Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2665-9786
  • E-ISSN: 2665-9794

Abstract

Different cellular responses influence the progress of cancer. In this study, the effects of hydrogen peroxide and quercetin induced changes on cell viability, apoptosis, and oxidative stress in human hepatocellular carcinoma (HepG2) cells were investigated.

The effects of hydrogen peroxide and quercetin on cell viability, cell cycle phases, and oxidative stress related cellular changes were investigated. Cell viability was assessed by WST-1 assay. Apoptosis rate, cell cycle phase changes, and oxidative stress were measured by flow cytometry. Protein expressions of p21, p27, p53, NF-Kβ-p50, and proteasome activity were determined by Western blot and fluorometry, respectively.

Hydrogen peroxide and quercetin treatment resulted in decreased cell viability and increased apoptosis in HepG2 cells. Proteasome activity was increased by hydrogen peroxide but decreased by quercetin treatment.

Both agents resulted in decreased p53 protein expression and increased cell death by different mechanisms regarding proteostasis and cell cycle phases.

Loading

Article metrics loading...

/content/journals/cnt/10.2174/2665978601999200807160528
2021-03-01
2025-01-28
Loading full text...

Full text loading...

References

  1. FerlayJ. ColombetM. SoerjomataramI. MathersC. ParkinD.M. PiñerosM. ZnaorA. BrayF. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods.Int. J. Cancer201914481941195310.1002/ijc.31937 30350310
    [Google Scholar]
  2. SimonettiR.G. CammàC. FiorelloF. PolitiF. D’AmicoG. PagliaroL. Hepatocellular carcinoma. A worldwide problem and the major risk factors.Dig. Dis. Sci.199136796297210.1007/BF01297149 1649041
    [Google Scholar]
  3. HarrisI.S. EndressJ.E. ColoffJ.L. SelforsL.M. McBrayerS.K. RosenbluthJ.M. TakahashiN. DhakalS. KoduriV. OserM.G. SchauerN.J. DohertyL.M. HongA.L. KangY.P. YoungerS.T. DoenchJ.G. HahnW.C. BuhrlageS.J. DeNicolaG.M. KaelinW.G.Jr BruggeJ.S. Deubiquitinases Maintain Protein Homeostasis and Survival of Cancer Cells upon Glutathione Depletion.Cell Metab.20192951166118110.1016/j.cmet.2019.01.020
    [Google Scholar]
  4. ClarksonP.M. ThompsonH.S. Antioxidants: What role do they play in physical activity and health?Am. J. Clin. Nutr.2000722Suppl.637S646S10.1093/ajcn/72.2.637S 10919970
    [Google Scholar]
  5. LiuY. ZhangY. LinK. ZhangD.X. TianM. GuoH.Y. WangY.T. LiY. ShanZ.L. Protective effect of piperine on electrophysiology abnormalities of left atrial myocytes induced by hydrogen peroxide in rabbits.Life Sci.20149429910510.1016/j.lfs.2013.10.024 24184297
    [Google Scholar]
  6. RaoW. ZhangL. SuN. WangK. HuiH. WangL. ChenT. LuoP. YangY.F. LiuZ.B. FeiZ. Blockade of SOCE protects HT22 cells from hydrogen peroxide-induced apoptosis.Biochem. Biophys. Res. Commun.2013441235135610.1016/j.bbrc.2013.10.054 24157793
    [Google Scholar]
  7. XuX. HangL. HuangB. WeiY. ZhengS. LiW. Efficacy of ethanol extract of Fructus lycii and its constituents lutein/zeaxanthin in protecting retinal pigment epithelium cells against oxidative stress: In vivo and in vitro models of age-related macular degeneration.J. Ophthalmol.20132013862806
    [Google Scholar]
  8. Rice-EvansC. Flavonoid antioxidants.Curr. Med. Chem.20018779780710.2174/0929867013373011 11375750
    [Google Scholar]
  9. Reyes-FariasM. Carrasco-PozoC. The anti-cancer effect of quercetin: Molecular implications in cancer metabolism.Int. J. Mol. Sci.20192013317710.3390/ijms20133177 31261749
    [Google Scholar]
  10. GibelliniL. PintiM. NasiM. De BiasiS. RoatE. BertoncelliL. CossarizzaA. interfering with ros metabolism in cancer cells: The potential role of quercetin.Cancers (Basel)2010221288131110.3390/cancers2021288 24281116
    [Google Scholar]
  11. PurohitV. SimeoneD.M. LyssiotisC.A. metabolic regulation of redox balance in cancer.Cancers (Basel)2019117E95510.3390/cancers11070955 31288436
    [Google Scholar]
  12. van RijnJ. van den BergJ. Flavonoids as enhancers of x-ray-induced cell damage in hepatoma cells.Clin. Cancer Res.1997310177517799815563
    [Google Scholar]
  13. SharmilaG. BhatF.A. ArunkumarR. ElumalaiP. Raja SinghP. SenthilkumarK. ArunakaranJ. Chemopreventive effect of quercetin, a natural dietary flavonoid on prostate cancer in in vivo model.Clin. Nutr.201433471872610.1016/j.clnu.2013.08.011 24080313
    [Google Scholar]
  14. TangS-M. DengX-T. ZhouJ. LiQ-P. GeX-X. MiaoL. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects.Biomed. Pharmacother.202012110960410.1016/j.biopha.2019.109604 31733570
