Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007
side by side viewer icon HTML

Abstract

In organic synthesis, carbon-carbon bond formation is the fundamental transformation to create the carbon backbone of organic molecules and this key reaction is very popular in the improvement of organic chemistry, which exists at the bottom of the heart of the chemical sciences. The Baker-Venkataraman rearrangement has received great attention in the formation of 1,3-diketones through the regioselective construction of carbon-carbon bonds. This rearrangement is an important type of chemical transformation in which the intramolecular migration of the ester acyl group takes place to provide 1,3-diketones in the presence of the base. Generally, 1,3-diketones or -hydroxydibenzoylmethane derivatives undergo cyclization to provide the corresponding flavones in the presence of concentrated sulfuric acid. The Baker-Venkataraman rearrangement is frequently employed in the preparation of flavones and chromones. Besides, anthrapyran and anthracyclin antibiotics, benzopyrans, coumarins, xanthones, ., are also synthesized with the help of these reactions. This review deals with the brilliant application of the Baker-Venkataraman rearrangement in the synthesis of promising organic compounds.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X320975240612063326
2024-06-24
2025-05-03
The full text of this item is not currently available.

References

  1. KshatriyaR. JejurkarV.P. SahaS. In memory of Prof. Venkataraman: Recent advances in the synthetic methodologies of flavones.Tetrahedron201874881183310.1016/j.tet.2017.12.052
    [Google Scholar]
  2. LeonteD. UngureanuD. ZahariaV. Flavones and related compounds: Synthesis and biological activity.Molecules20232818652810.3390/molecules2818652837764304
    [Google Scholar]
  3. AmeenD. SnapeT.J. Mechanism and application of baker–venkataraman o→c acyl migration reactions.Synthesis201547141158
    [Google Scholar]
  4. MahalH.S. VenkataramanK. A synthesis of flavones at room temperature.Curr. Sci.19332214215
    [Google Scholar]
  5. BakerW. 322. Molecular rearrangement of some o-acyloxyacetophenones and the mechanism of the production of 3-acylchromones.J. Chem. Soc.19331381138910.1039/jr9330001381
    [Google Scholar]
  6. de GonzaloG. AlcántaraA.R. Recent developments in the synthesis of β-diketones.Pharmaceuticals20211410104310.3390/ph1410104334681266
    [Google Scholar]
  7. HansenP.E. Structural studies of β-diketones and their implications on biological effects.Pharmaceuticals20211411118910.3390/ph1411118934832971
    [Google Scholar]
  8. MajhiS. SivakumarM. Semisynthesis of Bioactive Compounds and their Biological Activities.AmsterdamElsevier2023
    [Google Scholar]
  9. MajhiS. MandalB. Modern Sustainable Techniques in Total Synthesis of Bioactive Natural Products.SingaporeWorld Scientific202310.1142/13210
    [Google Scholar]
  10. DeyA.K. MajhiS. Samarium(III) triflate in organic synthesis: A mild and efficient catalyst.ChemistrySelect2023818e20230015610.1002/slct.202300156
    [Google Scholar]
  11. MajhiS. Applications of ultrasound in total synthesis of bioactive natural products: A promising green tool.Ultrason. Sonochem.20217710566510.1016/j.ultsonch.2021.10566534298310
    [Google Scholar]
  12. MajhiS. The art of total synthesis of bioactive natural products via microwaves.Curr. Org. Chem.20212591047106910.2174/1385272825666210303112302
    [Google Scholar]
  13. GoraiD. JashS.K. SinghR.K. SarkarA. MajhiS. Chemical and pharmacological aspects of Limnophila rugosa: An update.Int. J. Nat. Prod. Res.20133120124
    [Google Scholar]
  14. MajhiS. Applications of flow chemistry in total synthesis of natural products.Curr. Org. Chem.202327121072108910.2174/1385272827666230809094232
    [Google Scholar]
  15. BrahmachariG. MandalL.C. RoyR. JashS.K. MondalA. MajhiS. GoraiD. Lupeol, a pharmaceutically potent triterpenoid, from the ripe fruits of Rauvolfia tetraphylla L. (Apocynaceae).J. Indian Chem. Soc.201188303305
    [Google Scholar]
  16. MajhiS. SahaI. Visible light-promoted synthesis of bioactive N, N-heterocycles.Curr. Green Chem.20229312714410.2174/2213346110666221223141323
    [Google Scholar]
