Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

Background

The creation and development of novel chemical entities is made possible by numerous computer-aided drug design techniques. The ability to visualize the ligand-target interaction and forecast the important holding pocket locations and affinities of ligands to their intended macromolecules is made possible by pharmacophore-based drug design and understanding methodologies.

Objective

The aim of the current investigation was to find novel 2-chloroquinoline-3-carboxamide derivatives that target the Ephrin B4 (EPHB4) receptor to treat cancer.

Materials and Methods

Chem Axon Marvin Sketch 5.11.5 was used to create derivatives of 2-chloroquinoline-3-carboxamide. The physicochemical characteristics of compounds as well as their toxicity were predicted using SwissADME& the admet SAR online software’s. Molecular docking technology was used to examine the ligand-receptor interactions of 2-chloroquinoline-3-carboxamide derivatives with the target receptor (PDB- 6FNM) using a variety of software’s, including Autodock1.1.2,Procheck, ProtParam tool, Biovia Discovery Studio Visualizer v20.1.0.19295, MGL Tools 1.5.6, PyMOL, and were all included.

Results

All developed compounds were determined to be orally bioavailable, less toxic, and have acceptable pharmacokinetic properties according to studies. In comparison to the traditional medication Erdafitnib, all new compounds displayed higher docking scores.

Conclusion

The increase in binding energy and the number of H-bonds created by novel derivatives with interactions at distances below 3.40A0 provide a helpful starting point for formulating and synthesizing compounds that are most suitable for additional research. The application of the 2-chloroquinoline-3-carboxamide moiety as a potential new cancer treatment candidate is supported by its pharmacokinetics &toxicological profile, which may aid medicinal chemists in conducting more in-depth in vitro, chemical and pharmacological studies.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X265033240116113623
2024-03-07
2025-01-31
Loading full text...

Full text loading...

/deliver/fulltext/cis/2/1/CIS-2-E2210299X265033.html?itemId=/content/journals/cis/10.2174/012210299X265033240116113623&mimeType=html&fmt=ahah

