Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

Cellulose is one of the most abundant natural polymers developed in the ecosystem and has been used in many applications for industrial products since ancient times. Although the main sources of cellulose are wood plant, fibers and, additional sources can also be discovered, such as algae, fungi, bacteria, and even some marine organisms (such as tunicates). Mechanical or chemical processes are used to transform cellulosic materials into cellulose nanocrystals due to their efficacy, high aspect ratio, low density, renewability, and non-toxicity. They have drawn a lot of attention in a variety of industries. Here, we discuss various applications and properties in particular mechanical, rheological, liquid crystalline nature, and adhesives to introduce cellulose nanocrystals hydrophilic, colloidal stable, and rigid rod-shaped bio-based nanomaterial with high strength and high surface area. Under various circumstances, it improves the characteristics of various compounds. The grafting of polymers on the surface of cellulose nanocrystals has attracted significant interest in both academia and industry due to the rapidly expanding number of potential applications of surface-modified cellulose nanocrystals, which range from building blocks in nanocomposites and responsive nanomaterials to antimicrobial agents. Furthermore, we explore the most popular polymerization methods, such as surface-initiated ring-opening polymerization, surface-initiated free radical polymerization, surface-initiated atom transferred radical polymerization and surface-initiated controlled radical polymerization that are employed to graft polymers from the surface and reducing end groups of cellulose nanocrystals. In this review, we examine the available literature and provide a summary of recent applications of cellulose nanocrystals, including biomedical application, drug delivery, biosensor, tissue engineering, antibacterial activity, wound healings, .

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cis/10.2174/2210299X01666230829150118
2023-10-13
2024-12-28
Loading full text...

Full text loading...

/deliver/fulltext/cis/1/1/CIS-1-E290823220479.html?itemId=/content/journals/cis/10.2174/2210299X01666230829150118&mimeType=html&fmt=ahah

References

  1. KanK.H.M. Responsive Polymer-Grafted Cellulose Nanocrystals From Ceric (Iv).Ion-Initiated Polymerization.MacSphere201388
    [Google Scholar]
  2. TingautP. ZimmermannT. SèbeG. Cellulose nanocrystals and microfibrillated cellulose as building blocks for the design of hierarchical functional materials.J. Mater. Chem.20122238201052011110.1039/c2jm32956e
    [Google Scholar]
  3. LinN. Cellulose nanocrystals: Surface modification and advanced materials.Cellulose nanocrystals : surface modification and advanced materials2016
    [Google Scholar]
  4. ZoppeJ.O. HabibiY. RojasO.J. VendittiR.A. JohanssonL.S. EfimenkoK. ÖsterbergM. LaineJ. Poly(N-isopropylacrylamide) brushes grafted from cellulose nanocrystals via surface-initiated single-electron transfer living radical polymerization.Biomacromolecules201011102683269110.1021/bm100719d20843063
    [Google Scholar]
  5. CaoY. Applications of cellulose nanomaterials in pharmaceutical science and pharmacology.Express Polym. Lett.201812976878010.3144/expresspolymlett.2018.66
    [Google Scholar]
