Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

The oxygen reduction reaction (ORR) is vital to numerous energy conversion technologies, such as fuel cells and metal-air batteries. Moreover, to enhance the overall efficacy and durability of these devices, it is crucial to develop catalysts that are both effective and economical. Among the many explored catalyst materials, cobalt chalcogenides have attracted considerable interest due to their unique properties and exceptional ORR performance. This review focuses on the synthesis methods, structural characteristics, and electrochemical performance of high-performance cobalt chalcogenides as catalysts for the ORR. In addition, the influence of various synthetic parameters on the catalytic activity and stability of cobalt chalcogenides is investigated. Also addressed are the effects of defects, doping, and surface modification on the ORR performance of cobalt chalcogenides. In addition, the use of cobalt chalcogenides in practical fuel cell devices is discussed, along with their outstanding performance as ORR catalysts in both acidic and alkaline environments. The durability and long-term stability of cobalt chalcogenides under severe operating conditions are evaluated, indicating their potential commercial applications. Finally, the field of cobalt chalcogenides for ORR challenges and prospects are outlined. This review proposes strategies for further enhancing their catalytic activity, selectivity, and durability, such as interface engineering and synergistic combinations with other catalyst materials. For researchers working on the development of next-generation ORR catalysts and the practical implementation of cobalt chalcogenides for sustainable energy applications, the insights garnered from this review are invaluable.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X313143240524074022
2024-01-01
2025-01-19
Loading full text...

Full text loading...

/deliver/fulltext/cis/2/1/CIS-2-E2210299X313143.html?itemId=/content/journals/cis/10.2174/012210299X313143240524074022&mimeType=html&fmt=ahah

References

  1. DengW. WuT. WuY. ZhengH. LiG. YangM. ZouX. BaiY. YangY. JingM.J. WangX. Single atomic Fe-pyridine N catalyst with dense active sites improve bifunctional electrocatalyst activity for rechargeable and flexible Zn-air batteries.J. Mater. Chem. A Mater. Energy Sustain.20221039209932100310.1039/D2TA06351D
    [Google Scholar]
  2. ChenB. HeX. YinF. WangH. LiuD.J. ShiR. ChenJ. YinH. MO-Co@N-doped carbon (M= Zn or Co): vital roles of inactive Zn and highly efficient activity toward oxygen reduction/evolution reactions for rechargeable Zn–Air battery.Adv. Funct. Mater.20172737170079510.1002/adfm.201700795
    [Google Scholar]
  3. Ruiz PuigdollersA. SchlexerP. TosoniS. PacchioniG. Increasing oxide reducibility: The role of metal/oxide interfaces in the formation of oxygen vacancies.ACS Catal.20177106493651310.1021/acscatal.7b01913
    [Google Scholar]
  4. GewirthA.A. VarnellJ.A. DiAscroA.M. Nonprecious metal catalysts for oxygen reduction in heterogeneous aqueous systems.Chem. Rev.201811852313233910.1021/acs.chemrev.7b0033529384375
    [Google Scholar]
  5. PegisM.L. WiseC.F. MartinD.J. MayerJ.M. Oxygen reduction by homogeneous molecular catalysts and electrocatalysts.Chem. Rev.201811852340239110.1021/acs.chemrev.7b0054229406708
    [Google Scholar]
  6. SuiS. WangX. ZhouX. SuY. RiffatS. LiuC. A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: Nanostructure, activity, mechanism and carbon support in PEM fuel cells.J. Mater. Chem. A Mater. Energy Sustain.2017551808182510.1039/C6TA08580F
    [Google Scholar]
