Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

Background

Colorectal cancer is still challenging for scientists and healthcare professionals. Conventional treatment methods are associated with various limitations at a clinical bed and patient’s compliance. Novel nanocarrier based approaches opened a new window for improved therapy and new future perspective.

Introduction

Cancer is the deadliest disease globally and is challenging to healthcare systems. Colorectal cancer (CRC) is the third most common cancer in the world, affecting all age groups and the most common cancer in 23 countries, as per the World Health Organization (WHO).

Methods

In this review, we addressed nanocarriers based strategic treatment of colorectal cancer, major findings, limitations, and future perspective. For this, we seriously reviewed literature downloaded from prime sources such as Google Scholar, Web of Science, PubMed, and Publon. To filter the exact need of data, we used keyword alone in combination. Various relevant articles were obtained from the reference section of the selected papers.

Results and Discussion

It is necessary to have an effective and targeted treatment option to control CRC compared to available remedies. Nanotechnology has been widely used to diagnose and treat several cancer types. Advances in nanomedicine and phytonanomedicine promoted novel identification methods to treat colorectal cancer patients. There are several nanocarriers recommended for clinical purposes. However, to date, only a few clinically approved nanocarriers can load anticancer moieties and selectively bind to cancer cells. Some nanocarriers transport and release treatments to the target colorectal area but provide few benefits.

Conclusion

In this review, various nanoparticles (NPs) with unique properties have been discussed in relation to managing colorectal cancer, major outcomes of clinical trials, and successful patents published so far.

© 2023 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cis/10.2174/2210299X01666230224095321
2023-01-01
2024-11-22
Loading full text...

Full text loading...

/deliver/fulltext/cis/1/1/CIS-1-E240223214003.html?itemId=/content/journals/cis/10.2174/2210299X01666230224095321&mimeType=html&fmt=ahah