  6. CudjoeE. Cellulose Nanocrystals and Reiated Polymer Nanocomposites.CASE WESTERN RESERVE UNIVERSITY2017
    [Google Scholar]
  7. JiangQ. XingX. JingY. HanY. Preparation of cellulose nanocrystals based on waste paper via different systems.Int. J. Biol. Macromol.20201491318132210.1016/j.ijbiomac.2020.02.11032061703
    [Google Scholar]
  8. BeltraminoF. RonceroM.B. TorresA.L. VidalT. VallsC. Optimization of sulfuric acid hydrolysis conditions for preparation of nanocrystalline cellulose from enzymatically pretreated fibers.Cellulose20162331777178910.1007/s10570‑016‑0897‑y
    [Google Scholar]
  9. GeorgeJ. S NS. Cellulose nanocrystals: Synthesis, functional properties, and applications.Nanotechnol. Sci. Appl.20158455410.2147/NSA.S6438626604715
    [Google Scholar]
  10. ŠturcováA. DaviesG.R. EichhornS.J. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers.Biomacromolecules2005621055106110.1021/bm049291k15762678
    [Google Scholar]
  11. SpenceK.L. VendittiR.A. RojasO.J. HabibiY. PawlakJ.J. The effect of chemical composition on microfibrillar cellulose films from wood pulps: Water interactions and physical properties for packaging applications.Cellulose201017483584810.1007/s10570‑010‑9424‑8
    [Google Scholar]
  12. SiróI. PlackettD. Microfibrillated cellulose and new nanocomposite materials: A review.Cellulose201017345949410.1007/s10570‑010‑9405‑y
    [Google Scholar]
  13. AzizT. FanH. ZhangX. HaqF. UllahA. UllahR. KhanF.U. IqbalM. Advance study of cellulose nanocrystals properties and applications.J. Polym. Environ.20202841117112810.1007/s10924‑020‑01674‑2
    [Google Scholar]
  14. DissertationsA. Cellulose nanocrystals properties and applications in renewable nanocompositesClemson University2011
    [Google Scholar]
  15. da FonsêcaJ.H.L. d’ÁvilaM.A. Rheological behavior of carboxymethylcellulose and cellulose nanocrystal aqueous dispersions.Rheol. Acta202160949750910.1007/s00397‑021‑01292‑2
    [Google Scholar]
  16. DufresneA. Rheological behavior of nanocellulose suspensions and self-assembly.Nanocellulose2017287350
    [Google Scholar]
  17. MoonR.J. MartiniA. NairnJ. SimonsenJ. YoungbloodJ. Cellulose nanomaterials review: Structure, properties and nanocomposites.Chem. Soc. Rev.20114039413994
    [Google Scholar]
  18. RevolJ.F. BradfordH. GiassonJ. MarchessaultR.H. GrayD.G. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension.Int. J. Biol. Macromol.199214317017210.1016/S0141‑8130(05)80008‑X1390450
    [Google Scholar]
  19. BhatA.H. DasanY.K. KhanI. SoleimaniH. UsmaniA. Application of nanocrystalline cellulose: Processing and biomedical applications.Cellulose-Reinforced Nanofibre CompositesWoodhead Publishing201721524010.1016/B978‑0‑08‑100957‑4.00009‑7
    [Google Scholar]
  20. SakhareM.S. RajputH.H. Polymer grafting and applications in pharmaceutical drug delivery systems : A brief review.Asian J. Pharm. Clin. Res.2017106596310.22159/ajpcr.2017.v10i6.18072
    [Google Scholar]
  21. AzizT. FaridA. HaqF. KiranM. UllahA. ZhangK. LiC. GhazanfarS. SunH. UllahR. AliA. MuzammalM. ShahM. AkhtarN. SelimS. HagagyN. SamyM. Al JaouniS.K. A review on the modification of cellulose and its applications.Polymers20221415320610.3390/polym1415320635956720
    [Google Scholar]
  22. HabibiY. LuciaL.A. RojasO.J. Cellulose nanocrystals: Chemistry, self-assembly, and applications.Chem. Rev.201011063479350010.1021/cr900339w20201500
    [Google Scholar]