  7. StacyJ. RegmiY.N. LeonardB. FanM. The recent progress and future of oxygen reduction reaction catalysis: A review.Renew. Sustain. Energy Rev.20176940141410.1016/j.rser.2016.09.135
    [Google Scholar]
  8. GuoS. ZhangS. SunS. Tuning nanoparticle catalysis for the oxygen reduction reaction.Angew. Chem. Int. Ed.201352338526854410.1002/anie.20120718623775769
    [Google Scholar]
  9. KulkarniA. SiahrostamiS. PatelA. NørskovJ.K. Understanding catalytic activity trends in the oxygen reduction reaction.Chem. Rev.201811852302231210.1021/acs.chemrev.7b0048829405702
    [Google Scholar]
  10. HazarikaK.K. YamadaY. MatusE.V. KerzhentsevM. BharaliP. Enhancing the electrocatalytic activity via hybridization of Cu(I/II) oxides with Co3O4 towards oxygen electrode reactions.J. Power Sources202149022951110.1016/j.jpowsour.2021.229511
    [Google Scholar]
  11. SivananthamA. HyunS. SonM. ShanmugamS. Nanostructured core-shell cobalt chalcogenides for efficient water oxidation in alkaline electrolyte.Electrochim. Acta201931223424110.1016/j.electacta.2019.04.164
    [Google Scholar]
  12. LvL.P. DuP. LiuP. LiX. WangY. Integrating mixed metallic selenides/nitrogen-doped carbon heterostructures in one-dimensional carbon fibers for efficient oxygen reduction electrocatalysis.ACS Sustain. Chem.& Eng.20208228391840110.1021/acssuschemeng.0c02572
    [Google Scholar]
  13. AnantharajS. EdeS.R. SakthikumarK. KarthickK. MishraS. KunduS. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review.ACS Catal.20166128069809710.1021/acscatal.6b02479
    [Google Scholar]
  14. BhatK.S. ShenoyS. NagarajaH.S. SridharanK. Porous cobalt chalcogenide nanostructures as high performance pseudo-capacitor electrodes.Electrochim. Acta201724818819610.1016/j.electacta.2017.07.137
    [Google Scholar]
  15. HuC. LiuJ. WangJ. SheW. XiaoJ. XiJ. BaiZ. WangS. Coordination-assisted polymerization of mesoporous cobalt sulfide/heteroatom (N, S)-doped double-layered carbon tubes as an efficient bifunctional oxygen electrocatalyst.ACS Appl. Mater. Interfaces20181039331243313410.1021/acsami.8b0734330199229
    [Google Scholar]
  16. MasudJ. SwesiA.T. LiyanageW.P.R. NathM. Cobalt selenide nanostructures: An efficient bifunctional catalyst with high current density at low coverage.ACS Appl. Mater. Interfaces2016827172921730210.1021/acsami.6b0486227309595
    [Google Scholar]
  17. SarmaS.C. MishraV. VemuriV. PeterS.C. “Breaking the O═O Bond”: Deciphering the role of each element in highly durable CoPd2Se2 toward oxygen reduction reaction.ACS Appl. Energy Mater.20203123123910.1021/acsaem.9b01400
    [Google Scholar]
  18. XieW. LiZ. JiangS. LiJ. ShaoM. WeiM. Mass-loading independent electrocatalyst with high performance for oxygen reduction reaction and Zn-air battery based on Co-N-codoped carbon nanotube assembled microspheres.Chem. Eng. J.201937373474310.1016/j.cej.2019.04.066
    [Google Scholar]
  19. AmorimI. LiuL. Transition metal tellurides as emerging catalysts for electrochemical water splitting.Curr. Opin. Electrochem.20223410103110.1016/j.coelec.2022.101031
    [Google Scholar]
  20. AmorimI. XuJ. ZhangN. YuZ. AraújoA. BentoF. LiuL. Dual-phase CoP−CoTe2 nanowires as an efficient bifunctional electrocatalyst for bipolar membrane-assisted acid-alkaline water splitting.Chem. Eng. J.202142013045410.1016/j.cej.2021.130454
    [Google Scholar]
  21. ChengY. WangH. SongH. ZhangK. WaterhouseG.I.N. ChangJ. TangZ. LuS. Design strategies towards transition metal single atom catalysts for the oxygen reduction reaction – A review.Nano Research Energy20232e912008210.26599/NRE.2023.9120082
    [Google Scholar]