References

  1. KeumN. GiovannucciE. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies.Nat. Rev. Gastroenterol. Hepatol.2019161271373210.1038/s41575‑019‑0189‑831455888
    [Google Scholar]
  2. RawlaP. SunkaraT. BarsoukA. Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors.Prz. Gastroenterol.20191428910310.5114/pg.2018.8107231616522
    [Google Scholar]
  3. NakajiS. UmedaT. ShimoyamaT. SugawaraK. TamuraK. FukudaS. SakamotoJ. ParodiS. Environmental factors affect colon carcinoma and rectal carcinoma in men and women differently.Int. J. Colorectal Dis.200318648148610.1007/s00384‑003‑0485‑012695918
    [Google Scholar]
  4. KasiA. HandaS. BhattiS. UmarS. BansalA. SunW. Molecular pathogenesis and classification of colorectal carcinoma.Curr. Colorectal Cancer Rep.20201659710610.1007/s11888‑020‑00458‑z32905465
    [Google Scholar]
  5. MartensonJ.A.Jr WillettC.G. SargentD.J. MailliardJ.A. DonohueJ.H. GundersonL.L. ThomasC.R.Jr FisherB. BensonA.B.III MyersonR. GoldbergR.M. Phase III study of adjuvant chemotherapy and radiation therapy compared with chemotherapy alone in the surgical adjuvant treatment of colon cancer: results of intergroup protocol 0130.J. Clin. Oncol.200422163277328310.1200/JCO.2004.01.02915249584
    [Google Scholar]
  6. WildiersH. Cytotoxic and targeted anticancer treatment in the senior cancer patient.ESMO Handbook of cancer in the senior patient SchrijversD. AaproM. ZakotnikB. AudisioR. 20101st576510.3109/9781841847481.008
    [Google Scholar]
  7. SiegelR. DeSantisC. JemalA. Colorectal cancer statistics, 2014.CA Cancer J. Clin.201464210411710.3322/caac.2122024639052
    [Google Scholar]
  8. SundaramoorthyP. RamasamyT. MishraS.K. JeongK.Y. YongC.S. KimJ.O. KimH.M. Engineering of caveolae-specific selfmicellizing anticancer lipid nanoparticles to enhance the chemotherapeutic efficacy of oxaliplatin in colorectal cancer cells.Acta Biomater.20164222023110.1016/j.actbio.2016.07.00627395829
    [Google Scholar]
  9. ChabnerB.A. RobertsT.G.Jr Chemotherapy and the war on cancer.Nat. Rev. Cancer200551657210.1038/nrc152915630416
    [Google Scholar]
  10. FieldK.M. KosmiderS. JeffordM. JennensR. GreenM. GibbsP. Chemotherapy treatments for metastatic colorectal cancer: is evidence-based medicine in practice?J. Oncol. Pract.20084627127610.1200/JOP.085200220856756
    [Google Scholar]
  11. ZhengZ. TanY. LiY. LiuY. YiG. YuC.Y. WeiH. Biotherapeutic-loaded injectable hydrogels as a synergistic strategy to support myocardial repair after myocardial infarction.J. Control. Release202133521623610.1016/j.jconrel.2021.05.02334022323
    [Google Scholar]
  12. AbdelbaryG. HaiderM. In vitro characterization and growth inhibition effect of nanostructured lipid carriers for controlled delivery of methotrexate.Pharm. Dev. Technol.20131851159116810.3109/10837450.2011.61425121958084
    [Google Scholar]
  13. WilczewskaA.Z. NiemirowiczK. MarkiewiczK.H. CarH. Nanoparticles as drug delivery systems.Pharmacol. Rep.20126451020103710.1016/S1734‑1140(12)70901‑523238461
    [Google Scholar]
  14. DavisME ChenZ ShinDM Nanoparticle therapeutics: an emerging treatment modality for cancer.Nat. Rev. Drug Discov.200879771782
    [Google Scholar]
  15. ZoetemelkM. RamzyG.M. RauschM. Nowak-SliwinskaP. Drug-drug interactions of irinotecan, 5-fluorouracil, folinic acid and oxaliplatin and its activity in colorectal carcinoma treatment.Molecules20202511261410.3390/molecules2511261432512790
    [Google Scholar]
  16. LongleyD.B. HarkinD.P. JohnstonP.G. 5-Fluorouracil: mechanisms of action and clinical strategies.Nat. Rev. Cancer20033533033810.1038/nrc107412724731
    [Google Scholar]
  17. GoreyK.M. Haji-JamaS. BartfayE. LuginaahI.N. WrightF.C. KanjeekalS.M. Lack of access to chemotherapy for colon cancer: multiplicative disadvantage of being extremely poor, inadequately insured and African American.BMC Health Serv. Res.201414113310.1186/1472‑6963‑14‑13324655931
    [Google Scholar]
  18. Fernández MontesA. Martínez LagoN. Covela RúaM. de la Cámara GómezJ. González VillaroelP. Méndez MéndezJ.C. Jorge FernándezM. Salgado FernándezM. Reboredo LópezM. Quintero AldanaG. Luz Pellón AugustoM. Graña SuárezB. García GómezJ. Efficacy and safety of FOLFIRI/aflibercept in second-line treatment of metastatic colorectal cancer in a real-world population: Prognostic and predictive markers.Cancer Med.20198388288910.1002/cam4.190330690930
    [Google Scholar]
  19. PeetersM. CervantesA. Moreno VeraS. TaiebJ. Trifluridine/tipiracil: an emerging strategy for the management of gastrointestinal cancers.Future Oncol.201814161629164510.2217/fon‑2018‑014729701076
    [Google Scholar]
  20. AlibolandiM. HoseiniF. MohammadiM. RamezaniP. EinafsharE. TaghdisiS.M. RamezaniM. AbnousK. Curcumin-entrapped MUC-1 aptamer targeted dendrimer-gold hybrid nanostructure as a theranostic system for colon adenocarcinoma.Int. J. Pharm.20185491-2677510.1016/j.ijpharm.2018.07.05230048777