References

  1. FerlayJ. ErvikM. LamF. ColombetM. MeryL. PiñerosM. Global cancer observatory: Cancer today.Lyon, FranceInternational Agency for Research on Cancer202010.1002/ijc.33588
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  3. NiaH.T. MunnL.L. JainR.K. Physical traits of cancer.Science20203706516eaaz086810.1126/science.aaz086833122355
    [Google Scholar]
  4. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2022.CA Cancer J. Clin.202272173310.3322/caac.2170835020204
    [Google Scholar]
  5. NagaiH. KimY.H. Cancer prevention from the perspective of global cancer burden patterns.J. Thorac. Dis.20179344845110.21037/jtd.2017.02.7528449441
    [Google Scholar]
  6. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  7. BejaranoL. JordāoM.J.C. JoyceJ.A. Therapeutic targeting of the tumor microenvironment.Cancer Discov.202111493395910.1158/2159‑8290.CD‑20‑180833811125
    [Google Scholar]
  8. JiaQ. WangA. YuanY. ZhuB. LongH. Heterogeneity of the tumor immune microenvironment and its clinical relevance.Exp. Hematol. Oncol.20221112410.1186/s40164‑022‑00277‑y35461288
    [Google Scholar]
  9. HayesJ.D. Dinkova-KostovaA.T. TewK.D. Oxidative stress in cancer.Cancer Cell202038216719710.1016/j.ccell.2020.06.00132649885
    [Google Scholar]
  10. VermaC. QuraishiM.A. EbensoE.E. Quinoline and its derivatives as corrosion inhibitors: A review.Surf. Interfaces20202110063410.1016/j.surfin.2020.100634
    [Google Scholar]
  11. AbdelazizA. VaishampayanU. Cabozantinib for the treatment of kidney cancer.Expert Rev. Anticancer Ther.201717757758410.1080/14737140.2017.134455328633552
    [Google Scholar]
  12. FiorilloM. LambR. TanowitzH.B. CappelloA.R. Martinez-OutschoornU.E. SotgiaF. LisantiM.P. Bedaquiline, an FDA-approved antibiotic, inhibits mitochondrial function and potently blocks the proliferative expansion of stem-like cancer cells (CSCs).Aging2016881593160710.18632/aging.10098327344270
    [Google Scholar]
  13. KurzrockR. ShermanS.I. BallD.W. ForastiereA.A. CohenR.B. MehraR. PfisterD.G. CohenE.E.W. JanischL. NaulingF. HongD.S. NgC.S. YeL. GagelR.F. FryeJ. MüllerT. RatainM.J. SalgiaR. Activity of XL184 (Cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer.J. Clin. Oncol.201129192660266610.1200/JCO.2010.32.414521606412
    [Google Scholar]
  14. MarkowitzJ.N. FancherK.M. Cabozantinib: a multitargeted oral tyrosine kinase inhibitor.Pharmacotherapy201838335736910.1002/phar.207629283440
    [Google Scholar]
  15. XuhongJ-C. QiX-W. ZhangY. JiangJ. Mechanism, safety and efficacy of three tyrosine kinase inhibitors lapatinib, neratinib and pyrotinib in HER2-positive breast cancer.Am. J. Cancer Res.20199102103211931720077
    [Google Scholar]
  16. ZhangX. MunsterP.N. New protein kinase inhibitors in breast cancer: Afatinib and neratinib.Expert Opin. Pharmacother.20141591277128810.1517/14656566.2014.91357024787047
    [Google Scholar]
  17. MhaskeG.S. SenA.K. ShahA. KhisteR.H. DaleA.V. SenD.B. In silico identification of novel quinoline-3-carboxamide derivatives targeting platelet-derived growth factor receptor.Curr. Cancer Ther. Rev.202218213114210.2174/1573394718666220421111546
    [Google Scholar]
  18. GouirandV. GicquelT. LienE.C. Jaune-PonsE. Da CostaQ. FinettiP. MetayE. DulucC. MayersJ.R. AudebertS. CamoinL. BorgeL. RubisM. LecaJ. NigriJ. BertucciF. DusettiN. IovannaJ.L. TomasiniR. BidautG. GuillaumondF. Vander HeidenM.G. VasseurS. Ketogenic HMG-CoA lyase and its product β-hydroxybutyrate promote pancreatic cancer progression.EMBO J.2022419e11046610.15252/embj.202111046635307861
    [Google Scholar]
