Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2665-9786
  • E-ISSN: 2665-9794

Abstract

Seeds of , commonly referred to as “black cumin”, are rich in a spectrum of biologically active substances and thus associated with a range of potential health benefits. Unlocking the activity of these phytochemicals traditionally requires solvent extraction. Previously, we have explored nanosizing as an alternative to liberate the biological activity of natural products, such as and .

Nanosizing natural products may increase their activity for a number of reasons ranging from an improved bioavailability to physical nano-toxicity. Because is amenable to being “milled down”, this spice has been employed to explore the underlying causes of increased activity upon mechanical particle size reduction.

seeds were pre-milled employing a household flour mill followed by extensive grinding exploiting a planetary ball mill. The particles were characterized employing Laser Diffraction, Photon Correlation Spectroscopy and Scanning Electron Microscopy connected with Energy Dispersive X-ray Diffraction. Finally, the samples were evaluated for sterility profile, and nematicidal and antioxidant activities.

Suspensions containing fairly uniform particles of showing diameters in the range of 100-1000 nm have been obtained. These nanosuspensions are characterized by considerably reduced microbial contamination when compared to the bulk material and reasonable antioxidant and nematicidal activities when employed at higher concentrations. This activity is comparable to the one of the ethanolic extract of the seeds and is significantly higher when compared to the one of aqueous extracts. A combination of “sterilization and extraction by milling”, improved liberation of soluble substances from small particles, surface activity and physical nano-activity of the particles itself is likely responsible for the activities observed.

Nanosizing of the entire natural products provides an interesting alternative to solvent extraction as it results in the liberation of active ingredients and certain additional activities. The resulting nanosuspensions can be investigated further and optimized for applications in Nutrition, Agriculture, Medicine, and Cosmetics.

Loading

Article metrics loading...

/content/journals/cnt/10.2174/2665978601999200930143010
2021-03-01
2024-12-25
Loading full text...

Full text loading...