  23. MohammadbagheriZ. RahmatiA. HoshyarmaneshP. Synthesis of a novel superabsorbent with slow-release urea fertilizer using modified cellulose as a grafting agent and flexible copolymer.Int. J. Biol. Macromol.20211821893190510.1016/j.ijbiomac.2021.05.19134081953
    [Google Scholar]
  24. WohlhauserS. DelepierreG. LabetM. MorandiG. ThielemansW. WederC. ZoppeJ.O. Grafting polymers from cellulose nanocrystals: Synthesis, properties, and applications.Macromolecules201851166157618910.1021/acs.macromol.8b00733
    [Google Scholar]
  25. JérômeC. LecomteP. Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization.Adv. Drug Deliv. Rev.20086091056107610.1016/j.addr.2008.02.00818403043
    [Google Scholar]
  26. NuykenO. PaskS. Ring-opening polymerization :An introductory review.Polymers20135236140310.3390/polym5020361
    [Google Scholar]
  27. CarlmarkA. LarssonE. MalmströmE. Grafting of cellulose by ring-opening polymerisation : A review.Eur. Polym. J.201248101646165910.1016/j.eurpolymj.2012.06.013
    [Google Scholar]
  28. LönnbergH. ZhouQ. BrumerH.III TeeriT.T. MalmströmE. HultA. Grafting of cellulose fibers with poly(ε-caprolactone) and poly(L-lactic acid) via ring-opening polymerization.Biomacromolecules2006772178218510.1021/bm060178z16827585
    [Google Scholar]
  29. WangJ MatyjaszewskiK. I. Living/controlled radical polymerization. transition-metal-catalyzed atom transfer radical polymerization in the presence of a conventional radical initiator.Macromolecules1995282275227573
    [Google Scholar]
  30. ZhangZ SebeG WangX. Grafting polymers from cellulose nanocrystals via surface-initiated atom transfer radical polymerization.J. App. Poly. Sci.20211384851548
    [Google Scholar]
  31. ZhangZ. TamK.C. SèbeG. WangX. Convenient characterization of polymers grafted on cellulose nanocrystals via SI-ATRP without chain cleavage.Carbohydr. Polym.201819960360910.1016/j.carbpol.2018.07.06030143168
    [Google Scholar]
  32. ÇankayaN. Cellulose Grafting by Atom Transfer Radical Polymerization Method. Cellul - Fundam Asp Curr Trendsintechopen2015
    [Google Scholar]
  33. OlivierA. MeyerF. RaquezJ.M. DammanP. DuboisP. Surface-initiated controlled polymerization as a convenient method for designing functional polymer brushes: From self-assembled monolayers to patterned surfaces.Prog. Polym. Sci.201237115718110.1016/j.progpolymsci.2011.06.002
    [Google Scholar]
  34. YanJ. PanX. SchmittM. WangZ. BockstallerM.R. MatyjaszewskiK. Enhancing initiation efficiency in metal-free surface-initiated atom transfer radical polymerization (SI-ATRP).ACS Macro Lett.20165666166510.1021/acsmacrolett.6b0029535614657
    [Google Scholar]
  35. NavarroJ.R.G. EdlundU. Surface-initiated controlled radical polymerization approach to enhance nanocomposite integration of cellulose nanofibrils.Biomacromolecules20171861947195510.1021/acs.biomac.7b0039828482654
    [Google Scholar]
  36. OuchiM. SawamotoM. Living Radical Polymerization.Water Org Synth20121
    [Google Scholar]
  37. Suparyanto dan Rosad (2015. No Title No Title No Title. Vol. 5, Suparyanto dan Rosad (2015. 2020. 248–253 p.2020
    [Google Scholar]
  38. TangJ. Functionalized cellulose nanocrystals (CNC) for advanced applications.Thesis2016869Available from: http://hdl.handle.net/10012/10624
    [Google Scholar]
  39. ZhouC. WuQ. YueY. ZhangQ. Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels.J. Colloid Interface Sci.2011353111612310.1016/j.jcis.2010.09.03520932533
    [Google Scholar]