    [Google Scholar]
  21. OdinE. SondénA. GustavssonB. CarlssonG. WettergrenY. Expression of folate pathway genes in stage III colorectal cancer correlates with recurrence status following adjuvant bolus 5-FU-based chemotherapy.Mol. Med.201521159760410.2119/molmed.2014.0019226193446
    [Google Scholar]
  22. DienstmannR. SalazarR. TaberneroJ. Overcoming resistance to anti-EGFR therapy in colorectal cancer.Am. Soc. Clin. Oncol. Educ. Book20153535e149e15610.14694/EdBook_AM.2015.35.e14925993166
    [Google Scholar]
  23. CouvreurP. VauthierC. Nanotechnology: intelligent design to treat complex disease.Pharm. Res.20062371417145010.1007/s11095‑006‑0284‑816779701
    [Google Scholar]
  24. TorchilinV.P. Recent advances with liposomes as pharmaceutical carriers.Nat. Rev. Drug Discov.20054214516010.1038/nrd163215688077
    [Google Scholar]
  25. MorrisS.A. FarrellD. GrodzinskiP. Nanotechnologies in cancer treatment and diagnosis.J. Natl. Compr. Canc. Netw.201412121727173310.6004/jnccn.2014.017525505214
    [Google Scholar]
  26. SchererF. AntonM. SchillingerU. HenkeJ. BergemannC. KrügerA. GänsbacherB. PlankC. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo.Gene Ther.20029210210910.1038/sj.gt.330162411857068
    [Google Scholar]
  27. AlexiouC. JurgonsR. SchmidR. HilpertA. BergemannC. ParakF. IroH. In vitro and in vivo investigations of targeted chemotherapy with magnetic nanoparticles.J. Magn. Magn. Mater.2005293138939310.1016/j.jmmm.2005.02.036
    [Google Scholar]
  28. HaackeE.M. ChengN.Y.C. HouseM.J. LiuQ. NeelavalliJ. OggR.J. KhanA. AyazM. KirschW. ObenausA. Imaging iron stores in the brain using magnetic resonance imaging.Magn. Reson. Imaging200523112510.1016/j.mri.2004.10.00115733784
    [Google Scholar]
  29. GleichB. WeizeneckerJ. Tomographic imaging using the nonlinear response of magnetic particles.Nature200543570461214121710.1038/nature0380815988521
    [Google Scholar]
  30. CisternaB.A. KamalyN. ChoiW.I. TavakkoliA. FarokhzadO.C. VilosC. Targeted nanoparticles for colorectal cancer.Nanomedicine (Lond.)201611182443245610.2217/nnm‑2016‑019427529192
    [Google Scholar]
  31. ShiJ. KantoffP.W. WoosterR. FarokhzadO.C. Cancer nanomedicine: progress, challenges and opportunities.Nat. Rev. Cancer2017171203710.1038/nrc.2016.10827834398
    [Google Scholar]
  32. AshiqueS. SandhuN.K. ChawlaV. ChawlaP.A. Targeted drug delivery: trends and perspectives.Curr. Drug Deliv.202118101435145510.2174/156720181866621060916130134151759
    [Google Scholar]
  33. ShenS. WuY. LiuY. WuD. High drug-loading nanomedicines: progress, current status, and prospects.Int. J. Nanomedicine2017124085410910.2147/IJN.S13278028615938
    [Google Scholar]
  34. FengS.T. LiJ. LuoY. YinT. CaiH. WangY. DongZ. ShuaiX. LiZ.P. pH-sensitive nanomicelles for controlled and efficient drug delivery to human colorectal carcinoma LoVo cells.PLoS One201496e10073210.1371/journal.pone.010073224964012
    [Google Scholar]
  35. ImmordinoM.L. DosioF. CattelL. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential.Int. J. Nanomedicine20061329731517717971
    [Google Scholar]
  36. KesharwaniS.S. KaurS. TummalaH. SangamwarA.T. Overcoming multiple drug resistance in cancer using polymeric micelles.Expert Opin. Drug Deliv.201815111127114210.1080/17425247.2018.153726130324813
    [Google Scholar]
  37. MaedaH. Polymer therapeutics and the EPR effect.J. Drug Target.2017259-1078178510.1080/1061186X.2017.136587828988499
    [Google Scholar]
  38. SwathiG. PrasanthiN.L. ManikiranS.S. RamaraoN. Solid lipid nanoparticles: colloidal carrier systems for drug delivery.Int. J. Pharm. Sci. Res.20101211610.1002/chin.201202274
    [Google Scholar]
  39. WangW. DengZ. XuX. LiZ. JungF. MaN. LendleinA. Functional nanoparticles and their interactions with mesenchymal stem cells.Curr. Pharm. Des.201723263814383228641542
    [Google Scholar]
  40. ParisJ.L. de la TorreP. Victoria CabañasM. ManzanoM. GrauM. FloresA.I. Vallet-RegíM. Vectorization of ultrasound-responsive nanoparticles in placental mesenchymal stem cells for cancer therapy.Nanoscale20179175528553710.1039/C7NR01070B28402365
    [Google Scholar]
  41. TangH. ZhaoW. YuJ. LiY. ZhaoC. Recent development of pH-responsive polymers for cancer nanomedicine.Molecules2018241410.3390/molecules2401000430577475
    [Google Scholar]
  42. ThambiT. DeepaganV.G. YoonH.Y. HanH.S. KimS.H. SonS. JoD.G. AhnC.H. SuhY.D. KimK. Chan KwonI. LeeD.S. ParkJ.H. Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug delivery.Biomaterials20143551735174310.1016/j.biomaterials.2013.11.02224290696
    [Google Scholar]
  43. MaedaH. NakamuraH. FangJ. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo.Adv. Drug Deliv. Rev.2013651717910.1016/j.addr.2012.10.00223088862
