholar]
  100. GelliC. TarocchiM. AbenavoliL. Di RenzoL. GalliA. De LorenzoA. Effect of a counseling-supported treatment with the Mediterranean diet and physical activity on the severity of the non-alcoholic fatty liver disease.World J. Gastroenterol.201723173150316210.3748/wjg.v23.i17.3150 28533672
    [Google Scholar]
  101. Cueto-GalánR. BarónF.J. ValdivielsoP. PintóX. CorbellaE. Gómez-GraciaE. WärnbergJ. los investigadores del Estudio PREDIMED. Changes in fatty liver index after consuming a Mediterranean diet: 6-year follow-up of the PREDIMED-Malaga trial.Med. Clin. (Barc.)201714810435443 28126231
    [Google Scholar]
  102. AbenavoliL. GrecoM. MilicN. AccattatoF. FotiD. GullettaE. LuzzaF. Effect of mediterranean diet and antioxidant formulation in non-alcoholic fatty liver disease: A randomized study.Nutrients201798910.3390/nu9080870 28805669
    [Google Scholar]
  103. JiH-F. SunY. ShenL. Effect of vitamin E supplementation on aminotransferase levels in patients with NAFLD, NASH, and CHC: results from a meta-analysis.Nutrition201430998699110.1016/j.nut.2014.01.016 24976430
    [Google Scholar]
  104. GutierrezV.R. de la PuertaR. CataláA. The effect of tyrosol, hydroxytyrosol and oleuropein on the non-enzymatic lipid peroxidation of rat liver microsomes.Mol. Cell. Biochem.20012171-2354110.1023/A:1007219931090 11269663
    [Google Scholar]
  105. PrioreP. SiculellaL. GnoniG.V. Extra virgin olive oil phenols down-regulate lipid synthesis in primary-cultured rat-hepatocytes.J. Nutr. Biochem.201425768369110.1016/j.jnutbio.2014.01.009 24742469
    [Google Scholar]
  106. HardieD.G. RossF.A. HawleyS.A. AMPK: a nutrient and energy sensor that maintains energy homeostasis.Nat. Rev. Mol. Cell Biol.201213425126210.1038/nrm3311 22436748
    [Google Scholar]
  107. PirozziC. LamaA. SimeoliR. PacielloO. PaganoT.B. MollicaM.P. Di GuidaF. RussoR. MaglioccaS. CananiR.B. RasoG.M. CalignanoA. MeliR. Hydroxytyrosol prevents metabolic impairment reducing hepatic inflammation and restoring duodenal integrity in a rat model of NAFLD.J. Nutr. Biochem.20163010811510.1016/j.jnutbio.2015.12.004 27012627
    [Google Scholar]
  108. LemonakisN. PoudyalH. HalabalakiM. BrownL. TsarbopoulosA. SkaltsounisA.L. GikasE. The LC-MS-based metabolomics of hydroxytyrosol administration in rats reveals amelioration of the metabolic syndrome.Technol. Biomed. Life Sci.20171041-1042455910.1016/j.jchromb.2016.12.020 28012379
    [Google Scholar]
  109. Santos-LópezJ.A. GarcimartínA. López-OlivaM.E. Bautista-ÁvilaM. González-MuñozM.J. BastidaS. BenedíJ. Sánchez-MunizF.J. Chia Oil-Enriched Restructured Pork Effects on Oxidative and Inflammatory Status of Aged Rats Fed High Cholesterol/High Fat Diets.J. Med. Food201720552653410.1089/jmf.2016.0161 28294699
    [Google Scholar]
  110. ValenzuelaR. IllescaP. EcheverríaF. EspinosaA. Rincón-CerveraM.Á. OrtizM. Hernandez-RodasM.C. ValenzuelaA. VidelaL.A. Molecular adaptations underlying the beneficial effects of hydroxytyrosol in the pathogenic alterations induced by a high-fat diet in mouse liver: PPAR-α and Nrf2 activation, and NF-κB down-regulation.Food Funct.2017841526153710.1039/C7FO00090A 28386616
    [Google Scholar]
  111. ValenzuelaR. EcheverriaF. OrtizM. Rincón-CerveraM.Á. EspinosaA. Hernandez-RodasM.C. IllescaP. ValenzuelaA. VidelaL.A. Hydroxytyrosol prevents reduction in liver activity of Δ-5 and Δ-6 desaturases, oxidative stress, and depletion in long chain polyunsaturated fatty acid content in different tissues of high-fat diet fed mice.Lipids Health Dis.20171616410.1186/s12944‑017‑0450‑5 28395666