  17. MajhiS. Applications of Yamaguchi method to esterification and macrolactonization in total synthesis of bioactive natural products.Chem Sel20216174178420610.1002/slct.202100206
    [Google Scholar]
  18. MajhiS. JashS.K. Recent developments of nanocatalysts for Stille coupling reaction.Synth. Commun.2023532061208710.1080/00397911.2023.2269585
    [Google Scholar]
  19. MajhiS. Applications of Norrish type I and II reactions in the total synthesis of natural products: A review.Photochem. Photobiol. Sci.202120101357137810.1007/s43630‑021‑00100‑334537894
    [Google Scholar]
  20. MajhiS. Applications of nanoparticles in organic synthesis under ultrasonication.Nanoparticles in Green Organic Synthesis Strategy Towards Sustainability.1st ed.AmsterdamElsevier2023
    [Google Scholar]
  21. MajhiS. DasD. Chemical derivatization of natural products: Semisynthesis and pharmacological aspects- A decade update.Tetrahedron20217813180110.1016/j.tet.2020.131801
    [Google Scholar]
  22. BrahmachariG. MajhiS. MandalB. MandalM. KumarA. SrivastavaA.K. SinghR.B. MisraN. Stigmasterol from the flowers of Peltophorum pterocarpum (DC) Backer Ex K. Heyne (Fabaceae)-isolation, spectral properties and quantum chemical studies.J. Indian Chem. Soc.20189512311244
    [Google Scholar]
  23. MajhiS. Discovery, development and design of anthocyanins-inspired anticancer agents: A comprehensive review.Anticancer. Agents Med. Chem.202222193219323810.2174/187152062166621101514231034779372
    [Google Scholar]
  24. MajhiS. 9 Recent developments in the synthesis and anti-cancer activity of acridine and xanthine-based molecules.Phys. Sci. Rev.2022830734210.1515/9783110735772‑009
    [Google Scholar]
  25. MajhiS. Diterpenoids: Natural distribution, semisynthesis at room temperature and pharmacological aspects-a decade update.ChemistrySelect2020540124501246410.1002/slct.202002836
    [Google Scholar]
  26. MajhiS. MondalP.K. Microwave-assisted synthesis of heterocycles and their anti-cancer activities.Curr. Microw. Chem.202310213515410.2174/0122133356264446230925173123
    [Google Scholar]
  27. MajhiS. Synthesis of bioactive natural products and their analogs at room temperature – an update.Phys Sci Rev20238103447347310.1515/psr‑2021‑0094
    [Google Scholar]
  28. MajhiS. Recent developments in the synthesis and anti-cancer activity of acridine and xanthine-based molecules.Phys Sci Rev2023892405243910.1515/psr‑2021‑0216
    [Google Scholar]
  29. SinhaK. ChowdhuryS. BanerjeeS. MandalB. MandalM. MajhiS. BrahmachariG. GhoshJ. SilP.C. Lupeol alters viability of SK-RC-45 (Renal cell carcinoma cell line) by modulating its mitochondrial dynamics.Heliyon201958e0210710.1016/j.heliyon.2019.e02107
    [Google Scholar]
  30. SchumacherR.W. DavidsonB.S. MontenegroD.A. BernanV.S. Gamma-indomycinone, a new pluramycin metabolite from a deep-sea derived actinomycete.J. Nat. Prod.199558461361710.1021/np50118a0247623040
    [Google Scholar]
  31. LiuC.F. Recent advances on natural aryl-c-glycoside scaffolds: Structure, bioactivities, and synthesis—a comprehensive review.Molecules20222721743910.3390/molecules2721743936364266
    [Google Scholar]
  32. KrohnK. Tran-ThienH.T. AhmedI. General approach to anthrapyran antibiotics exemplified by the synthesis of rac -γ-Indomycinone.Eur. J. Org. Chem.20112011122223222510.1002/ejoc.201100093
    [Google Scholar]
  33. HussainH. AzizS. SchulzB. KrohnK. Synthesis of a 4H-anthra[1,2-b]pyran Derivative and its Antimicrobial activity.Nat. Prod. Commun.2011661934578X110060010.1177/1934578X110060062121815422
    [Google Scholar]
  34. TalhiO. Brodziak-JaroszL. PanningJ. OrlikovaB. ZwergelC. TzanovaT. PhilippotS. PintoD.C.G.A. PazF.A.A. GerhäuserC. DickT.P. JacobC. DiederichM. BagrelD. KirschG. SilvaA.M.S. One-Pot synthesis of benzopyran-4-ones with cancer preventive and therapeutic potential.Eur. J. Org. Chem.20162016596597510.1002/ejoc.201501278
    [Google Scholar]
  35. ThasanaN. RuchirawatS. The application of the Baker–Venkataraman rearrangement to the synthesis of benz[b]indeno[2,1-e]pyran-10,11-dione.Tetrahedron Lett.200243254515451710.1016/S0040‑4039(02)00818‑3
    [Google Scholar]
  36. HassnerA. AlexanianV. Direct room temperature esterification of carboxylic acids.Tetrahedron Lett.197819464475447810.1016/S0040‑4039(01)95256‑6
    [Google Scholar]