References

  1. MuniafuM. KahindiJ.H.P. Phytochemicals, natural products at a crossroad: Current and future directions.Planta Med.20137987487510.1055/s‑0033‑1348758
    [Google Scholar]
  2. PavlovićI. KhatebS. MilisavI. MahajnaJ. Nutraceuticals for promoting longevity.Curr. Nutr.20201118
    [Google Scholar]
  3. RamalingumN. MahomoodallyM.F. The therapeutic potential of medicinal foods.Adv. Pharmacol. Sci.2014201435426410.1155/2014/354264
    [Google Scholar]
  4. WangT. WangQ. LiP. YangH. Temperature-responsive ionic liquids to set up a method for the simultaneous extraction and in situ preconcentration of hydrophilic and lipophilic compounds from medicinal plant matrices.Green Chem.2019214133414210.1039/C9GC00995G
    [Google Scholar]
  5. GriffinS. TittikpinaN.K. Al-marbyA. AlkhayerR. DenezhkinP. WitekK. GbogboK.A. BatawilaK. DuvalR.E. NasimM.J. Awadh-AliN.A. KirschG. ChaimbaultP. SchäferK-H. KeckC.M. HandzlikJ. JacobC. Turning waste into value: nanosized natural plant materials of solanum incanum L. and pterocarpus erinaceus poir with promising antimicrobial activities.Pharmaceutics201681110.3390/pharmaceutics8020011
    [Google Scholar]
  6. GriffinS. MasoodM.I. NasimM.J. SarfrazM. EbokaiweA.P. SchaferK.H. KeckC.M. JacobC. Natural nanoparticles: A particular matter inspired by nature.Antioxidants2017712110.3390/antiox7010003
    [Google Scholar]
  7. GriffinS. AlkhayerR. MirzoyanS. TurabyanA. ZuccaP. SarfrazM. NasimM. TrchounianA. RescignoA. KeckC. JacobC. Nanosizing cynomorium: Thumbs up for potential antifungal applications.Inventions201722410.3390/inventions2030024
    [Google Scholar]
  8. GriffinS. SarfrazM. FaridaV. NasimM.J. EbokaiweA.P. KeckC.M. JacobC. No time to waste organic waste: Nanosizing converts remains of food processing into refined materials.J. Environ. Manage.201821011412110.1016/j.jenvman.2017.12.084
    [Google Scholar]
  9. SarfrazM. GriffinS. Gabour SadT. AlhasanR. NasimM.J. Irfan MasoodM. SchaferK.H. EjikeC. KeckC.M. JacobC. EbokaiweA.P. Milling the mistletoe: Nanotechnological conversion of african mistletoe (Loranthus micranthus) intoantimicrobial materials.Antioxidants2018711010.3390/antiox7040060
    [Google Scholar]
  10. DizajS.M. VazifehaslZ. SalatinS. AdibkiaK. JavadzadehY. Nanosizing of drugs: Effect on dissolution rate.Res. Pharm. Sci.20151095108
    [Google Scholar]
  11. Al-KassasR. BansalM. ShawJ. Nanosizing techniques for improving bioavailability of drugs.J. Control. Release201726020221210.1016/j.jconrel.2017.06.003
    [Google Scholar]
  12. LaiF. SchlichM. PiredduR. CorriasF. FaddaA.M. SinicoC. Production of nanosuspensions as a tool to improve drug bioavailability: Focus on topical delivery.Curr. Pharm. Des.2015216089610310.2174/1381612821666151027152350
    [Google Scholar]
  13. SchraderI. WarnekeJ. NeumannS. GrotheerS. SwaneA.A. KirkensgaardJ.J.K. ArenzM. KunzS. Surface chemistry of “unprotected” nanoparticles: A spectroscopic investigation on colloidal particles.J. Phys. Chem. C2015119176551766110.1021/acs.jpcc.5b03863
    [Google Scholar]
  14. CondeJ. DiasJ.T. GrazuV. MorosM. BaptistaP.V. de la FuenteJ.M. Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine.Front Chem.2014212710.3389/fchem.2014.00048
    [Google Scholar]
  15. BienerJ. WittstockA. BaumannT.F. WeissmullerJ. BaumerM. HamzaA.V. Surface chemistry in nanoscale materials.Materials (Basel)200922404242810.3390/ma2042404
    [Google Scholar]
  16. GatooM.A. NaseemS. ArfatM.Y. DarA.M. QasimK. ZubairS. Physicochemical properties of nanomaterials: Implication in associated toxic manifestations.BioMed Res. Int.201410.1155/2014/498420
    [Google Scholar]
  17. TurciF. TomatisM. LesciI.G. RoveriN. FubiniB. The iron-related molecular toxicity mechanism of synthetic asbestos nanofibres: A model study for high-aspect-ratio nanoparticles.Chem Eur. J,20111735035810.1002/chem.201001893
    [Google Scholar]
  18. AhmadA. HusainA. MujeebM. KhanS.A. NajmiA.K. SiddiqueN.A. DamanhouriZ.A. AnwarF. A review on therapeutic potential of Nigella sativa: A miracle herb.Asian Pac. J. Trop. Biomed.2013333735210.1016/S2221‑1691(13)60075‑1
    [Google Scholar]
  19. KootiW. Hasanzadeh-NoohiZ. Sharafi-AhvaziN. Asadi-SamaniM. Ashtary-LarkyD. Phytochemistry, pharmacology, and therapeutic uses of black seed (Nigella sativa).Chin. J. Nat. Med.20161473274510.1016/S1875‑5364(16)30088‑7
    [Google Scholar]
  20. MohammedN.K. MuhialdinB.J. HussinA.S.M. Characterization of nanoemulsion of Nigella sativa oil and its application in ice cream.Food Sci. Nutr.202082608261810.1002/fsn3.1500
    [Google Scholar]
  21. MuthumanickkamA. SubramanianS. SathiyarajM. PreethiP. AshwiniM. Development of herb based (Nigella sativa) eri silk nanofibrous mat for biomedical applications.Mater. Today Proc.20202258558810.1016/j.matpr.2019.08.221
    [Google Scholar]
  22. ForouzanfarF. BazzazB.S.F. HosseinzadehH. Black cumin (Nigella sativa) and its constituent (thymoquinone): A review on antimicrobial effects.Iran. J. Basic Med. Sci.201417929938
