Skip to content
2000
Volume 2, Issue 2
  • ISSN: 2665-9786
  • E-ISSN: 2665-9794

Abstract

Targeted drug delivery to the colon is a strategic approach for the local cure of inflammatory bowel diseases (IBD) and other syndromes like colon cancer. Research is actively focusing on possible alternative and safer therapies to conventional drugs, based on herbal remedies and other natural products. In particular, colon-targeted drug delivery systems (CDDS) offer the opportunity to protect the active compound along the way to the colon. Drug release and absorption, and even degradation, should not occur in the stomach and small bowel, but a selective release should start once the drug moves to the colonic area.

This work aims at evaluating the gastro-resistant properties of new food-grade methacrylic resins (Eudraguard®), used not as coating materials, but used after the formation of microparticles to achieve a delayed and targeted release of a model drug, resveratrol (RVT), to the ileo-colonic area.

Microparticles were produced by an emulsion-solvent evaporation technique (ESE) and characterized by solid-state analytical methods. RVT release profiles were assessed using a pH-change procedure, able to simulate the transit of the carrier along the gastro-intestinal tract.

Eudraguard® Biotic can form microparticles with a very high encapsulation efficiency for RVT; the polymeric matrix was able to limit the diffusion of the drug at gastric and gut pH conditions, while a higher release was achieved at pH 7.4. Conversely, using the Eudraguard® Control resin, alone or blended with the former polymer, did not allow to achieve a controlled release of RVT at the various pH values.

Food-grade Eudraguard® matrices deserve further investigations as polymeric materials for the preparation of micrometric matrices or pellets for the oral controlled release of natural active ingredients to the ileo-colonic area.

Loading

Article metrics loading...

/content/journals/cnt/10.2174/2665978601999201126212614
2021-07-01
2025-01-09
Loading full text...

Full text loading...