  19. RashidH. XuY. MuhammadY. WangL. JiangJ. Research advances on anticancer activities of matrine and its derivatives: An updated overview.Eur. J. Med. Chem.201916120523810.1016/j.ejmech.2018.10.03730359819
    [Google Scholar]
  20. QiaoL. ChoiS. CaseA. GainerT.G. SeybK. GlicksmanM.A. LoD.C. SteinR.L. CunyG.D. Structure–activity relationship study of EphB3 receptor tyrosine kinase inhibitors.Bioorg. Med. Chem. Lett.200919216122612610.1016/j.bmcl.2009.09.01019783434
    [Google Scholar]
  21. UnzueA. LafleurK. ZhaoH. ZhouT. DongJ. KolbP. LieblJ. ZahlerS. CaflischA. NevadoC. Three stories on Eph kinase inhibitors: From in silico discovery to in vivo validation.Eur. J. Med. Chem.201611234736610.1016/j.ejmech.2016.01.05726907157
    [Google Scholar]
  22. MuradH. HawatM. EkhtiarA. AlJapaweA. AbbasA. DarwishH. SbenatiO. GhannamA. Induction of G1-phase cell cycle arrest and apoptosis pathway in MDA-MB-231 human breast cancer cells by sulfated polysaccharide extracted from Laurencia papillosa.Cancer Cell Int.20161613910.1186/s12935‑016‑0315‑427231438
    [Google Scholar]
  23. LuoY. YangY. PengP. ZhanJ. WangZ. ZhuZ. ZhangZ. LiuL. FangW. ZhangL. Cholesterol synthesis disruption combined with a molecule-targeted drug is a promising metabolic therapy for EGFR mutant non-small cell lung cancer.Transl. Lung Cancer Res.202110112814210.21037/tlcr‑20‑81233569299
    [Google Scholar]
  24. DervisisN. KlahnS. Therapeutic innovations: Tyrosine kinase inhibitors in cancer.Vet. Sci.201631410.3390/vetsci301000429056714
    [Google Scholar]
  25. El-MeseryM. SeherA. El-ShafeyM. El-DosokyM. BadriaF.A. Repurposing of quinoline alkaloids identifies their ability to enhance doxorubicin-induced sub-G0/G1 phase cell cycle arrest and apoptosis in cervical and hepatocellular carcinoma cells.Biotechnol. Appl. Biochem.202168483284010.1002/bab.199932757395
    [Google Scholar]
  26. LiangX. WuQ. LuanS. YinZ. HeC. YinL. ZouY. YuanZ. LiL. SongX. HeM. LvC. ZhangW. A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade.Eur. J. Med. Chem.201917112916810.1016/j.ejmech.2019.03.03430917303
    [Google Scholar]
  27. Álvarez-CaballeroJ.M. Cuca-SuárezL.E. Coy-BarreraE. Bio-guided fractionation of ethanol extract of leaves of esenbeckia alata kunt (Rutaceae) led to the isolation of two cytotoxic quinoline alkaloids: evidence of selectivity against leukemia cells.Biomolecules201991058510.3390/biom910058531597257
    [Google Scholar]
  28. PatelR. ChudasamaR. SolankiR. PatelP. ParmarK. MunshiN.S. Structure prediction and molecular docking studies of aromatic hydrocarbon sensing proteins TbuT, HbpR and PhnR to detect priority pollutants.J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng.202055212614110.1080/10934529.2019.167245731566066
    [Google Scholar]
  29. BhattacharyaD. NowotnyJ. CaoR. ChengJ. 3Drefine: An interactive web server for efficient protein structure refinement.Nucleic Acids Res.201644W1W406W40910.1093/nar/gkw33627131371
    [Google Scholar]
  30. UbhiT. BrownG.W. Exploiting DNA replication stress for cancer treatment.Cancer Res.20197981730173910.1158/0008‑5472.CAN‑18‑363130967400
    [Google Scholar]
  31. MontagutA.M. Recent advances in the pharmacological targeting of ubiquitin regulating enzymes in cancer.Seminars in Cell & Developmental Biology Elsevier202210.1016/j.semcdb.2022.02.007
    [Google Scholar]
  32. ColovosC. YeatesT.O. Verification of protein structures: Patterns of nonbonded atomic interactions.Protein Sci.1993291511151910.1002/pro.55600209168401235
    [Google Scholar]