  22. KhotsengL. Oxygen reduction reaction.Electrocatalysts for fuel cells and hydrogen evolution-theory to design.IntechOpen2018Vol. 2255010.5772/intechopen.79098
    [Google Scholar]
  23. GoswamiC. HazarikaK.K. BharaliP. Transition metal oxide nanocatalysts for oxygen reduction reaction.Mater. Sci. Energy Technol.20181211712810.1016/j.mset.2018.06.005
    [Google Scholar]
  24. GoswamiC. ChutiaB. BharaliP. Metal and metal oxide-based nanomaterials for electrochemical applications.Emerging nanostructured materials for energy and environmental science.ChamSpringer2018Vol. 2349953010.1007/978‑3‑030‑04474‑9_12
    [Google Scholar]
  25. DamjanovicA. GenshawM.A. BockrisJ.O.M. The mechanism of oxygen reduction at platinum in alkaline solutions with special reference to H2O2.J. Electrochem. Soc.1967114111107111210.1149/1.2426425
    [Google Scholar]
  26. RamaswamyN. MukerjeeS. Fundamental mechanistic understanding of electrocatalysis of oxygen reduction on Pt and non-Pt surfaces: Acid versus alkaline media.Adv. Phys. Chem.2012201211710.1155/2012/491604
    [Google Scholar]
  27. WroblowaH.S. RazumneyG. Electro-reduction of oxygen: A new mechanistic criterion.J. Electroanal. Chem.197669219520110.1016/S0022‑0728(76)80250‑1
    [Google Scholar]
  28. Gómez-MarínA.M. RizoR. FeliuJ.M. Some reflections on the understanding of the oxygen reduction reaction at Pt(111).Beilstein J. Nanotechnol.20134195696710.3762/bjnano.4.10824455454
    [Google Scholar]
  29. GeX. SumbojaA. WuuD. AnT. LiB. GohF.W.T. HorT.S.A. ZongY. LiuZ. Oxygen reduction in alkaline media: From mechanisms to recent advances of catalysts.ACS Catal.2015584643466710.1021/acscatal.5b00524
    [Google Scholar]
  30. HoladeY. SahinN. ServatK. NappornT. KokohK. Recent advances in carbon supported metal nanoparticles preparation for oxygen reduction reaction in low temperature fuel cells.Catalysts20155131034810.3390/catal5010310
    [Google Scholar]
  31. NørskovJ.K. RossmeislJ. LogadottirA. LindqvistL. KitchinJ.R. BligaardT. JónssonH. Origin of the overpotential for oxygen reduction at a fuel-cell cathode.J. Phys. Chem. B200410846178861789210.1021/jp047349j
    [Google Scholar]
  32. PatowaryS. ChetryR. GoswamiC. ChutiaB. BharaliP. Oxygen reduction reaction catalysed by supported nanoparticles: Advancements and challenges.ChemCatChem2022147e20210147210.1002/cctc.202101472
    [Google Scholar]
  33. WakisakaM. SuzukiH. MitsuiS. UchidaH. WatanabeM. Increased oxygen coverage at Pt–Fe alloy cathode for the enhanced oxygen reduction reaction studied by EC–XPS.J. Phys. Chem. C200811272750275510.1021/jp0766499
    [Google Scholar]
  34. KianiM. TianX.Q. ZhangW. Non-precious metal electrocatalysts design for oxygen reduction reaction in polymer electrolyte membrane fuel cells: Recent advances, challenges and future perspectives.Coord. Chem. Rev.202144121395410.1016/j.ccr.2021.213954
    [Google Scholar]
  35. DaemsN. ShengX. VankelecomI.F.J. PescarmonaP.P. Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction.J. Mater. Chem. A Mater. Energy Sustain.20142124085411010.1039/C3TA14043A
    [Google Scholar]
  36. GoswamiC. HazarikaK.K. YamadaY. BharaliP. Nonprecious hybrid metal oxide for bifunctional oxygen electrodes: Endorsing the role of interfaces in electrocatalytic enhancement.Energy Fuels20213516133701338110.1021/acs.energyfuels.1c01388
    [Google Scholar]
  37. WangX. LiZ. QuY. YuanT. WangW. WuY. LiY. Review of metal catalysts for oxygen reduction reaction: From nanoscale engineering to atomic design.Chem2019561486151110.1016/j.chempr.2019.03.002
    [Google Scholar]
