Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

The idea of designing novel anti-amyloid therapeutic agents has generated a lot of scientific interest and the potential for treating a variety of human pathophysiologies, such as neurodegenerative and non-neuropathic diseases linked to amyloid protein aggregation. To address this, different small molecules, peptides, surfactants, nanomaterials, ., have been thoroughly investigated to learn more about their anti-amyloidogenic capabilities, offering a great deal of potential for them to show up as future anti-amyloidogenic agents. In contrast to existing small-molecule analogues, polymers have been envisaged as promising anti-amyloid agents for treating these diseases because of their enthralling physicochemical features and simplicity of functionalisation. This review article emphasises the latest developments in the design of synthetic polymers such as amino acid-conjugated polymers, glycopolymers, zwitterionic polymers and so on reported in the last decade in modulating amyloid aggregation process. Additionally, the structural function and mechanism involved in modifying the aggregation process are highlighted in order to inspire the researchers even more and provide insight into this important field of study.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X290674240509111832
2024-01-01
2025-01-19
Loading full text...

Full text loading...

/deliver/fulltext/cis/2/1/CIS-2-E2210299X290674.html?itemId=/content/journals/cis/10.2174/012210299X290674240509111832&mimeType=html&fmt=ahah

References

  1. SipeJ.D. BensonM.D. BuxbaumJ.N. IkedaS. MerliniG. SaraivaM.J.M. WestermarkP. Amyloid fibril proteins and amyloidosis: Chemical identification and clinical classification International Society of Amyloidosis 2016 Nomenclature Guidelines.Amyloid201623420921310.1080/13506129.2016.125798627884064
    [Google Scholar]
  2. SotoC. EstradaL.D. Protein misfolding and neurodegeneration.Arch. Neurol.200865218418910.1001/archneurol.2007.5618268186
    [Google Scholar]
  3. GhoshP. DeP. Modulation of amyloid protein fibrillation by synthetic polymers: Recent advances in the context of neurodegenerative diseases.ACS Appl. Bio Mater.20203106598662510.1021/acsabm.0c0102135019388
    [Google Scholar]
  4. ZapadkaK.L. BecherF.J. Gomes dos SantosA.L. JacksonS.E. Factors affecting the physical stability (aggregation) of peptide therapeutics.Interface Focus2017762017003010.1098/rsfs.2017.003029147559
    [Google Scholar]
  5. NielsenL. KhuranaR. CoatsA. FrokjaerS. BrangeJ. VyasS. UverskyV.N. FinkA.L. Effect of environmental factors on the kinetics of insulin fibril formation: Elucidation of the molecular mechanism.Biochemistry200140206036604610.1021/bi002555c11352739
    [Google Scholar]
  6. GhoshP. BeraA. BhaduryP. DeP. From small molecules to synthesized polymers: Potential role in combating amyloidogenic disorders.ACS Chem. Neurosci.202112101737174810.1021/acschemneuro.1c0010433929827
    [Google Scholar]
  7. GhoshP. BeraA. DeP. Current status, challenges and future directions in the treatment of neurodegenerative diseases by polymeric materials.J. Indian Chem. Soc.202198110001110.1016/j.jics.2021.100011
    [Google Scholar]
  8. RosettiB. MarchesanS. Peptide inhibitors of insulin fibrillation: Current and future challenges.Int. J. Mol. Sci.2023242130610.3390/ijms2402130636674821
    [Google Scholar]