  40. TianC. FuS. ChenJ. MengQ. LuciaL.A. Graft polymerization of ε-caprolactone to cellulose nanocrystals and optimization of grafting conditions utilizing a response surface methodology.Nord. Pulp Paper Res. J.2014291586810.3183/npprj‑2014‑29‑01‑p058‑068
    [Google Scholar]
  41. AstrucJ. CousinP. LarocheG. RobertM. ElkounS. Polycaprolactone (pcl) chains grafting on the surface of cellulose nanocrystals (cncs) during In Situ Polymerization of Caprolactone at Room Temperature.Mater. Sci. Appl.2020111174475610.4236/msa.2020.1111050
    [Google Scholar]
  42. HabibiY. GoffinA.L. SchiltzN. DuquesneE. DuboisP. DufresneA. Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization.J. Mater. Chem.200818415002501010.1039/b809212e
    [Google Scholar]
  43. HuangQ. HuangJ. ChangP.R. Polycaprolactone grafting of cellulose nanocrystals in ionic liquid [BMIM]Cl.Wuhan Univ. J. Nat. Sci.201419211712210.1007/s11859‑014‑0987‑3
    [Google Scholar]
  44. HabibiY. DufresneA. Highly filled bionanocomposites from functionalized polysaccharide nanocrystals.Biomacromolecules2008971974198010.1021/bm800171718510360
    [Google Scholar]
  45. MohantaV. MadrasG. PatilS. Layer-by-layer assembled thin films and microcapsules of nanocrystalline cellulose for hydrophobic drug delivery.ACS Appl. Mater. Interfaces2014622200932010110.1021/am505681e25338530
    [Google Scholar]
  46. XuQ. JiY. SunQ. FuY. XuY. JinL. Fabrication of cellulose nanocrystal/chitosan hydrogel for controlled drug release.Nanomaterials20199225310.3390/nano902025330781761
    [Google Scholar]
  47. AkhlaghiS.P. BerryR.C. TamK.C. Surface modification of cellulose nanocrystal with chitosan oligosaccharide for drug delivery applications.Cellulose20132041747176410.1007/s10570‑013‑9954‑y
    [Google Scholar]
  48. AzizT. UllahA. FanH. UllahR. HaqF. KhanF.U. IqbalM. WeiJ. Cellulose nanocrystals applications in health, medicine and catalysis.J. Polym. Environ.20212972062207110.1007/s10924‑021‑02045‑1
    [Google Scholar]
  49. LinN. DufresneA. Nanocellulose in biomedicine: Current status and future prospect.Eur. Polym. J.201459July30232510.1016/j.eurpolymj.2014.07.025
    [Google Scholar]
  50. VillanovaJ.C.O. AyresE. CarvalhoS.M. PatrícioP.S. PereiraF.V. OréficeR.L. Pharmaceutical acrylic beads obtained by suspension polymerization containing cellulose nanowhiskers as excipient for drug delivery.Eur. J. Pharm. Sci.201142440641510.1016/j.ejps.2011.01.00521241802
    [Google Scholar]
  51. DongS. ChoH.J. LeeY.W. RomanM. Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting.Biomacromolecules20141551560156710.1021/bm401593n24716601
    [Google Scholar]
  52. DashR. RagauskasA.J. Synthesis of a novel cellulose nanowhisker-based drug delivery system.RSC Advances2012283403340910.1039/c2ra01071b
    [Google Scholar]
  53. BadshahM. UllahH. KhanS.A. ParkJ.K. KhanT. Preparation, characterization and in-vitro evaluation of bacterial cellulose matrices for oral drug delivery.Cellulose201724115041505210.1007/s10570‑017‑1474‑8
    [Google Scholar]
  54. DuH. LiuW. ZhangM. SiC. ZhangX. LiB. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications.Carbohydr. Polym.201920920913014410.1016/j.carbpol.2019.01.02030732792
    [Google Scholar]
  55. KolakovicR. PeltonenL. LaaksonenT. PutkistoK. LaukkanenA. HirvonenJ. Spray-dried cellulose nanofibers as novel tablet excipient.AAPS PharmSciTech20111241366137310.1208/s12249‑011‑9705‑z22005956