  33. Anand MariadossA.V. Krishnan DhanabalanA. MunusamyH. GunasekaranK. DavidE. In silico studies towards enhancing the anticancer activity of phytochemical phloretin against cancer drug targets.Curr. Drug Ther.201813217418810.2174/1574885513666180402134054
    [Google Scholar]
  34. IkedaF. Ubiquitin conjugating enzymes in the regulation of the autophagy-dependent degradation pathway.Matrix Biol.2021100-101232910.1016/j.matbio.2020.11.00433276077
    [Google Scholar]
  35. VelusamyS. HusainS.A. AlarifiS. Screening potential inhibitor from actinomycetes for dihydrofolate reductase of staphylococcus aureus–in vitro and in silico studies.J. King Saud Uni-Sci.202335610276210.1016/j.jksus.2023.102762
    [Google Scholar]
  36. BeckerH.M. Carbonic anhydrase IX and acid transport in cancer.Br. J. Cancer2020122215716710.1038/s41416‑019‑0642‑z31819195
    [Google Scholar]
  37. AbnerE. StoszkoM. ZengL. ChenH.C. Izquierdo-BouldstridgeA. KonumaT. ZoritaE. FanunzaE. ZhangQ. MahmoudiT. ZhouM.M. FilionG.J. JordanA. A new quinoline BRD4 inhibitor targets a distinct latent HIV-1 reservoir for reactivation from other “shock” drugs.J. Virol.20189210e02056-1710.1128/JVI.02056‑1729343578
    [Google Scholar]
  38. UmarA. B. UzairuA. ShallangwaG. A. UbaS. Design of potential anti-melanoma agents against SK-MEL-5 cell line using QSAR modeling and molecular docking methods.SN Applied Sciences20202581510.1007/s42452‑020‑2620‑8
    [Google Scholar]
  39. SaeedM.E. KadiogluO. SeoE.J. GretenH.J. BrenkR. EfferthT. Quantitative structure-activity relationship and molecular docking of artemisinin derivatives to vascular endothelial growth factor receptor 1.Anticancer Res.20153541929193425862844
    [Google Scholar]
  40. DainaA. ZoeteV. A BOILED-Egg to predict gastrointestinal absorption and brain penetration of small molecules.ChemMedChem201611111117112110.1002/cmdc.20160018227218427
    [Google Scholar]
  41. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  42. GramaticaP. GianiE. PapaE. Statistical external validation and consensus modeling: A QSPR case study for Koc prediction.J. Mol. Graph. Model.200725675576610.1016/j.jmgm.2006.06.00516890002
    [Google Scholar]
  43. BingulM. TanO. GardnerC. SuttonS. ArndtG. MarshallG. CheungB. KumarN. BlackD. Synthesis, characterization and anti-cancer activity of hydrazide derivatives incorporating a quinoline moiety.Molecules201621791610.3390/molecules2107091627428941
    [Google Scholar]
  44. VenugopalaK.N. UpparV. ChandrashekharappaS. AbdallahH.H. PillayM. DebP.K. MorsyM.A. AldhubiabB.E. AttimaradM. NairA.B. SreeharshaN. TratratC. Yousef JaberA. VenugopalaR. MailavaramR.P. Al-JaidiB.A. KandeelM. HarounM. PadmashaliB. Cytotoxicity and antimycobacterial properties of pyrrolo[1,2-a]quinoline derivatives: Molecular target identification and molecular docking studies.Antibiotics20209523310.3390/antibiotics905023332392709
    [Google Scholar]
  45. ShettyP.R. ShivarajaG. KrishnaswamyG. PruthvirajK. MohanV.C. SreenivasaS. Synthesis, characterization, biological screening, adme and molecular docking studies of 2-phenyl quinoline-4-carboxamide derivatives.Asian J. Chem.20203251151115710.14233/ajchem.2020.22583
    [Google Scholar]
  46. DiaaA.I. DalalA. AbouE.E. AmiraM. MotwallyE. RashaM.A. Molecular design and synthesis of certain new quinoline derivatives having potential anticancer activity.Eur. J. Med. Chem.201573010.1016/j.ejmech.2015.07.030
    [Google Scholar]
  47. AttiqueS. HassanM. UsmanM. AtifR. MahboobS. Al-GhanimK. BilalM. NawazM. A molecular docking approach to evaluate the pharmacological properties of natural and synthetic treatment candidates for use against hypertension.Int. J. Environ. Res. Public Health201916692310.3390/ijerph1606092330875817