  9. JamunaN.A. KamalakshanA. DandekarB.R. Chittilappilly DevassyA.M. MondalJ. MandalS. Mechanistic insight into the amyloid fibrillation inhibition of hen egg white lysozyme by three different bile acids.J. Phys. Chem. B2023127102198221310.1021/acs.jpcb.3c0027436861956
    [Google Scholar]
  10. PradhanN. JanaN.R. Nanomodulators that target Alzheimer’s disease: A review.ACS Appl. Nano Mater.2024743515354510.1021/acsanm.3c04846
    [Google Scholar]
  11. WangQ. SunJ. ChenT. SongS. HouY. FengL. FanC. LiM. Ferroptosis, pyroptosis, and cuproptosis in Alzheimer’s disease.ACS Chem. Neurosci.202314193564358710.1021/acschemneuro.3c0034337703318
    [Google Scholar]
  12. Rupali JosephB. ThomasS. SenN. PascholdA. BinderW.H. KumarS. Bioinspired synthetic polymers-based inhibitors of Alzheimer’s amyloid-β peptide aggregation.Polym. Chem.202314439241110.1039/D2PY01217K
    [Google Scholar]
  13. NayakK. GhoshP. BarmanS. SudhamallaB. TheatoP. DeP. Amyloid β-peptide segment conjugated side-chain proline-based polymers as potent inhibitors in lysozyme amyloidosis.Bioconjug. Chem.202435331232310.1021/acs.bioconjchem.3c0050938420925
    [Google Scholar]
  14. MaityT. PaulS. DeP. Side-chain amino acid-based macromolecular architectures.J. Macromol. Sci. Part A Pure Appl. Chem.202360121710.1080/10601325.2023.2169158
    [Google Scholar]
  15. NayakK. GhoshP. KhanM.E.H. DeP. Side-chain amino-acid-based polymers: Self-assembly and bioapplications.Polym. Int.202271441142510.1002/pi.6278
    [Google Scholar]
  16. DeyA. HaldarU. TotaR. FaustR. DeP. PIB-based block copolymer with a segment having alternating sequence of leucine and alanine side-chain pendants.J. Macromol. Sci. Part A Pure Appl. Chem.202360316117010.1080/10601325.2023.2189434
    [Google Scholar]
  17. KarmakarS. SarkarN. PandeyL.M. Proline functionalized gold nanoparticles modulates lysozyme fibrillation.Colloids Surf. B Biointerfaces201917440140810.1016/j.colsurfb.2018.11.03230476794
    [Google Scholar]
  18. VarugheseM.M. NewmanJ. Inhibitory effects of arginine on the aggregation of bovine insulin.J. Biophys.201220121710.1155/2012/43428922848214
    [Google Scholar]
  19. GhoshP. BeraA. GhoshA. BhaduryP. DeP. Side-chain proline-based polymers as effective inhibitors for in vitro aggregation of insulin.ACS Appl. Bio Mater.2020385407541910.1021/acsabm.0c0070935021714
    [Google Scholar]
  20. BeraA. SahooS. GoswamiK. DasS.K. GhoshP. DeP. Modulating insulin aggregation with charge variable cholic acid- derived polymers.Biomacromolecules202122114833484510.1021/acs.biomac.1c0110734674527
    [Google Scholar]
  21. PalmalS. JanaN.R. JanaN.R. Inhibition of amyloid fibril growth by nanoparticle coated with histidine-based polymer.J. Phys. Chem. C201411837216302163810.1021/jp505613g
    [Google Scholar]
  22. LundquistJ.J. TooneE.J. The cluster glycoside effect.Chem. Rev.2002102255557810.1021/cr000418f11841254
    [Google Scholar]
  23. YuK. LaiB.F.L. KizhakkedathuJ.N. Carbohydrate structure dependent hemocompatibility of biomimetic functional polymer brushes on surfaces.Adv. Healthc. Mater.20121219921310.1002/adhm.20110004223184724
    [Google Scholar]
  24. BecerC.R. The glycopolymer code: Synthesis of glycopolymers and multivalent carbohydrate-lectin interactions.Macromol. Rapid Commun.201233974275210.1002/marc.20120005522508520
    [Google Scholar]
  25. MiuraY. YamauchiT. SatoH. FukudaT. The self-assembled monolayer of saccharide via click chemistry: Formation and protein recognition.Thin Solid Films200851692443244910.1016/j.tsf.2007.04.061
    [Google Scholar]