    [Google Scholar]
  23. MukhtarH. QureshiA.S. AnwarF. MumtazM.W. MarcuM. Nigella sativa L. seed and seed oil: Potential sources of high-value components for development of functional foods and nutraceuticals/pharmaceuticals.J. Essent. Oil Res.20193117118310.1080/10412905.2018.1562388
    [Google Scholar]
  24. IslamM.T. KhanM. MishraS.K. An updated literature-based review: Phytochemistry, pharmacology and therapeutic promises of Nigella sativa L.Orient. Pharm. Exp. Med.20191911512910.1007/s13596‑019‑00363‑3
    [Google Scholar]
  25. EstevamE.C. GriffinS. NasimM.J. DenezhkinP. SchneiderR. LilischkisR. Dominguez-AlvarezE. WitekK. LataczG. KeckC. Natural selenium particles from Staphylococcus carnosus: Hazards or particles with particular promise?J. Hazard. Mater.2017324223010.1016/j.jhazmat.2016.02.001
    [Google Scholar]
  26. ManikovaD. LetavayovaL.M. VlasakovaD. KosikP. EstevamE.C. NasimM.J. GruhlkeM. SlusarenkoA. BurkholzT. JacobC. ChovanecM. Intracellular diagnostics: Hunting for the mode of action of redox-modulating selenium compounds in selected model systems.Molecules201419122581227910.3390/molecules190812258
    [Google Scholar]
  27. Castellucci EstevamE. WitekK. FaulstichL. NasimM.J. LataczG. Dominguez-AlvarezE. Kiec-KononowiczK. DemasiM. HandzlikJ. JacobC. Aspects of a distinct cytotoxicity of selenium salts and organic selenides in living cells with possible implications for drug design.Molecules201520138941391210.3390/molecules200813894
    [Google Scholar]
  28. ShimamuraT.S.Y. YamazakiT. TadaA. KashiwagiT. IshikawaH. MatsuiT. SugimotoN. AkiyamaH. UkedaH. Applicability of the DPPH assay for evaluating the antioxidant capacity of food additives - inter-laboratory evaluation study.Anal. Sci.20143071772110.2116/analsci.30.717
    [Google Scholar]
  29. LoganayakiN. SiddhurajuP. ManianS. Antioxidant activity and free radical scavenging capacity of phenolic extracts from Helicteres isora L. and Ceiba pentandra L. J.Food Sci. Tech. Mys.20135068769510.1007/s13197‑011‑0389‑x
    [Google Scholar]
  30. MoteriyaP. PadaliaH. ChandaS. Characterization, synergistic antibacterial and free radical scavenging efficacy of silver nanoparticles synthesized using Cassia roxburghii leaf extract.J. Genet. Eng. Biotechnol.20171550551310.1016/j.jgeb.2017.06.010
    [Google Scholar]
  31. BenzieI.F. StrainJ.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay.Anal. Biochem.1996239707610.1006/abio.1996.0292
    [Google Scholar]
  32. ArokiyarajS. BharanidharanR. AgastianP. ShinH. Chemical composition, antioxidant activity and antibacterial mechanism of action from Marsilea minuta leaf hexane: Methanol extract.Chem. Cent. J.20181211110.1186/s13065‑018‑0476‑4
    [Google Scholar]
  33. ZarroukA. MartineL. GrégoireS. NuryT. MeddebW. CamusE. BadreddineA. DurandP. NamsiA. YammineA. NasserB. MejriM. BretillonL. MackrillJ.J. Cherkaoui-MalkiM. HammamiM. LizardG. Profile of fatty acids, tocopherols, phytosterols and polyphenols in Mediterranean oils (argan oils, olive oils, milk thistle seed oils and nigella seed oil) and evaluation of their antioxidant and cytoprotective activities.Curr. Pharm. Des.20192517911805
    [Google Scholar]
  34. FathimaJ.B. PugazhendhiA. VenisR. Synthesis and characterization of ZrO2 nanoparticles-antimicrobial activity and their prospective role in dental care.Microb. Pathog.201711024525110.1016/j.micpath.2017.06.039
    [Google Scholar]
  35. PandiyanN. MurugesanB. SonamuthuJ. SamayananS. MahalingamS. Facile biological synthetic strategy to morphologically aligned CeO2/ZrO2 core nanoparticles using Justicia adhatoda extract and ionic liquid: Enhancement of its bio-medical properties.J. Photochem. Photobiol. B201817848148810.1016/j.jphotobiol.2017.11.036
    [Google Scholar]
  36. SchlesingerM.E. KingM.J. SoleK.C. DavenportW.G. Chapter 3 - Production of high copper concentrates – Introduction and comminution. In: Extractive Metallurgy of Copper (Fifth Edition); Schlesinger, M.E.; King M.J.; Sole, K.C.; Davenport, W.G.; eds.; Elsevier: Oxford, 2011, pp. 31-49.
  37. HuberD.L. Synthesis, properties, and applications of iron nanoparticles.Small2005148250110.1002/smll.200500006
    [Google Scholar]
  38. RobertsonJ.D. RizzelloL. Avila-OliasM. GaitzschJ. ContiniC. MagonM.S. RenshawS.A. BattagliaG. Purification of nanoparticles by size and shape.Sci. Rep.201661910.1038/srep27494
    [Google Scholar]
  39. LiuX.F. KangJ.M. LiuB. YangJ.H. Separation of gold nanowires and nanoparticles through a facile process of centrifugation.Separ. Purif. Tech.20181921410.1016/j.seppur.2017.09.064
    [Google Scholar]
  40. XiongB. ChengJ. QiaoY.X. ZhouR. HeY. YeungE.S. Separation of nanorods by density gradient centrifugation.J. Chromatogr. A201112183823382910.1016/j.chroma.2011.04.038
    [Google Scholar]
/content/journals/cnt/10.2174/2665978601999200930143010
Loading
/content/journals/cnt/10.2174/2665978601999200930143010
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test