    [Google Scholar]
  48. AbdullahiM. ShallangwaG.A. UzairuA. Insilico QSAR and molecular docking simulation of some novel aryl sulfonamide derivatives as inhibitors of H5N1 influenza A virus subtype.Beni. Suef Univ. J. Basic Appl. Sci.20202911210.1186/s43088‑019‑0023‑y
    [Google Scholar]
  49. AshanM.J. YadavR. JadhavS.S. Synthesis, Anticancer activity and Molecular docking studies of newer quinoline analogues.1stInternational electronic conference on Medicinal chemistry201511410.3390/ecmc‑1‑A033
    [Google Scholar]
  50. AbdullahiM. AdenijiS.E. In-silico molecular docking and ADME/pharmacokinetic prediction studies of some novel carboxamide derivatives as anti-tubercular agents.Chemistry Africa202034989100010.1007/s42250‑020‑00162‑3
    [Google Scholar]
  51. WangG. BaiY. CuiJ. ZongZ. GaoY. ZhengZ. Computer-aided drug design boosts RAS inhibitor discovery.Molecules20222717571010.3390/molecules2717571036080477
    [Google Scholar]
  52. ZhongS. HouY. ZhangZ. GuoZ. YangW. DouG. LvX. WangX. GeJ. WuB. PanX. WangH. YangQ. MouY. Identification of novel natural inhibitors targeting AKT Serine/Threonine Kinase 1 (AKT1) by computational study.Bioengineered2022135120031202010.1080/21655979.2021.201163135603567
    [Google Scholar]
  53. MokhtarM. AlghamdiK.S. AhmedN.S. BakhotmahD. SalehT.S. Design and green synthesis of novel quinolinone derivatives of potential anti-breast cancer activity against MCF-7 cell line targeting multi-receptor tyrosine kinases.J. Enzyme Inhib. Med. Chem.20213611453147010.1080/14756366.2021.194412634210212
    [Google Scholar]
  54. MartoranaA. La MonicaG. LauriaA. Quinoline-based molecules targeting c-met, EGF, and VEGF receptors and the proteins involved in related carcinogenic pathways.Molecules20202518427910.3390/molecules2518427932961977
    [Google Scholar]
  55. GovenderH. MocktarC. KoorbanallyN.A. Synthesis and Bioactivity of Quinoline-3- carboxamide Derivatives.J. Heterocyclic Chem201810.1002/jhet.3132
    [Google Scholar]
  56. TeliM.K. RajanikantG.K. Pharmacophore generation and atom-based 3D-QSAR of novel quinoline-3-carbonitrile derivatives as Tpl2 kinase inhibitors.J. Enzyme Inhib. Med. Chem.201227455857010.3109/14756366.2011.60312821851209
    [Google Scholar]
  57. AyatiA. MoghimiS. SalarinejadS. SafaviM. PouramiriB. ForoumadiA. A review on progression of epidermal growth factor receptor (EGFR) inhibitors as an efficient approach in cancer targeted therapy.Bioorg. Chem.20209910381110.1016/j.bioorg.2020.10381132278207
    [Google Scholar]
  58. BolakattiG. PalkarM. KatagiM. HampannavarG. KarpoormathR.V. NinganagoudaS. BadigerA. Novel series of benzo[d]thiazolyl substituted-2-quinolone hybrids: Design, synthesis, biological evaluation and in-silico insights.J. Mol. Struct.2021122712941310.1016/j.molstruc.2020.129413
    [Google Scholar]
  59. DeatonD.N. DoY. HoltJ. JeuneM.R. KramerH.F. LarkinA.L. Orband-MillerL.A. PeckhamG.E. PooleC. PriceD.J. SchallerL.T. ShenY. ShewchukL.M. StewartE.L. StuartJ.D. ThomsonS.A. WardP. WilsonJ.W. XuT. GussJ.H. MusettiC. RendinaA.R. AffleckK. AndersD. HancockA.P. HobbsH. HodgsonS.T. HutchinsonJ. LeveridgeM.V. NichollsH. SmithI.E.D. SomersD.O. SneddonH.F. UddinS. CleasbyA. MortensonP.N. RichardsonC. SaxtyG. The discovery of quinoline-3-carboxamides as hematopoietic prostaglandin D synthase (H-PGDS) inhibitors.Bioorg. Med. Chem.20192781456147810.1016/j.bmc.2019.02.01730858025
    [Google Scholar]