    [Google Scholar]
  15. MauryaA.K. VinayakM. Anticarcinogenic action of quercetin by downregulation of phosphatidylinositol 3-kinase (PI3K) and protein kinase C (PKC) via induction of p53 in hepatocellular carcinoma (HepG2) cell line.Mol. Biol. Rep.20154291419142910.1007/s11033‑015‑3921‑7 26311153
    [Google Scholar]
  16. KimG.T. LeeS.H. KimJ.I. KimY.M. Quercetin regulates the sestrin 2-AMPK-p38 MAPK signaling pathway and induces apoptosis by increasing the generation of intracellular ROS in a p53-independent manner.Int. J. Mol. Med.201433486386910.3892/ijmm.2014.1658 24535669
    [Google Scholar]
  17. SunZ.J. ChenG. HuX. ZhangW. LiuY. ZhuL.X. ZhouQ. ZhaoY.F. Activation of PI3K/Akt/IKK-alpha/NF-kappaB signaling pathway is required for the apoptosis-evasion in human salivary adenoid cystic carcinoma: Its inhibition by quercetin.Apoptosis201015785086310.1007/s10495‑010‑0497‑5 20386985
    [Google Scholar]
  18. TanigawaS. FujiiM. HouD.X. Stabilization of p53 is involved in quercetin-induced cell cycle arrest and apoptosis in HepG2 cells.Biosci. Biotechnol. Biochem.200872379780410.1271/bbb.70680 18323654
    [Google Scholar]
  19. TrachoothamD. AlexandreJ. HuangP. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach?Nat. Rev. Drug Discov.20098757959110.1038/nrd2803 19478820
    [Google Scholar]
  20. CiccareseF. RaimondiV. SharovaE. Silic-BenussiM. CiminaleV. nanoparticles as tools to target redox homeostasis in cancer cells.Antioxidants20209321110.3390/antiox9030211 32143322
    [Google Scholar]
  21. MaryanovichM. GrossA. A ROS rheostat for cell fate regulation.Trends Cell Biol.201323312913410.1016/j.tcb.2012.09.007 23117019
    [Google Scholar]
  22. SenaL.A. ChandelN.S. Physiological roles of mitochondrial reactive oxygen species.Mol. Cell201248215816710.1016/j.molcel.2012.09.025 23102266
    [Google Scholar]
  23. CremersC.M. JakobU. Oxidant sensing by reversible disulfide bond formation.J. Biol. Chem.201328837264892649610.1074/jbc.R113.462929 23861395
    [Google Scholar]
  24. RaimondiV. CiccareseF. CiminaleV. Oncogenic pathways and the electron transport chain: A dangeROS liaison.Br. J. Cancer2020122216818131819197
    [Google Scholar]
  25. WuZ. WangH. FangS. XuC. Roles of endoplasmic reticulum stress and autophagy on H2O2 induced oxidative stress injury in HepG2 cells.Mol. Med. Rep.20181854163417410.3892/mmr.2018.9443 30221706
    [Google Scholar]
  26. WätjenW. MichelsG. SteffanB. NieringP. ChovolouY. KampkötterA. Tran-ThiQ.H. ProkschP. KahlR. Low concentrations of flavonoids are protective in rat H4IIE cells whereas high concentrations cause DNA damage and apoptosis.J. Nutr.2005135352553110.1093/jn/135.3.525 15735088
    [Google Scholar]
  27. HeD. GuoX. ZhangE. ZiF. ChenJ. ChenQ. LinX. YangL. LiY. WuW. YangY. HeJ. CaiZ. Quercetin induces cell apoptosis of myeloma and displays a synergistic effect with dexamethasone in vitro and in vivo xenograft models.Oncotarget2016729454894549910.18632/oncotarget.9993 27329589
    [Google Scholar]
  28. MuC. JiaP. YanZ. LiuX. LiX. LiuH. Quercetin induces cell cycle G1 arrest through elevating Cdk inhibitors p21 and p27 in human hepatoma cell line (HepG2).Methods Find. Exp. Clin. Pharmacol.200729317918310.1358/mf.2007.29.3.1092095 17520098
    [Google Scholar]
  29. RatherR.A. BhagatM. Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health.Cancer Med.2019[Online ahead of print10.1002/cam4.1411 31568659
    [Google Scholar]
  30. GibelliniL. PintiM. NasiM. MontagnaJ.P. De BiasiS. RoatE. BertoncelliL. CooperE.L. CossarizzaA. Quercetin and cancer chemoprevention.Evid. Based Complement. Alternat. Med.2011201159135610.1093/ecam/neq053 21792362
    [Google Scholar]
  31. WangR.E. KaoJ.L. HilliardC.A. PanditaR.K. Roti RotiJ.L. HuntC.R. TaylorJ.S. Inhibition of heat shock induction of heat shock protein 70 and enhancement of heat shock protein 27 phosphorylation by quercetin derivatives.J. Med. Chem.20095271912192110.1021/jm801445c 19296652
    [Google Scholar]
  32. Mutlu AltundağE. KasacıT. YılmazA.M. KarademirB. KoçtürkS. TagaY. YalçınA.S. Quercetin-induced cell death in human papillary thyroid cancer (B-CPAP) cells.J. Thyroid Res.20162016984367510.1155/2016/9843675 27057371
    [Google Scholar]
/content/journals/cnt/10.2174/2665978601999200807160528
Loading
/content/journals/cnt/10.2174/2665978601999200807160528
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): apoptosis; cell cycle; HepG2 cells; hydrogen peroxide; oxidative stress; quercetin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test