  26. UnverzagtC. KelmS. PaulsonJ.C. Chemical and enzymatic synthesis of multivalent sialoglycopeptides.Carbohydr. Res.199425128530110.1016/0008‑6215(94)84292‑28149376
    [Google Scholar]
  27. LadmiralV. MantovaniG. ClarksonG.J. CauetS. IrwinJ.L. HaddletonD.M. Synthesis of neoglycopolymers by a combination of “click chemistry” and living radical polymerization.J. Am. Chem. Soc.2006128144823483010.1021/ja058364k16594719
    [Google Scholar]
  28. ManciniR.J. LeeJ. MaynardH.D. Trehalose glycopolymers for stabilization of protein conjugates to environmental stressors.J. Am. Chem. Soc.2012134208474847910.1021/ja212023422519420
    [Google Scholar]
  29. RajaramH. PalaniveluM.K. ArumugamT.V. RaoV.M. ShawP.N. McGearyR.P. RossB.P. ‘Click’ assembly of glycoclusters and discovery of a trehalose analogue that retards Aβ40 aggregation and inhibits Aβ40-induced neurotoxicity.Bioorg. Med. Chem. Lett.201424184523452810.1016/j.bmcl.2014.07.07725172417
    [Google Scholar]
  30. Madeira do OJ. MastrottoF. FranciniN. AllenS. van der WalleC.F. StolnikS. MantovaniG. Synthetic glycopolymers as modulators of protein aggregation: Influences of chemical composition, topology and concentration.J. Mater. Chem. B Mater. Biol. Med.2018671044105410.1039/C7TB02720F32254292
    [Google Scholar]
  31. DasP.K. DeanD.N. FogelA.L. LiuF. AbelB.A. McCormickC.L. KharlampievaE. RangachariV. MorganS.E. Aqueous RAFT synthesis of glycopolymers for determination of saccharide structure and concentration effects on amyloid β aggregation.Biomacromolecules201718103359336610.1021/acs.biomac.7b0100728893064
    [Google Scholar]
  32. BeraA. GhoshP. BarmanS. BhattacharyaS. SudhamallaB. GoswamiK. DeP. Insulin fibril inhibition using glycopolymeric nanoassemblies.Biomater. Sci.202311103574358810.1039/D2BM02078E37000481
    [Google Scholar]
  33. DeyA. HaldarU. RajasekharT. GhoshP. FaustR. DeP. Polyisobutylene-based glycopolymers as potent inhibitors for in vitro insulin aggregation.J. Mater. Chem. B Mater. Biol. Med.202210459446945610.1039/D2TB01856J36345931
    [Google Scholar]
  34. DaiX. ZhaoD. MatsumuraK. RajanR. Polyampholytes and their hydrophobic derivatives as excipients for suppressing protein aggregation.ACS Appl. Bio Mater.2023672738274610.1021/acsabm.3c0021337314858
    [Google Scholar]
  35. StubbsC. BaileyT.L. MurrayK. GibsonM.I. Polyampholytes as emerging macromolecular cryoprotectants.Biomacromolecules202021171710.1021/acs.biomac.9b0105331418266
    [Google Scholar]
  36. SharmaN. RajanR. MakhaikS. MatsumuraK. Comparative study of protein aggregation arrest by zwitterionic polysulfobetaines: Using contrasting raft agents.ACS Omega201947121861219310.1021/acsomega.9b0140931460333
    [Google Scholar]
  37. DattaL.P. SamantaS. GovindarajuT. Polyampholyte-based synthetic chaperone modulate amyloid aggregation and lithium delivery.ACS Chem. Neurosci.202011182812282610.1021/acschemneuro.0c0036932816457
    [Google Scholar]
  38. RajanR. MatsumuraK. A zwitterionic polymer as a novel inhibitor of protein aggregation.J. Mater. Chem. B Mater. Biol. Med.20153285683568910.1039/C5TB01021G32262564
    [Google Scholar]
  39. RajanR. MatsumuraK. Inhibition of protein aggregation by zwitterionic polymer-based core-shell nanogels.Sci. Rep.2017714577710.1038/srep4577728374820
    [Google Scholar]
  40. RajanR. SuzukiY. MatsumuraK. Zwitterionic polymer design that inhibits aggregation and facilitates insulin refolding: Mechanistic insights and importance of hydrophobicity.Macromol. Biosci.2018186180001610.1002/mabi.20180001629688620
    [Google Scholar]