    [Google Scholar]
  56. DhandayuthapaniB. YoshidaY. MaekawaT. KumarD.S. Polymeric scaffolds in tissue engineering application: A review.Int. J. Polym. Sci.20112011ii11910.1155/2011/290602
    [Google Scholar]
  57. CzajaW.K. YoungD.J. KaweckiM. BrownR.M.Jr The future prospects of microbial cellulose in biomedical applications.Biomacromolecules20078111210.1021/bm060620d17206781
    [Google Scholar]
  58. KumarA. LeeY. KimD. RaoK.M. KimJ. ParkS. HaiderA. LeeD.H. HanS.S. Effect of crosslinking functionality on microstructure, mechanical properties, and in vitro cytocompatibility of cellulose nanocrystals reinforced poly (vinyl alcohol)/sodium alginate hybrid scaffolds.Int. J. Biol. Macromol.20179596297310.1016/j.ijbiomac.2016.10.08527793679
    [Google Scholar]
  59. SyverudK. PettersenS.R. DragetK. Chinga-CarrascoG. Controlling the elastic modulus of cellulose nanofibril hydrogels—scaffolds with potential in tissue engineering.Cellulose201522147348110.1007/s10570‑014‑0470‑5
    [Google Scholar]
  60. ChenX. ZhouR. ChenB. ChenJ. Nanohydroxyapatite/cellulose nanocrystals/silk fibroin ternary scaffolds for rat calvarial defect regeneration.RSC Advances2016642356843569110.1039/C6RA02038K
    [Google Scholar]
  61. DysregulationFR ReleaseCA UptakeG ModelsT GeorgeD ProgramVR Page 1 of 54 1812855
    [Google Scholar]
  62. SarkarC. ChowdhuriA.R. KumarA. LahaD. GaraiS. ChakrabortyJ. SahuS.K. One pot synthesis of carbon dots decorated carboxymethyl cellulose- hydroxyapatite nanocomposite for drug delivery, tissue engineering and Fe3+ ion sensing.Carbohydr. Polym.201818171071810.1016/j.carbpol.2017.11.09129254027
    [Google Scholar]
  63. ZhouC. ShiQ. GuoW. TerrellL. QureshiA.T. HayesD.J. WuQ. Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA.ACS Appl. Mater. Interfaces2013593847385410.1021/am400507223590943
    [Google Scholar]
  64. MurizanN.I.S. MustafaN.S. NgadimanN.H.A. Mohd YusofN. IdrisA. Review on nanocrystalline cellulose in bone tissue engineering applications.Polymers20201212281810.3390/polym1212281833261121
    [Google Scholar]
  65. BacakovaL. PajorovaJ. BacakovaM. SkogbergA. KallioP. KolarovaK. SvorcikV. Versatile application of nanocellulose: From industry to skin tissue engineering and wound healing.Nanomaterials20199216410.3390/nano902016430699947
    [Google Scholar]
  66. RazaliS.A. AzwadiN. SidikC. KotenH. Cellulose nanocrystals: A brief review on properties and general applications.J. Adv. Res. Des.2019601115Available from: www.akademiabaru.com/ard.html
    [Google Scholar]
  67. JorfiM. FosterE.J. Recent advances in nanocellulose for biomedical applications.J. Appl. Polym. Sci.2015132144171910.1002/app.41719
    [Google Scholar]
  68. FuL. ZhangY. LiC. WuZ. ZhuoQ. HuangX. QiuG. ZhouP. YangG. Skin tissue repair materials from bacterial cellulose by a multilayer fermentation method.J. Mater. Chem.20122224123491235710.1039/c2jm00134a
    [Google Scholar]
  69. VatankhahE. PrabhakaranM.P. JinG. MobarakehL.G. RamakrishnaS. Development of nanofibrous cellulose acetate/gelatin skin substitutes for variety wound treatment applications.J. Biomater. Appl.201428690992110.1177/088532821348652723640859
    [Google Scholar]
  70. Mohd ZukiS.A. Abd RahmanN. Abu BakarN.F. Nanocrystal cellulose as drug excipient in transdermal patch for wound healing: An overview.IOP. Conf .Ser. Mater. Sci. Eng.201833401204610.1088/1757‑899X/334/1/012046
    [Google Scholar]