    [Google Scholar]
  44. ChengC.J. TietjenG.T. Saucier-SawyerJ.K. SaltzmanW.M. A holistic approach to targeting disease with polymeric nanoparticles.Nat. Rev. Drug Discov.201514423924710.1038/nrd450325598505
    [Google Scholar]
  45. RudzinskiW.E. PalaciosA. AhmedA. LaneM.A. AminabhaviT.M. Targeted delivery of small interfering RNA to colon cancer cells using chitosan and PEGylated chitosan nanoparticles.Carbohydr. Polym.201614732333210.1016/j.carbpol.2016.04.04127178938
    [Google Scholar]
  46. WangM. GartelA.L. Combination with bortezomib enhances the antitumor effects of nanoparticle-encapsulated thiostrepton.Cancer Biol. Ther.201213318418910.4161/cbt.13.3.1887522353937
    [Google Scholar]
  47. VilosC. MoralesF.A. SolarP.A. HerreraN.S. Gonzalez-NiloF.D. AguayoD.A. MendozaH.L. ComerJ. BravoM.L. GonzalezP.A. KatoS. CuelloM.A. AlonsoC. BravoE.J. BustamanteE.I. OwenG.I. VelasquezL.A. Paclitaxel-PHBV nanoparticles and their toxicity to endometrial and primary ovarian cancer cells.Biomaterials201334164098410810.1016/j.biomaterials.2013.02.03423465827
    [Google Scholar]
  48. AcharyaS. SahooS.K. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect.Adv. Drug Deliv. Rev.201163317018310.1016/j.addr.2010.10.00820965219
    [Google Scholar]
  49. Loira-PastorizaC. TodoroffJ. VanbeverR. Delivery strategies for sustained drug release in the lungs.Adv. Drug Deliv. Rev.201475819110.1016/j.addr.2014.05.01724915637
    [Google Scholar]
  50. Clinical trials databaseNCT003618422012
  51. LeiS. ChienP.Y. SheikhS. ZhangA. AliS. AhmadI. Enhanced therapeutic efficacy of a novel liposome-based formulation of SN-38 against human tumor models in SCID mice.Anticancer Drugs200415877377810.1097/00001813‑200409000‑0000615494639
    [Google Scholar]
  52. YangC. LiuH.Z. FuZ.X. LuW.D. Oxaliplatin long-circulating liposomes improved therapeutic index of colorectal carcinoma.BMC Biotechnol.20111112110.1186/1472‑6750‑11‑2121401960
    [Google Scholar]
  53. LiL. AhmedB. MehtaK. KurzrockR. Liposomal curcumin with and without oxaliplatin: effects on cell growth, apoptosis, and angiogenesis in colorectal cancer.Mol. Cancer Ther.2007641276128210.1158/1535‑7163.MCT‑06‑055617431105
    [Google Scholar]
  54. NicolasJ. MuraS. BrambillaD. MackiewiczN. CouvreurP. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery.Chem. Soc. Rev.20134231147123510.1039/C2CS35265F23238558
    [Google Scholar]
  55. OhJ.K. ParkJ.M. Iron oxide-based superparamagnetic polymeric nanomaterials: Design, preparation, and biomedical application.Prog. Polym. Sci.201136116818910.1016/j.progpolymsci.2010.08.005
    [Google Scholar]
  56. MohammadiM. RamezaniM. AbnousK. AlibolandiM. Biocompatible polymersomes-based cancer theranostics: Towards multifunctional nanomedicine.Int. J. Pharm.20175191-228730310.1016/j.ijpharm.2017.01.03728115259
    [Google Scholar]
  57. LeeJ.S. FeijenJ. Polymersomes for drug delivery: Design, formation and characterization.J. Control. Release2012161247348310.1016/j.jconrel.2011.10.00522020381
    [Google Scholar]
  58. CurtisL.M. GrutterA.S. SmitN.J. DaviesA.J. Gnathia aureamaculosa, a likely definitive host of Haemogregarina balistapi and potential vector for Haemogregarina bigemina between fishes of the Great Barrier Reef, Australia.Int. J. Parasitol.201343536137010.1016/j.ijpara.2012.11.01223305943
    [Google Scholar]
  59. YangW. YangL. XiaY. ChengL. ZhangJ. MengF. YuanJ. ZhongZ. Lung cancer specific and reduction-responsive chimaeric polymersomes for highly efficient loading of pemetrexed and targeted suppression of lung tumor in vivo.Acta Biomater.20187017718510.1016/j.actbio.2018.01.01529410335
    [Google Scholar]
  60. YinY. HuB. YuanX. CaiL. GaoH. YangQ. Nanogel: A versatile nano-delivery system for biomedical applications.Pharmaceutics202012329010.3390/pharmaceutics1203029032210184
    [Google Scholar]
  61. SoniK.S. DesaleS.S. BronichT.K. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation.J. Control. Release201624010912610.1016/j.jconrel.2015.11.00926571000
    [Google Scholar]
  62. LiY. MacielD. RodriguesJ. ShiX. TomásH. Biodegradable polymer nanogels for drug/nucleic acid delivery.Chem. Rev.2015115168564860810.1021/cr500131f26259712
    [Google Scholar]
  63. KlippsteinR. WangJ.T.W. El-GogaryR.I. BaiJ. MustafaF. RubioN. BansalS. Al-JamalW.T. Al-JamalK.T. It passively targeted curcumin-loaded pegylated PLGA nanocapsules for colon cancer therapy in vivo.Small201511364704472210.1002/smll.20140379926140363
    [Google Scholar]
  64. NagaichU. Polymeric nanocapsules: An emerging drug delivery system.J. Adv. Pharm. Technol. Res.2018936510.4103/japtr.JAPTR_325_1830338230
    [Google Scholar]