  37. MadhavH. JameelE. RehanM. HodaN. Recent advancements in chromone as a privileged scaffold towards the development of small molecules for neurodegenerative therapeutics.RSC Med Chem202213325827910.1039/D1MD00394A35434628
    [Google Scholar]
  38. MaicheenC. ChurnthammakarnC. PongsroypechN. KhamkhenshorngphanuchT. UngwitayatornJ. RungsardthongK. AsasutjaritR. TheeramunkongS. One-pot synthesis and evaluation of antioxidative stress and anticancer properties of an active chromone derivative.Molecules2023287312910.3390/molecules2807312937049900
    [Google Scholar]
  39. ProençaC. AlbuquerqueH.M.T. RibeiroD. FreitasM. SantosC.M.M. SilvaA.M.S. FernandesE. Novel chromone and xanthone derivatives: Synthesis and ROS/RNS scavenging activities.Eur. J. Med. Chem.201611538139210.1016/j.ejmech.2016.03.04327031214
    [Google Scholar]
  40. Abdel GhaniS.B. MugishaP.J. WilcoxJ.C. GadoE.A.M. MeduE.O. LambA.J. BrownR.C.D. Convenient one-pot synthesis of chromone derivatives and their antifungal and antibacterial evaluation.Synth. Commun.201343111549155610.1080/00397911.2011.647222
    [Google Scholar]
  41. YuY. HuY. ShaoW. HuangJ. ZuoY. HuoY. AnL. DuJ. BuX. Synthesis of multi-functionalized chromeno[2,3- c ]pyrrol-9(2 H )-ones: Investigation and application of baker–venkataraman rearrangement involved reactions catalyzed by 4-(dimethylamino)pyridine.Eur. J. Org. Chem.20112011244551456310.1002/ejoc.201100435
    [Google Scholar]
  42. PintoD.C.G.A. SecaA.M.L. LealS.B. SilvaA.M.S. CavaleiroJ.A.S. A novel short-step synthesis of new xanthenedione derivatives from the cyclization of 3-Cinnamoyl-2-styrylchromones.Synlett20111420052008
    [Google Scholar]
  43. KalininA.V. da SilvaA.J.M. LopesC.C. LopesR.S.C. SnieckusV. Directed ortho metalation - cross coupling links. Carbamoyl rendition of the baker-venkataraman rearrangement. Regiospecific route to substituted 4-hydroxycoumarins.Tetrahedron Lett.199839284995499810.1016/S0040‑4039(98)00977‑0
    [Google Scholar]
  44. WangX. LiuJ. ZhangY. LiangX. An efficient one-pot synthesis of 4′-substituted flavones.Chem. Pap.201872122923310.1007/s11696‑017‑0275‑8
    [Google Scholar]
  45. HaidS. NovodomskáA. GentzschJ. GretheC. GeuenichS. BankwitzD. ChhatwalP. JannackB. HennebelleT. BailleulF. KepplerO.T. PoenischM. BartenschlagerR. HernandezC. LemassonM. RosenbergA.R. Wong-StaalF. Davioud-CharvetE. PietschmannT. A plant-derived flavonoid inhibits entry of all HCV genotypes into human hepatocytes.Gastroenterology20121431213222.e510.1053/j.gastro.2012.03.03622465429
    [Google Scholar]
  46. GeuenichS. GoffinetC. VenzkeS. NolkemperS. BaumannI. PlinkertP. ReichlingJ. KepplerO.T. Aqueous extracts from peppermint, sage and lemon balm leaves display potent anti-HIV-1 activity by increasing the virion density.Retrovirology2008512710.1186/1742‑4690‑5‑2718355409
    [Google Scholar]
  47. Martin-BenllochX. ElhabiriM. LanfranchiD.A. Davioud-CharvetE. A practical and economical high-yielding, six-step sequence synthesis of a flavone: Application to the multigram-scale synthesis of ladanein.Org. Process Res. Dev.201418561361710.1021/op4003642
    [Google Scholar]
  48. WuZ. JiangL. ChenH. WangQ. Synthesis of flavonoid 7-O-β-D-glycosides by phase transfer catalysis.J. Chem. Res.20092009319519710.3184/030823409X431346
    [Google Scholar]
  49. FougerousseA. GonzalezE. BrouillardR. A convenient method for synthesizing 2-aryl-3-hydroxy-4-oxo-4H-1-benzopyrans or flavonols.J. Org. Chem.200065258358610.1021/jo990735q10813976
    [Google Scholar]
  50. El-SeediH. El-GhorabD. El-BarbaryM. ZayedM. GöranssonU. LarssonS. VerpoorteR. Naturally occurring xanthones; latest investigations: Isolation, structure elucidation and chemosystematic significance.Curr. Med. Chem.200916202581262610.2174/09298670978868205619601799
    [Google Scholar]
  51. ResendeD.I.S.P. DurãesF. MaiaM. SousaE. PintoM.M.M. Recent advances in the synthesis of xanthones and azaxanthones.Org. Chem. Front.20207193027306610.1039/D0QO00659A
    [Google Scholar]
  52. SantosC.M.M. SilvaA.M.S. CavaleiroJ.A.S. A novel and efficient route for the synthesis of hydroxylated 2,3-diarylxanthones.Synlett20072031133116
    [Google Scholar]
/content/journals/cis/10.2174/012210299X320975240612063326
Loading
/content/journals/cis/10.2174/012210299X320975240612063326
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test