  71. Jagur-GrodzinskiJ. Polymeric gels and hydrogels for biomedical and pharmaceutical applications.Polym. Adv. Technol.2010211274710.1002/pat.1504
    [Google Scholar]
  72. SeoY.R. KimJ.W. HoonS. KimJ. ChungJ.H. LimK.T. Cellulose-based nanocrystals: Sources and applications via agricultural byproducts.J. Biosyst. Eng.20184315971Available from: http://www.e-sciencecentral.org/articles/SC000028909
    [Google Scholar]
  73. GhorbaniM. RoshangarL. Soleimani RadJ. Development of reinforced chitosan/pectin scaffold by using the cellulose nanocrystals as nanofillers: An injectable hydrogel for tissue engineering.Eur. Polym. J.2020130February10969710.1016/j.eurpolymj.2020.109697
    [Google Scholar]
  74. DominguesR.M.A. GomesM.E. ReisR.L. The potential of cellulose nanocrystals in tissue engineering strategies.Biomacromolecules20141572327234610.1021/bm500524s24914454
    [Google Scholar]
  75. LinN. GèzeA. WouessidjeweD. HuangJ. DufresneA. Biocompatible double-membrane hydrogels from cationic cellulose nanocrystals and anionic alginate as complexing drugs codelivery.ACS Appl. Mater. Interfaces20168116880688910.1021/acsami.6b0055526925765
    [Google Scholar]
  76. PatelD.K. DuttaS.D. ShinW.C. GangulyK. LimK.T. Fabrication and characterization of 3D printable nanocellulose-based hydrogels for tissue engineering.RSC Advances202111137466747810.1039/D0RA09620B35423276
    [Google Scholar]
  77. WangK MosserG HayeB BaccileN GrielP PernotP Cellulose nanocrystal-fibrin nanocomposite hydrogels promoting myotube formation.Biomacromolecules202122627402753
    [Google Scholar]
  78. XieS. ZhangX. WalcottM.P. LinH. Applications of cellulose nanocrystals: A review.Eng. Sci.20182416
    [Google Scholar]
  79. EdwardsJ.V. PrevostN. SethumadhavanK. UllahA. CondonB. Peptide conjugated cellulose nanocrystals with sensitive human neutrophil elastase sensor activity.Cellulose20132031223123510.1007/s10570‑013‑9901‑y
    [Google Scholar]
  80. DrogatN. GranetR. SolV. MemmiA. SaadN. Klein KoerkampC. BressollierP. KrauszP. Antimicrobial silver nanoparticles generated on cellulose nanocrystals.J. Nanopart. Res.20111341557156210.1007/s11051‑010‑9995‑1
    [Google Scholar]
  81. CassanoR. TrombinoS. FerrarelliT. NicolettaF.P. MauroM.V. GiraldiC. PicciN. Hemp fiber (Cannabis sativa L.) derivatives with antibacterial and chelating properties.Cellulose201320154755710.1007/s10570‑012‑9804‑3
    [Google Scholar]
  82. AziziS. AhmadM. MahdaviM. AbdolmohammadiS. Preparation, characterization, and antimicrobial activities of ZnO nanoparticles/cellulose nanocrystal nanocomposites.BioResources2013821841185110.15376/biores.8.2.1841‑1851
    [Google Scholar]
  83. AndresenM. StenstadP. MøretrøT. LangsrudS. SyverudK. JohanssonL.S. SteniusP. Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose.Biomacromolecules2007872149215510.1021/bm070304e17542633
    [Google Scholar]
  84. HuaKAI Nanocellulose for Biomedical ApplicationsActa Universitatis Upsaliensis201580
    [Google Scholar]
  85. NorrrahimM.N.F. NurazziN.M. JenolM.A. FaridM.A.A. JanudinN. UjangF.A. Yasim-AnuarT.A.T. Syed NajmuddinS.U.F. IlyasR.A. Emerging development of nanocellulose as an antimicrobial material: An overview.Mat. Adv.20212113538355110.1039/D1MA00116G
    [Google Scholar]
/content/journals/cis/10.2174/2210299X01666230829150118
Loading
/content/journals/cis/10.2174/2210299X01666230829150118
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test