  60. SantoshK. AgharaJ.C. AlexA.T. AranjaniA.M. AlexJ. Novel quinolone substituted quinazolin-4(3H)-Ones as anti-inflammatory, anti-cancer agents: Synthesis and biological screening..Indian J. Pharm. Edu. and Res.2018452-226827610.5530/ijper.52.4s.107
    [Google Scholar]
  61. PucciC. MartinelliC. CiofaniG. Innovative approaches for cancer treatment: Current perspectives and new challenges.Ecancermedicalscience20191396110.3332/ecancer.2019.96131537986
    [Google Scholar]
  62. AbbasZ. RehmanS. An overview of cancer treatment modalities.Neoplasm.2018113915710.5772/intechopen.76558
    [Google Scholar]
  63. GuoL.J. WeiC.X. JiaJ.H. ZhaoL.M. QuanZ.S. Design and synthesis of 5-alkoxy-[1,2,4]triazolo[4,3-a]quinoline derivatives with anticonvulsant activity.Eur. J. Med. Chem.200944395495810.1016/j.ejmech.2008.07.01018752871
    [Google Scholar]
  64. AndriesK. VerhasseltP. GuillemontJ. GöhlmannH.W.H. NeefsJ.M. WinklerH. Van GestelJ. TimmermanP. ZhuM. LeeE. WilliamsP. de ChaffoyD. HuitricE. HoffnerS. CambauE. Truffot-PernotC. LounisN. JarlierV. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis.Science2005307570722322710.1126/science.110675315591164
    [Google Scholar]
  65. PriscillaJ. Arul DhasD. Hubert JoeI. BalachandranS. Experimental and theoretical spectroscopic analysis, hydrogen bonding, reduced density gradient and antibacterial activity study on 2-Phenyl quinoline alkaloid.Chem. Phys.202053611082710.1016/j.chemphys.2020.110827
    [Google Scholar]
  66. RoutP.K. KumarP. RaoY.R. KumarA. BawankuleD.U. SinghR. SinghK.B. ChanotiyaC.S. NaikS.N. A quinoline alkaloid rich Quisqualis indica floral extract enhances the bioactivity.Nat. Prod. Res.202135101632163810.1080/14786419.2019.163470931264476
    [Google Scholar]
  67. ShaldamM. NocentiniA. ElsayedZ.M. IbrahimT.M. SalemR. El-DomanyR.A. CapassoC. SupuranC.T. EldehnaW.M. Development of novel quinoline-based sulfonamides as selective cancer-associated carbonic anhydrase isoform IX inhibitors.Int. J. Mol. Sci.202122201111910.3390/ijms22201111934681794
    [Google Scholar]
  68. LauriaA. La MonicaG. BonoA. MartoranaA. Quinoline anticancer agents active on DNA and DNA-interacting proteins: From classical to emerging therapeutic targets.Eur. J. Med. Chem.202122011355510.1016/j.ejmech.2021.11355534052677
    [Google Scholar]
  69. HamdyR. ElseginyS. ZiedanN. JonesA. WestwellA. New quinoline-based heterocycles as anticancer agents targeting bcl-2.Molecules2019247127410.3390/molecules2407127430986908
    [Google Scholar]
  70. LiW. ShuaiW. SunH. XuF. BiY. XuJ. MaC. YaoH. ZhuZ. XuS. Design, synthesis and biological evaluation of quinoline-indole derivatives as anti-tubulin agents targeting the colchicine binding site.Eur. J. Med. Chem.201916342844210.1016/j.ejmech.2018.11.07030530194
    [Google Scholar]
  71. DíazI. SalidoS. NoguerasM. CoboJ. Design and synthesis of new pyrimidine-quinolone hybrids as novel hldha inhibitors.Pharmaceuticals202215779210.3390/ph1507079235890090
    [Google Scholar]
  72. PatrícioR.P.S. VideiraP.A. PereiraF. A computer-aided drug design approach to discover tumour suppressor p53 protein activators for colorectal cancer therapy.Bioorg. Med. Chem.20225311653010.1016/j.bmc.2021.11653034861473
    [Google Scholar]
/content/journals/cis/10.2174/012210299X265033240116113623
Loading
/content/journals/cis/10.2174/012210299X265033240116113623
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Binding affinity; EPHB4; H-bond; Molecular docking; Pharmacokinetics; Toxicological
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test