  65. CarvalhoM.R. ReisR.L. OliveiraJ.M. Dendrimer nanoparticles for colorectal cancer applications.J. Mater. Chem. B Mater. Biol. Med.2020861128113810.1039/C9TB02289A31971528
    [Google Scholar]
  66. HaiderM. ZakiK.Z. El HamsharyM.R. HussainZ. OriveG. IbrahimH.O. Polymeric nanocarriers: A promising tool for early diagnosis and efficient treatment of colorectal cancer.J. Adv. Res.20223923725510.1016/j.jare.2021.11.00835777911
    [Google Scholar]
  67. KondaS.D. WangS. BrechbielM. WienerE.C. Biodistribution of a 153 Gd-folate dendrimer, generation = 4, in mice with folate-receptor positive and negative ovarian tumor xenografts.Invest. Radiol.200237419920410.1097/00004424‑200204000‑0000511923642
    [Google Scholar]
  68. XuG. ShiH. RenL. GouH. GongD. GaoX. HuangN. Enhancing the anti-colon cancer activity of quercetin by selfassembled micelles.Int. J. Nanomedicine2015102051206325844036
    [Google Scholar]
  69. YangX. LiZ. WangN. LiL. SongL. HeT. SunL. WangZ. WuQ. LuoN. YiC. GongC. Curcumin-encapsulated polymeric micelles suppress the development of colon cancer in vitro and in vivo.Sci. Rep.2015511032210.1038/srep1032225980982
    [Google Scholar]
  70. ChenY. LuY. HuD. PengJ. XiaoY. HaoY. PanM. YuanL. QianZ. Cabazitaxel-loaded MPEG-PCL copolymeric nanoparticles for enhanced colorectal cancer therapy.Appl. Mater. Today20212510121010.1016/j.apmt.2021.101210
    [Google Scholar]
  71. WeiY. GuX. SunY. MengF. StormG. ZhongZ. Transferrinbinding peptide functionalized polymersomes mediate targeted doxorubicin delivery to colorectal cancer in vivo.J. Control. Release202031940741510.1016/j.jconrel.2020.01.01231923538
    [Google Scholar]
  72. AlibolandiM. RezvaniR. FarzadS.A. TaghdisiS.M. AbnousK. RamezaniM. Tetrac-conjugated polymersomes for integrintargeted delivery of camptothecin to colon adenocarcinoma in vitro and in vivo.Int. J. Pharm.2017532158159410.1016/j.ijpharm.2017.09.03928935257
    [Google Scholar]
  73. ZhangY. VenugopalJ.R. El-TurkiA. RamakrishnaS. SuB. LimC.T. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering.Biomaterials200829324314432210.1016/j.biomaterials.2008.07.03818715637
    [Google Scholar]
  74. HosseinifarT. SheybaniS. AbdoussM. Hassani NajafabadiS.A. Shafiee ArdestaniM. Pressure responsive nanogel base on Alginate-Cyclodextrin with enhanced apoptosis mechanism for colon cancer delivery.J. Biomed. Mater. Res. A2018106234935910.1002/jbm.a.3624228940736
    [Google Scholar]
  75. ShadP.M. KariziS.Z. JavanR.S. MirzaieA. NoorbazarganH. AkbarzadehI. RezaieH. Folate conjugated hyaluronic acid coated alginate nanogels encapsulated oxaliplatin enhance antitumor and apoptosis efficacy on colorectal cancer cells (HT29 cell line).Toxicol. In vitro 20206510475610.1016/j.tiv.2019.10475631884114
    [Google Scholar]
  76. ManchunS. DassC.R. CheewatanakornkoolK. SriamornsakP. Enhanced anti-tumor effect of pH-responsive dextrin nanogels delivering doxorubicin on colorectal cancer.Carbohydr. Polym.201512622223010.1016/j.carbpol.2015.03.01825933543
    [Google Scholar]
  77. RamzyL. MetwallyA.A. NasrM. AwadG.A.S. Novel thymoquinone lipidic core nanocapsules with anisamide-polymethacrylate shell for colon cancer cells overexpressing sigma receptors.Sci. Rep.20201011098710.1038/s41598‑020‑67748‑232620860
    [Google Scholar]
  78. PriyadarshiK. ShirsathK. WaghelaN.B. SharmaA. KumarA. PathakC. Surface modified PAMAM dendrimers with gallic acid inhibit, cell proliferation, cell migration and inflammatory response to augment apoptotic cell death in human colon carcinoma cells.J. Biomol. Struct. Dyn.202139186853686910.1080/07391102.2020.180234432752940
    [Google Scholar]
  79. AlibolandiM. TaghdisiS.M. RamezaniP. Hosseini ShamiliF. FarzadS.A. AbnousK. RamezaniM. Smart AS1411-aptamer conjugated pegylated PAMAM dendrimer for the superior delivery of camptothecin to colon adenocarcinoma in vitro and in vivo.Int. J. Pharm.20175191-235236410.1016/j.ijpharm.2017.01.04428126548
    [Google Scholar]
  80. NarmaniA. KamaliM. AminiB. SalimiA. PanahiY. Targeting delivery of oxaliplatin with smart PEG-modified PAMAM G4 to colorectal cell line: In vitro studies.Process Biochem.20186917818710.1016/j.procbio.2018.01.014
    [Google Scholar]
  81. SunC. DuK. FangC. BhattaraiN. VeisehO. KievitF. StephenZ. LeeD. EllenbogenR.G. RatnerB. ZhangM. PEG-mediated synthesis of highly dispersive multifunctional superparamagnetic nanoparticles: their physicochemical properties and function in vivo.ACS Nano2010442402241010.1021/nn100190v20232826
    [Google Scholar]
  82. MillerM.A. GaddeS. PfirschkeC. EngblomC. SprachmanM.M. KohlerR.H. YangK.S. LaughneyA.M. WojtkiewiczG. KamalyN. BhonagiriS. PittetM.J. FarokhzadO.C. WeisslederR. Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle.Sci. Transl. Med.20157314314ra18310.1126/scitranslmed.aac652226582898
    [Google Scholar]