References

  1. YaoM. McClementsD.J. XiaoH. Improving oral bioavailability of nutraceuticals by engineered nanoparticle-based delivery systems.Curr. Opin. Food Sci.20152141910.1016/j.cofs.2014.12.005
    [Google Scholar]
  2. AshwiniC. VaishaliK. RamS. GaneshB. DigambarN. Role of nutraceuticals in various diseases: A comprehensive review.Int. J. Res. Pharm. Chem.201332290299
    [Google Scholar]
  3. NasriH. BaradaranA. ShirzadH. Rafieian-KopaeiM. New concepts in nutraceuticals as alternative for pharmaceuticals.Int. J. Prev. Med.20145121487149925709784
    [Google Scholar]
  4. TingY. JiangY. HoC.T. HuangQ. Common delivery systems for enhancing in vivo bioavailability and biological efficacy of nutraceuticals.J. Funct. Foods2014711212810.1016/j.jff.2013.12.010
    [Google Scholar]
  5. KnowlesS.R. GraffL.A. WildingH. HewittC. KeeferL. Mikocka-WalusA. Quality of life in Inflammatory Bowel Disease: a systematic review and meta-analyses - Part I.Inflamm. Bowel Dis.201824474275110.1093/ibd/izx10029562277
    [Google Scholar]
  6. UrangaJ.A. López-MirandaV. LombóF. AbaloR. Food, nutrients and nutraceuticals affecting the course of inflammatory bowel disease.Pharmacol. Rep.201668481682610.1016/j.pharep.2016.05.00227267792
    [Google Scholar]
  7. BurgerD. TravisS. Conventional medical management of inflammatory bowel disease.Gastroenterology2011140618271837.e210.1053/j.gastro.2011.02.04521530749
    [Google Scholar]
  8. ChanH.C. NgS.C. Emerging biologics in inflammatory bowel disease.J. Gastroenterol.201752214115010.1007/s00535‑016‑1283‑027832357
    [Google Scholar]
  9. SinhmarG.K. ShahN.N. ChokshiN.V. KhatriH.N. PatelM.M. Process, optimization, and characterization of budesonide-loaded nanostructured lipid carriers for the treatment of inflammatory bowel disease.Drug Dev. Ind. Pharm.20184471078108910.1080/03639045.2018.143419429376433
    [Google Scholar]
  10. ChourasiaM.K. JainS.K. Pharmaceutical approaches to colon targeted drug delivery systems.J. Pharm. Pharm. Sci.200361336612753729
    [Google Scholar]
  11. PrasanthV.V. JayaprakashR. SamT.M. Colon specific Drug Delivery Systems: a review on various pharmaceutical approaches.J. Appl. Pharm. Sci.201221163169
    [Google Scholar]
  12. LautenschlägerC. SchmidtC. FischerD. StallmachA. Drug delivery strategies in the therapy of inflammatory bowel disease.Adv. Drug Deliv. Rev.201471587610.1016/j.addr.2013.10.00124157534
    [Google Scholar]
  13. EiseleJ. HaynesG. KreuzerK. HallC. Toxicological assessment of Anionic Methacrylate Copolymer: I. Characterization, bioavailability and genotoxicity.Regul. Toxicol. Pharmacol.201682394710.1016/j.yrtph.2016.11.00927825834
    [Google Scholar]
  14. EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). Scientific Opinion on the safety of anionic methacrylate copolymer for the proposed uses as a food additive.EFSA J.20108165610.2903/j.efsa.2010.1656
    [Google Scholar]
  15. PignatelloR. ConsoliP. PuglisiG. In vitro release kinetics of Tolmetin from tabletted Eudragit microparticles.J. Microencapsul.200017337338310.1080/02652040028833710819424
    [Google Scholar]
  16. PignatelloR. AmicoD. ChiechioS. SpadaroC. PuglisiG. GiunchediP. Preparation and analgesic activity of Eudragit RS100 microparticles containing diflunisal.Drug Deliv.200181354510.1080/10717540130000274811280442
    [Google Scholar]
  17. PignatelloR. BucoloC. SpedalieriG. MalteseA. PuglisiG. Flurbiprofen-loaded acrylate polymer nanosuspensions for ophthalmic application.Biomaterials200223153247325510.1016/S0142‑9612(02)00080‑712102196
    [Google Scholar]
  18. PecoraT.M.G. CiancioloS. CatalfoA. De GuidiG. RuoziB. CristianoM.C. PaolinoD. GrazianoA.C.E. FrestaM. PignatelloR. Preparation, characterization and photostability assessment of curcumin microencapsulated within methacrylic copolymers.J. Drug Deliv. Sci. Technol.201633889710.1016/j.jddst.2016.03.013
    [Google Scholar]
  19. PaolinoD. VeroA. CoscoD. PecoraT.M. CiancioloS. FrestaM. PignatelloR. Improvement of oral bioavailability of curcumin upon microencapsulation with methacrylic copolymers.Front. Pharmacol.2016748510.3389/fphar.2016.0048528066239
    [Google Scholar]
  20. YusC. GraciaR. LarreaA. AndreuV. IrustaS. SebastianV. MendozaG. ArrueboM. Targeted release of probiotics from enteric microparticulated formulations.Polymers (Basel)20191110166810.3390/polym1110166831614915
    [Google Scholar]
  21. BaurJ.A. SinclairD.A. Therapeutic potential of resveratrol: the in vivo evidence.Nat. Rev. Drug Discov.20065649350610.1038/nrd206016732220
    [Google Scholar]
  22. NunesS. DanesiF. Del RioD. SilvaP. Resveratrol and inflammatory bowel disease: the evidence so far.Nutr. Res. Rev.2018311859710.1017/S095442241700021X29191255
    [Google Scholar]
  23. WalleT. HsiehF. DeLeggeM.H. OatisJ.E.Jr WalleU.K. High absorption but very low bioavailability of oral resveratrol in humans.Drug Metab. Dispos.200432121377138210.1124/dmd.104.00088515333514
    [Google Scholar]
  24. DeviP. SharmaP. RathoreC. NegiP. Novel drug delivery systems of resveratrol to bioavailability and therapeutic effects. Resveratrol - Adding Life to Years, Not Adding Years to Life BadriaF.A. London, UKIntechOpen2019254510.5772/intechopen.79739
    [Google Scholar]
  25. ChimentoA. De AmicisF. SirianniR. SinicropiM.S. PuociF. CasaburiI. SaturninoC. PezziV. Progress to improve oral bioavailability and beneficial effects of resveratrol.Int. J. Mol. Sci.2019206138110.3390/ijms2006138130893846
    [Google Scholar]
  26. AndishmandH. TabibiazarM. MohammadifarM.A. HamishehkarH. Pectin-zinc-chitosan-polyethylene glycol colloidal nano-suspension as a food grade carrier for colon targeted delivery of resveratrol.Int. J. Biol. Macromol.201797162210.1016/j.ijbiomac.2016.12.08728064058
    [Google Scholar]
  27. CurcioC. GrecoA.S. RizzoS. SaittaL. MusumeciT. RuoziB. PignatelloR. Development, optimization and characterization of Eudraguard®-based microparticles for colon delivery.Pharmaceuticals (Basel)202013613110.3390/ph1306013132599861
    [Google Scholar]
  28. AgarwalA. KharbV. SaharanV.A. Process optimisation, characterisation and evaluation of resveratrol-phospholipid complexes using Box-Behnken statistical design.Int. Curr. Pharm. J.20143730130810.3329/icpj.v3i7.19079
    [Google Scholar]
/content/journals/cnt/10.2174/2665978601999201126212614
Loading
/content/journals/cnt/10.2174/2665978601999201126212614
Loading

Data & Media loading...

Supplements

FT-IR spectra are provided as supplementary material Figures to , which is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test