  41. SahooS. GhoshP. BanerjeeS. DeP. Recent advances in biomedical applications of cholic acid-based macromolecules.ACS Appl. Polym. Mater.2021341687170610.1021/acsapm.0c01435
    [Google Scholar]
  42. SharmaS. TomarV.R. DeepS. Myricetin: A potent anti-amyloidogenic polyphenol against superoxide dismutase 1 aggregation.ACS Chem. Neurosci.202314132461247510.1021/acschemneuro.3c0027637314311
    [Google Scholar]
  43. MondalA. KhanM.E.H. GhoshP. DeP. Future direction of designing antioxidant polymers in modulating protein aggregation process.J. Mol. Eng. Mater.2021903n04214000110.1142/S2251237321400013
    [Google Scholar]
  44. BeraA. GhoshP. GhoshS. MukherjeeA. DeP. Antioxidant polymers with enhanced neuroprotection against insulin fibrillation.Macromol. Biosci.2023237230010010.1002/mabi.20230010037092867
    [Google Scholar]
  45. ShaoX. YanC. WangC. WangC. CaoY. ZhouY. GuanP. HuX. ZhuW. DingS. Advanced nanomaterials for modulating Alzheimer’s related amyloid aggregation.Nanoscale Adv.202251468010.1039/D2NA00625A36605800
    [Google Scholar]
  46. BardhanM. DoluiS. ChaudhuriS. PaulU. BhattacharjeeG. GhosalM. MaitiN.C. MukhopadhyayD. SenapatiD. Impact of porous nanomaterials on inhibiting protein aggregation behaviour.RSC Advances20211163354336210.1039/D0RA10927D35424305
    [Google Scholar]
  47. MahmoudiM. Quinlan-PluckF. MonopoliM.P. SheibaniS. ValiH. DawsonK.A. LynchI. Influence of the physiochemical properties of superparamagnetic iron oxide nanoparticles on amyloid β protein fibrillation in solution.ACS Chem. Neurosci.20134347548510.1021/cn300196n23509983
    [Google Scholar]
  48. ParkS.J. Protein-nanoparticle interaction: Corona formation and conformational changes in proteins on nanoparticles.Int. J. Nanomedicine2020155783580210.2147/IJN.S25480832821101
    [Google Scholar]
  49. MahmoudiM. KalhorH.R. LaurentS. LynchI. Protein fibrillation and nanoparticle interactions: Opportunities and challenges.Nanoscale2013572570258810.1039/c3nr33193h23463168
    [Google Scholar]
  50. ZhouS. ZhuY. YaoX. LiuH. Carbon nanoparticles inhibit the aggregation of prion protein as revealed by experiments and atomistic simulations.J. Chem. Inf. Model.20195951909191810.1021/acs.jcim.8b0072530575391
    [Google Scholar]
  51. GhaeidaminiM. BernsonD. SasanianN. KumarR. EsbjörnerE.K. Graphene oxide sheets and quantum dots inhibit α-synuclein amyloid formation by different mechanisms.Nanoscale20201237194501946010.1039/D0NR05003B32959853
    [Google Scholar]
  52. SarimovR.M. NagaevE.I. MatveyevaT.A. BinhiV.N. BurmistrovD.E. SerovD.A. AstashevM.E. SimakinA.V. UvarovO.V. KhabatovaV.V. AkopdzhanovA.G. SchimanowskiiN.L. GudkovS.V. Investigation of aggregation and disaggregation of self-assembling nano-sized clusters consisting of individual iron oxide nanoparticles upon interaction with HEWL protein molecules.Nanomaterials20221222396010.3390/nano1222396036432246
    [Google Scholar]
  53. AntosovaA. GancarM. BednarikovaZ. MarekJ. ZahnD. DutzS. GazovaZ. Surface-modified magnetite nanoparticles affect lysozyme amyloid fibrillization.Biochim. Biophys. Acta, Gen. Subj.20211865912994110.1016/j.bbagen.2021.12994134090976
    [Google Scholar]
  54. DubeyK. AnandB.G. BadhwarR. BaglerG. NavyaP.N. DaimaH.K. KarK. Tyrosine- and tryptophan-coated gold nanoparticles inhibit amyloid aggregation of insulin.Amino Acids201547122551256010.1007/s00726‑015‑2046‑626193769
    [Google Scholar]
  55. LiuY. SunJ. GongY. ZhouH. ChenX. ZhuX. ZhaoY. WenY. QinX. LiuJ. Peptide-modified Mo polyoxometalate nanoparticles suppress Zn2+-induced Aβ aggregation.ChemNanoMat20195789791010.1002/cnma.201900057