  83. WeisslederR. StarkD.D. EngelstadB.L. BaconB.R. ComptonC.C. WhiteD.L. JacobsP. LewisJ. Superparamagnetic iron oxide: pharmacokinetics and toxicity.AJR Am. J. Roentgenol.1989152116717310.2214/ajr.152.1.1672783272
    [Google Scholar]
  84. KaushikS. ThomasJ. PanwarV. AliH. ChopraV. SharmaA. TomarR. GhoshD. in situ biosynthesized superparamagnetic iron oxide nanoparticles (SPINS) induce efficient hyperthermia in cancer cells.ACS Appl. Bio Mater.20203277978810.1021/acsabm.9b0072035019282
    [Google Scholar]
  85. RashidiL. Vasheghani-FarahaniE. RostamiK. GanjiF. FallahpourM. Mesoporous silica nanoparticles with different pore sizes for delivery of pH-sensitive gallic acid.Asia-Pac. J. Chem. Eng.20149684585310.1002/apj.1832
    [Google Scholar]
  86. GuJ. SuS. LiY. HeQ. ZhongJ. ShiJ. Surface modification− complexation strategy for cisplatin loading in mesoporous nanoparticles.J. Phys. Chem. Lett.20101243446345010.1021/jz101483u
    [Google Scholar]
  87. HeQ. ShiJ. Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility.J. Mater. Chem.201121165845585510.1039/c0jm03851b
    [Google Scholar]
  88. PengS. YuanX. LinW. CaiC. ZhangL. pH-responsive controlled release of mesoporous silica nanoparticles capped with Schiff base copolymer gatekeepers: Experiment and molecular dynamics simulation.Colloids Surf. B Biointerfaces201917639440310.1016/j.colsurfb.2019.01.02430660963
    [Google Scholar]
  89. CaiD. HanC. LiuC. MaX. QianJ. ZhouJ. LiY. SunY. ZhangC. ZhuW. Chitosan-capped enzyme-responsive hollow mesoporous silica nanoplatforms for colon-specific drug delivery.Nanoscale Res. Lett.202015112310.1186/s11671‑020‑03351‑832488526
    [Google Scholar]
  90. GilliesR.J. LiuZ. BhujwallaZ. 31P-MRS measurements of extracellular pH of tumors using 3-aminopropylphosphonate.Am. J. Physiol. Cell Physiol.19942671C195C20310.1152/ajpcell.1994.267.1.C1958048479
    [Google Scholar]
  91. LorestaniS. HashemyS.I. MojaradM. Keyvanloo ShahrestanakiM. BahariA. AsadiM. Zahedi AvvalF. Increased glutathione reductase expression and activity in colorectal cancer tissue samples: An investigational study in Mashhad, Iran.Middle East J. Cancer20189299104
    [Google Scholar]
  92. EddaoudiM. MolerD.B. LiH. ChenB. ReinekeT.M. O’KeeffeM. YaghiO.M. Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks.Acc. Chem. Res.200134431933010.1021/ar000034b11308306
    [Google Scholar]
  93. HorcajadaP. ChalatiT. SerreC. GilletB. SebrieC. BaatiT. EubankJ.F. HeurtauxD. ClayetteP. KreuzC. ChangJ.S. Porous metal–organic-framework nanoscale carriers are a potential drug delivery and imaging platform.Nat. Mater.20109217217810.1038/nmat260820010827
    [Google Scholar]
  94. HankeM. ArslanH.K. BauerS. ZybayloO. ChristophisC. GliemannH. RosenhahnA. WöllC. The biocompatibility of metal-organic framework coatings: an investigation on the stability of SURMOFs with regard to water and selected cell culture media.Langmuir201228176877688410.1021/la300457z22471238
    [Google Scholar]
  95. BaatiT. NjimL. NeffatiF. KerkeniA. BouttemiM. GrefR. NajjarM.F. ZakhamaA. CouvreurP. SerreC. HorcajadaP. In depth analysis of the in vivo toxicity of nanoparticles of porous iron(iii) metal–organic frameworks.Chem. Sci. (Camb.)2013441597160710.1039/c3sc22116d
    [Google Scholar]
  96. ZhangW. WangJ. SuL. ChenH. ZhangL. LinL. ChenX. SongJ. YangH. Activatable nanoscale metal-organic framework for ratiometric photoacoustic imaging of hydrogen sulfide and orthotopic colorectal cancer in vivo.Sci. China Chem.20206391315132210.1007/s11426‑020‑9775‑y
    [Google Scholar]
  97. GuilfordJ.M. PezzutoJ.M. Natural products as inhibitors of carcinogenesis.Expert Opin. Investig. Drugs20081791341135210.1517/13543784.17.9.134118694367
    [Google Scholar]
  98. BachmeierB. KillianP. MelchartD. The role of curcumin in prevention and management of the metastatic disease.Int. J. Mol. Sci.2018196171610.3390/ijms1906171629890744
    [Google Scholar]
  99. BatraH. PawarS. BahlD. Curcumin in combination with anti-cancer drugs: A nanomedicine review.Pharmacol. Res.20191399110510.1016/j.phrs.2018.11.00530408575
    [Google Scholar]
  100. TefasL.R. SylvesterB. TomutaI. SesarmanA. LicareteE. BanciuM. PorfireA. Development of antiproliferative long-circulating liposomes co-encapsulating doxorubicin and curcumin, through the use of a quality-by-design approach.Drug Des. Devel. Ther.2017111605162110.2147/DDDT.S129008
    [Google Scholar]
  101. GouM. MenK. ShiH. XiangM. ZhangJ. SongJ. LongJ. WanY. LuoF. ZhaoX. QianZ. Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo.Nanoscale2011341558156710.1039/c0nr00758g21283869
    [Google Scholar]
  102. RaveendranR. BhuvaneshwarG.S. SharmaC.P. In vitro cytotoxicity and cellular uptake of curcumin-loaded Pluronic/Polycaprolactone micelles in colorectal adenocarcinoma cells.J. Biomater. Appl.201327781182710.1177/088532821142747322274881