  38. ChutiaB. BharaliP. Oxygen deficient interfacial effect in CeO2-modified Fe2O3/C for oxygen reduction reaction in alkaline electrolyte.Catal. Commun.202216410643210.1016/j.catcom.2022.106432
    [Google Scholar]
  39. RuparJ. TekićD. Janošević LežaićA. UpadhyayK.K. ORR catalysts derived from biopolymers.Catalysts20221318010.3390/catal13010080
    [Google Scholar]
  40. LeeK. Alonso-VanteN. ZhangJ. Transition metal chalcogenides for oxygen reduction electrocatalysts in PEM fuel cells.Non-Noble Metal Fuel Cell Catalysts.Wiley-VCH201415718210.1002/9783527664900.ch4
    [Google Scholar]
  41. ChutiaB. HussainN. PuzariP. JampaiahD. BhargavaS.K. MatusE.V. IsmagilovI.Z. KerzhentsevM. BharaliP. Unraveling the role of CeO2 in stabilization of multivalent Mn species on α-MnO2/Mn3O4/CeO2/C surface for enhanced electrocatalysis.Energy Fuels20213513107561076910.1021/acs.energyfuels.1c00785
    [Google Scholar]
  42. GoswamiC. YamadaY. MatusE.V. IsmagilovI.Z. KerzhentsevM. BharaliP. Elucidating the role of oxide−oxide/carbon interfaces of CuOx–CeO2/C in boosting electrocatalytic performance.Langmuir20203649151411515210.1021/acs.langmuir.0c0275433256414
    [Google Scholar]
  43. BorahB.J. YamadaY. BharaliP. Unravelling the role of metallic Cu in Cu-CuFe2O4/C nanohybrid for enhanced oxygen reduction electrocatalysis.ACS Appl. Energy Mater.2020343488349610.1021/acsaem.0c00006
    [Google Scholar]
  44. YuJ. HuangT. JiangZ. SunM. TangC. A Hybrid material combined copper oxide with graphene for an oxygen reduction reaction in an alkaline medium.Molecules201924344110.3390/molecules2403044130691131
    [Google Scholar]
  45. WangH. LiangY. LiY. DaiH. Co(1-x)S-graphene hybrid: A high-performance metal chalcogenide electrocatalyst for oxygen reduction.Angew. Chem. Int. Ed.20115046109691097210.1002/anie.20110400421954126
    [Google Scholar]
  46. LimD. MinK. HwangM. HamH.C. KimG.J. BaeckS.H. Hollow hierarchical zinc cobalt sulfides derived from bimetallic-organic-framework as a non-precious electrocatalyst for oxygen reduction reaction.Molecular Catalysis202150911161410.1016/j.mcat.2021.111614
    [Google Scholar]
  47. GanesanP. PrabuM. SanetuntikulJ. ShanmugamS. Cobalt sulfide nanoparticles grown on nitrogen and sulfur codoped graphene oxide: An efficient electrocatalyst for oxygen reduction and evolution reactions.ACS Catal.2015563625363710.1021/acscatal.5b00154
    [Google Scholar]
  48. YuanY. WangJ. AdimiS. ShenH. ThomasT. MaR. AttfieldJ.P. YangM. Zirconium nitride catalysts surpass platinum for oxygen reduction.Nat. Mater.202019328228610.1038/s41563‑019‑0535‑931740792
    [Google Scholar]
  49. YangY. ZengR. XiongY. DiSalvoF.J. AbruñaH.D. Cobalt-based nitride-core oxide-shell oxygen reduction electrocatalysts.J. Am. Chem. Soc.201914149192411924510.1021/jacs.9b1080931743028
    [Google Scholar]
  50. YounD.H. BaeG. HanS. KimJ.Y. JangJ.W. ParkH. ChoiS.H. LeeJ.S. A highly efficient transition metal nitride-based electrocatalyst for oxygen reduction reaction: TiN on a CNT–graphene hybrid support.J. Mater. Chem. A Mater. Energy Sustain.20131278007801510.1039/c3ta11135k
    [Google Scholar]
  51. GautamJ. ThanhT.D. MaitiK. KimN.H. LeeJ.H. Highly efficient electrocatalyst of N-doped graphene-encapsulated cobalt-iron carbides towards oxygen reduction reaction.Carbon201813735836710.1016/j.carbon.2018.05.042
    [Google Scholar]
  52. ChenM. LiuJ. ZhouW. LinJ. ShenZ. Nitrogen-doped graphene- supported transition-metals carbide electrocatalysts for oxygen reduction reaction.Sci. Rep.2015511038910.1038/srep1038925997590
    [Google Scholar]
  53. LiX. MaX. DuX. ZhengJ. HaoX. AbudulaA. GuanG. Silver-doped molybdenum carbide catalyst with high activity for electrochemical water splitting.Phys. Chem. Chem. Phys.20161848327803278510.1039/C6CP06307A27878173