    [Google Scholar]
  56. ChakrabortyA. MohapatraS.S. BarikS. RoyI. GuptaB. BiswasA. Impact of nanoparticles on amyloid β-induced Alzheimer’s disease, tuberculosis, leprosy and cancer: A systematic review.Biosci. Rep.2023432BSR2022032410.1042/BSR2022032436630532
    [Google Scholar]
  57. Cabaleiro-LagoC. Quinlan-PluckF. LynchI. LindmanS. MinogueA.M. ThulinE. WalshD.M. DawsonK.A. LinseS. Inhibition of amyloid β protein fibrillation by polymeric nanoparticles.J. Am. Chem. Soc.200813046154371544310.1021/ja804180618954050
    [Google Scholar]
  58. LinseS. Cabaleiro-LagoC. XueW.F. LynchI. LindmanS. ThulinE. RadfordS.E. DawsonK.A. Nucleation of protein fibrillation by nanoparticles.Proc. Natl. Acad. Sci. USA2007104218691869610.1073/pnas.070125010417485668
    [Google Scholar]
  59. WangM. KakinenA. PilkingtonE.H. DavisT.P. KeP.C. Differential effects of silver and iron oxide nanoparticles on IAPP amyloid aggregation.Biomater. Sci.20175348549310.1039/C6BM00764C28078343
    [Google Scholar]
  60. MeesaragandlaB. KaranthS. JankeU. DelceaM. Biopolymer-coated gold nanoparticles inhibit human insulin amyloid fibrillation.Sci. Rep.20201017862787510.1038/s41598‑020‑64010‑732398693
    [Google Scholar]
  61. BeraA. GhoshP. GoswamiK. DeP. Amino acid-based polymer-coated silver nanoparticles as insulin fibril inhibitors.ACS Appl. Nano Mater.20236108705871610.1021/acsanm.3c01078
    [Google Scholar]
  62. WuY. XiaoQ. WangS. JinW. YangR. Synthesis and application of PHEMA- b -PMPS copolymers using RAFT polymerization.J. Macromol. Sci. Part A Pure Appl. Chem.202259324925610.1080/10601325.2022.2026786
    [Google Scholar]
  63. LiuT. LangM. Preparation and characterization of novel functional tri-block copolymer for constructing temperature/redox dual-stimuli responsive micelles.J. Macromol. Sci. Part A Pure Appl. Chem.202259851352510.1080/10601325.2022.2092409
    [Google Scholar]
  64. FangX. YousafM. HuangQ. YangY. WangC. Dual effect of PEG-PE micelle over the oligomerization and fibrillation of human islet amyloid polypeptide.Sci. Rep.2018814463447510.1038/s41598‑018‑22820‑w29535385
    [Google Scholar]
  65. DebnathK. JanaN.R. JanaN.R. Designed polymer micelle for clearing amyloid protein aggregates via up-regulated autophagy.ACS Biomater. Sci. Eng.20195139040110.1021/acsbiomaterials.8b0119633405873
    [Google Scholar]
  66. ZhangJ. LiuJ. ZhuY. XuZ. XuJ. WangT. YuH. ZhangW. Photodynamic micelles for amyloid β degradation and aggregation inhibition.Chem. Commun.20165281120441204710.1039/C6CC06175C27711295
    [Google Scholar]
  67. HuangF. WangJ. QuA. ShenL. LiuJ. LiuJ. ZhangZ. AnY. ShiL. Maintenance of amyloid β peptide homeostasis by artificial chaperones based on mixed-shell polymeric micelles.Angew. Chem. Int. Ed.201453348985899010.1002/anie.20140073524985739
    [Google Scholar]
  68. GengH. YuanH. QiuL. GaoD. ChengY. XingC. Inhibition and disaggregation of amyloid β protein fibrils through conjugated polymer–core thermoresponsive micelles.J. Mater. Chem. B Mater. Biol. Med.2020844101261013510.1039/D0TB01863E33074279
    [Google Scholar]
  69. BeraA. MukhopadhyayD. GoswamiK. GhoshP. DeR. DeP. Fatty acid-based polymeric micelles to ameliorate amyloidogenic disorders.Biomater. Sci.202210133466347910.1039/D2BM00359G35670569
    [Google Scholar]
/content/journals/cis/10.2174/012210299X290674240509111832
Loading
/content/journals/cis/10.2174/012210299X290674240509111832
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test