    [Google Scholar]
  103. XuH. WangT. YangC. LiX. LiuG. YangZ. SinghP.K. KrishnanS. DingD. Supramolecular nanofibers of curcumin for highly amplified radiosensitization of colorectal cancers to ionizing radiation.Adv. Funct. Mater.20182814170714010.1002/adfm.201707140
    [Google Scholar]
  104. ChuahL.H. RobertsC.J. BillaN. AbdullahS. RosliR. ManickamS. Using Nanoparticle Tracking Analysis (NTA) to decipher mucoadhesion propensity of curcumin-containing chitosan nanoparticles and curcumin release.J. Dispers. Sci. Technol.20143591201120710.1080/01932691.2013.800458
    [Google Scholar]
  105. AnithaA. SreeranganathanM. ChennazhiK.P. LakshmananV.K. JayakumarR. In vitro combinatorial anticancer effects of 5-fluorouracil and curcumin loaded N,O-carboxymethyl chitosan nanoparticles toward colon cancer and in vivo pharmacokinetic studies.Eur. J. Pharm. Biopharm.201488123825110.1016/j.ejpb.2014.04.01724815764
    [Google Scholar]
  106. XieM. FanD. LiY. HeX. ChenX. ChenY. ZhuJ. XuG. WuX. LanP. Supercritical carbon dioxide-developed silk fibroin nanoplatform for smart colon cancer therapy.Int. J. Nanomedicine2017127751776110.2147/IJN.S14501229118580
    [Google Scholar]
  107. Sanoj RejinoldN. ThomasR.G. MuthiahM. ChennazhiK.P. ManzoorK. ParkI.K. JeongY.Y. JayakumarR. Anti-cancer, pharmacokinetics and tumor localization studies of pH-, RF- and thermo-responsive nanoparticles.Int. J. Biol. Macromol.20157424926210.1016/j.ijbiomac.2014.11.04425526695
    [Google Scholar]
  108. MarjanehR.M. RahmaniF. HassanianS.M. RezaeiN. HashemzehiM. BahramiA. AriakiaF. FiujiH. SahebkarA. AvanA. KhazaeiM. Phytosomal curcumin inhibits tumor growth in colitis-associated colorectal cancer.J. Cell. Physiol.2018233106785679810.1002/jcp.2653829737515
    [Google Scholar]
  109. San Hipólito-LuengoÁ. AlcaideA. Ramos-GonzálezM. CercasE. VallejoS. RomeroA. TaleroE. Sánchez-FerrerC.F. MotilvaV. PeiróC. Dual effects of resveratrol on cell death and proliferation of colon cancer cells.Nutr. Cancer20176971019102710.1080/01635581.2017.135930928937798
    [Google Scholar]
  110. SummerlinN. QuZ. PujaraN. ShengY. JambhrunkarS. McGuckinM. PopatA. Colloidal mesoporous silica nanoparticles enhance the biological activity of resveratrol.Colloids Surf. B Biointerfaces20161441710.1016/j.colsurfb.2016.03.07627060664
    [Google Scholar]
  111. FengM. ZhongL.X. ZhanZ.Y. HuangZ.H. XiongJ.P. Enhanced antitumor efficacy of resveratrol-loaded nanocapsules in colon cancer cells: physicochemical and biological characterization.Eur. Rev. Med. Pharmacol. Sci.201721237538228165548
    [Google Scholar]
  112. KamalR. ChadhaV.D. DhawanD.K. Physiological uptake and retention of radiolabeled resveratrol loaded gold nanoparticles (99mTc-Res-AuNP) in colon cancer tissue.Nanomedicine20181431059107110.1016/j.nano.2018.01.00829391211
    [Google Scholar]
  113. GumireddyA. ChristmanR. KumariD. TiwariA. NorthE.J. ChauhanH. Preparation, characterization, and in vitro evaluation of curcumin-and resveratrol-loaded solid lipid nanoparticles.AAPS PharmSciTech201920414510.1208/s12249‑019‑1349‑430887133
    [Google Scholar]
  114. SpagnuoloC. RussoG.L. OrhanI.E. HabtemariamS. DagliaM. SuredaA. NabaviS.F. DeviK.P. LoizzoM.R. TundisR. NabaviS.M. Genistein and cancer: current status, challenges, and future directions.Adv. Nutr.20156440841910.3945/an.114.00805226178025
    [Google Scholar]
  115. PoolH. Campos-VegaR. Herrera-HernándezM.G. García-SolisP. García-GascaT. SánchezI.C. Luna-BárcenasG. Vergara-CastañedaH. Development of genistein-PEGylated silica hybrid nanomaterials with enhanced antioxidant and antiproliferative properties on HT29 human colon cancer cells.Am. J. Transl. Res.20181082306232330210672
    [Google Scholar]
  116. Pham.; Jimmy.; Oliver, Grundmann.; and Tamer, ElbayoumiMitochondriotropic nanoemulsified genistein-loaded vehicles for cancer therapy.Mitochondrial Medicine.New York, NYHumana Press201585101
    [Google Scholar]
  117. ZduńskaK. DanaA. KolodziejczakA. RotsztejnH. Antioxidant properties of ferulic acid and its possible application.Skin Pharmacol. Physiol.201831633233610.1159/00049175530235459
    [Google Scholar]
  118. ZhengY. YouX. GuanS. HuangJ. WangL. ZhangJ. WuJ. Poly (ferulic acid) with an anticancer effect as a drug nanocarrier for enhanced colon cancer therapy.Adv. Funct. Mater.20192915180864610.1002/adfm.201808646
    [Google Scholar]
  119. RoyN. NarayanankuttyA. NazeemP.A. ValsalanR. BabuT.D. MathewD. Plant phenolics ferulic acid and p-coumaric acid inhibit colorectal cancer cell proliferation through EGFR down-regulation.Asian Pac. J. Cancer Prev.20161784019402327644655
    [Google Scholar]
  120. PaiS.I. LinY-Y. MacaesB. MeneshianA. HungC-F. WuT-C. Prospects of RNA interference therapy for cancer.Gene Ther.200613646447710.1038/sj.gt.330269416341059