    [Google Scholar]
  112. DaglaI. BenakiD. BairaE. LemonakisN. PoudyalH. BrownL. TsarbopoulosA. SkaltsounisA.L. MikrosE. GikasE. Alteration in the liver metabolome of rats with metabolic syndrome after treatment with Hydroxytyrosol. A Mass Spectrometry And Nuclear Magnetic Resonance - based metabolomics study.Talanta201817824625710.1016/j.talanta.2017.09.029 29136819
    [Google Scholar]
  113. WangN. LiuY. MaY. WenD. Hydroxytyrosol ameliorates insulin resistance by modulating endoplasmic reticulum stress and prevents hepatic steatosis in diet-induced obesity mice.J. Nutr. Biochem.20185718018810.1016/j.jnutbio.2018.03.018 29747118
    [Google Scholar]
  114. F, E.; R, V.; A, B.; D, Á.; M, O.; SA, S.-A.; P, M.; A, C.; LA, V. Attenuation of High-Fat Diet-Induced Rat Liver Oxidative Stress and Steatosis by Combined Hydroxytyrosol- (HT-) Eicosapentaenoic Acid Supplementation Mainly Relies on HT.Oxid. Med. Cell. Longev.2018
    [Google Scholar]
  115. EcheverríaF. ValenzuelaR. EspinosaA. BustamanteA. ÁlvarezD. Gonzalez-MañanD. OrtizM. Soto-AlarconS.A. VidelaL.A. Reduction of high-fat diet-induced liver proinflammatory state by eicosapentaenoic acid plus hydroxytyrosol supplementation: involvement of resolvins RvE1/2 and RvD1/2.J. Nutr. Biochem.201963354310.1016/j.jnutbio.2018.09.012 30321750
    [Google Scholar]
  116. EcheverríaF. ValenzuelaR. BustamanteA. ÁlvarezD. OrtizM. EspinosaA. IllescaP. Gonzalez-MañanD. VidelaL.A. High-fat diet induces mouse liver steatosis with a concomitant decline in energy metabolism: attenuation by eicosapentaenoic acid (EPA) or hydroxytyrosol (HT) supplementation and the additive effects upon EPA and HT co-administration.Food Funct.20191096170618310.1039/C9FO01373C 31501836
    [Google Scholar]
  117. Soto-AlarcónS.A. OrtizM. OrellanaP. EcheverríaF. BustamanteA. EspinosaA. IllescaP. Gonzalez-MañánD. ValenzuelaR. VidelaL.A. Docosahexaenoic acid and hydroxytyrosol co-administration fully prevents liver steatosis and related parameters in mice subjected to high-fat diet: A molecular approach.Biofactors201945693094310.1002/biof.1556 31454114
    [Google Scholar]
  118. LeeY.Y. CrausteC. WangH. LeungH.H. VercauterenJ. GalanoJ.M. OgerC. DurandT. WanJ.M.F. LeeJ.C.Y. Extra Virgin Olive Oil Reduced Polyunsaturated Fatty Acid and Cholesterol Oxidation in Rodent Liver: Is This Accounted for Hydroxytyrosol-Fatty Acid Conjugation?Chem. Res. Toxicol.201629101689169810.1021/acs.chemrestox.6b00214 27588434
    [Google Scholar]
  119. BarreraC. ValenzuelaR. RincónM.Á. EspinosaA. EcheverriaF. RomeroN. Gonzalez-MañanD. VidelaL.A. Molecular mechanisms related to the hepatoprotective effects of antioxidant-rich extra virgin olive oil supplementation in rats subjected to short-term iron administration.Free Radic. Biol. Med.201812631332110.1016/j.freeradbiomed.2018.08.030 30153476
    [Google Scholar]
  120. NobiliV. AlisiA. MoscaA. CrudeleA. ZaffinaS. DenaroM. SmeriglioA. TrombettaD. The Antioxidant Effects of Hydroxytyrosol and Vitamin E on Pediatric Nonalcoholic Fatty Liver Disease, in a Clinical Trial: A New Treatment?Antioxid. Redox Signal.201931212713310.1089/ars.2018.7704 30588836
    [Google Scholar]
/content/journals/cnt/10.2174/2665978601999201026202507
Loading
/content/journals/cnt/10.2174/2665978601999201026202507
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): hydroxytyrosol; liver; obesity; olive oil; phenolic compounds; steatosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test