    [Google Scholar]
  121. TorrecillaJ Rodríguez-GascónA SolinísMÁ del Pozo-RodríguezA Lipid nanoparticles as carriers for RNAi against viral infections: current status and future perspectives.BioMed Res Internat2014201410.1155/2014/161794
    [Google Scholar]
  122. KangS.H. RevuriV. LeeS.J. ChoS. ParkI.K. ChoK.J. BaeW.K. LeeY. Oral siRNA delivery to treat colorectal liver metastases.ACS Nano20171110104171042910.1021/acsnano.7b0554728902489
    [Google Scholar]
  123. JavanB. AtyabiF. ShahbaziM. Hypoxia-inducible bidirectional shRNA expression vector delivery using PEI/chitosan-TBA copolymers for colorectal Cancer gene therapy.Life Sci.201820214015110.1016/j.lfs.2018.04.01129656061
    [Google Scholar]
  124. GuptaB. RuttalaH.B. PoudelB.K. PathakS. RegmiS. GautamM. PoudelK. SungM.H. OuW. JinS.G. JeongJ.H. KuS.K. ChoiH.G. YongC.S. KimJ.O. Polyamino acid layer-by-layer (LbL) constructed silica-supported mesoporous titania nanocarriers for stimuli-responsive delivery of microRNA 708 and paclitaxel for combined chemotherapy.ACS Appl. Mater. Interfaces20181029243922440510.1021/acsami.8b0664229978708
    [Google Scholar]
  125. JebelliA. BaradaranB. MosaferJ. BaghbanzadehA. MokhtarzadehA. TayebiL. Recent developments in targeting genes and pathways by RNAi-based approaches in colorectal cancer.Med. Res. Rev.202141139543410.1002/med.2173532990372
    [Google Scholar]
  126. BäumerS. BäumerN. AppelN. TerheydenL. FremereyJ. SchelhaasS. WardelmannE. BuchholzF. BerdelW.E. Müller-TidowC. Antibody-mediated delivery of anti-KRAS-siRNA in vivo overcomes therapy resistance in colon cancer.Clin. Cancer Res.20152161383139410.1158/1078‑0432.CCR‑13‑201725589625
    [Google Scholar]
  127. SercombeL. VeeratiT. MoheimaniF. WuS.Y. SoodA.K. HuaS. Advances and challenges of liposome assisted drug delivery.Front. Pharmacol.2015628610.3389/fphar.2015.0028626648870
    [Google Scholar]
  128. TalekarM. TranT.H. AmijiM. Translational nano-medicines: targeted therapeutic delivery for cancer and inflammatory diseases.AAPS J.201517481382710.1208/s12248‑015‑9772‑225921939
    [Google Scholar]
  129. ShajariN. MansooriB. DavudianS. MohammadiA. BaradaranB. Overcoming the challenges of siRNA delivery: nanoparticle strategies.Curr. Drug Deliv.2017141364610.2174/156720181366616081610540827538460
    [Google Scholar]
  130. ShahzadM.M.K. MangalaL.S. HanH.D. LuC. Bottsford-MillerJ. NishimuraM. MoraE.M. LeeJ.W. StoneR.L. PecotC.V. ThanapprapasrD. RohJ.W. GaurP. NairM.P. ParkY.Y. SabnisN. DeaversM.T. LeeJ.S. EllisL.M. Lopez-BeresteinG. McConathyW.J. ProkaiL. LackoA.G. SoodA.K. Targeted delivery of small interfering RNA using reconstituted high-density lipoprotein nanoparticles.Neoplasia2011134309IN810.1593/neo.10137221472135
    [Google Scholar]
  131. CabezaL. PerazzoliG. MesasC. Jiménez-LunaC. PradosJ. RamaA.R. MelguizoC. Nanoparticles in colorectal cancer therapy: latest in vivo assays, clinical trials, and patents.AAPS PharmSciTech202021517810.1208/s12249‑020‑01731‑y32591920
    [Google Scholar]
  132. XunjinZ.H.U. Conjugated porphyrin carbon quantum dots for targeted photodynamic therapy.U.S. Patent No. 10,369,2212019
  133. ShiehD.B. YehC.S. ChenD.H. WuY.N. WuP.C. Nano-carrier, complex of anticancer drug and nanocarrier, pharmaceutical composition thereof, method for manufacturing the complex, and method for treating cancer by using the pharmaceutical composition.United States patent US 8,673,3582014
  134. ParisJ.L. BaezaA. Vallet-RegíM. Overcoming the stability, toxicity, and biodegradation challenges of tumor stimuli-responsive inorganic nanoparticles for delivery of cancer therapeutics.Expert Opin. Drug Deliv.201916101095111210.1080/17425247.2019.166278631469003
    [Google Scholar]
  135. PatriA.K. MajorosI.J. BakerJ.R.Jr Dendritic polymer macromolecular carriers for drug delivery.Curr. Opin. Chem. Biol.20026446647110.1016/S1367‑5931(02)00347‑212133722
    [Google Scholar]
  136. NanjwadeB.K. BechraH.M. DerkarG.K. ManviF.V. NanjwadeV.K. Dendrimers: Emerging polymers for drug-delivery systems.Eur. J. Pharm. Sci.200938318519610.1016/j.ejps.2009.07.00819646528
    [Google Scholar]
  137. SlowingI. ViveroescotoJ. WuC. LinV. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers.Adv. Drug Deliv. Rev.200860111278128810.1016/j.addr.2008.03.01218514969
    [Google Scholar]
  138. JaiswalM DudheR SharmaPK Nanoemulsion: an advanced mode of drug delivery system.3. Biotech.2015521237
    [Google Scholar]
/content/journals/cis/10.2174/2210299X01666230224095321
Loading
/content/journals/cis/10.2174/2210299X01666230224095321
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Cancer; Clinical trials; Colorectal; Nanocarriers; Patents; Phytomedicines
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test