    [Google Scholar]
  54. ZhangH. HwangS. WangM. FengZ. KarakalosS. LuoL. QiaoZ. XieX. WangC. SuD. ShaoY. WuG. Single atomic iron catalysts for oxygen reduction in acidic media : Particle size control and thermal activation.J. Am. Chem. Soc.201713940141431414910.1021/jacs.7b0651428901758
    [Google Scholar]
  55. HanJ. MengX. LuL. BianJ. LiZ. SunC. single-atom Fe-Nx-C as an efficient electrocatalyst for zinc–air batteries.Adv. Funct. Mater.20192941180887210.1002/adfm.201808872
    [Google Scholar]
  56. WangL. XuZ. PengT. LiuM. ZhangL. ZhangJ. bifunctional single-atom cobalt electrocatalysts with dense active sites prepared via a silica xerogel strategy for rechargeable zinc–air batteries.Nanomaterials202212338110.3390/nano1203038135159726
    [Google Scholar]
  57. ZhangH. WangX. YangZ. YanS. ZhangC. LiuS. Space-confined synthesis of lasagna-like N-doped graphene-wrapped copper-cobalt sulfides as efficient and durable electrocatalysts for oxygen reduction and oxygen evolution reactions.ACS Sustain. Chem.& Eng.2020821004101410.1021/acssuschemeng.9b05710
    [Google Scholar]
  58. GuoD. HanS. MaR. ZhouY. LiuQ. WangJ. ZhuY. In situ formation of iron-cobalt sulfides embedded in N,S-doped mesoporous carbon as efficient electrocatalysts for oxygen reduction reaction.Microporous Mesoporous Mater.20182701910.1016/j.micromeso.2018.04.044
    [Google Scholar]
  59. SongB.Y. YaoS. Optimization of sulfurization process of cobalt sulfide and nitrogen doped carbon material for boosting the oxygen reduction reaction catalytic activity in alkaline medium.Front Chem.2020831410.3389/fchem.2020.0031432411665
    [Google Scholar]
  60. EisaT. AbdelkareemM.A. JadhavD.A. MohamedH.O. SayedE.T. OlabiA.G. CastañoP. ChaeK.J. Critical review on the synthesis, characterization, and application of highly efficient metal chalcogenide catalysts for fuel cells.Pror. Energy Combust. Sci.20239410104410.1016/j.pecs.2022.101044
    [Google Scholar]
  61. NathM. SinghH. SaxenaA. Progress of transition metal chalcogenides as efficient electrocatalysts for energy conversion.Curr. Opin. Electrochem.20223410099310.1016/j.coelec.2022.100993
    [Google Scholar]
  62. GaoM.R. JiangJ. YuS.H. Solution-based synthesis and design of late transition metal chalcogenide materials for oxygen reduction reaction (ORR).Small201281132710.1002/smll.20110157321972127
    [Google Scholar]
  63. ZhongH. GongX. ZhangS. TangP. LiD. FengY. Design and synthesis of cobalt-based electrocatalysts for oxygen reduction reaction.Chem. Rec.2018187-884084810.1002/tcr.20170008129286199
    [Google Scholar]
  64. BehretH. BinderH. SandstedeG. Electrocatalytic oxygen reduction with thiospinels and other sulphides of transition metals.Electrochim. Acta197520211111710.1016/0013‑4686(75)90047‑X
    [Google Scholar]
  65. YaoS. HuangT. FangH. YuJ. MeganathanM.D. CuiZ. YuanX. Cobalt sulfides as efficient catalyst towards oxygen reduction reactions.Chin. Chem. Lett.202031253053410.1016/j.cclet.2019.04.069
    [Google Scholar]
  66. HigginsD.C. HassanF.M. SeoM.H. ChoiJ.Y. HoqueM.A. LeeD.U. ChenZ. Shape-controlled octahedral cobalt disulfide nanoparticles supported on nitrogen and sulfur-doped graphene/carbon nanotube composites for oxygen reduction in acidic electrolyte.J. Mater. Chem. A Mater. Energy Sustain.20153126340635010.1039/C4TA06667G
    [Google Scholar]
  67. LiW. WuL. WuX. ShiC. LiY. ZhangL. MiH. ZhangQ. HeC. RenX. Regulation and mechanism study of the CoS2/Cu2S-NF heterojunction as highly-efficient bifunctional electrocatalyst for oxygen reactions.Appl. Catal. B202230312084910.1016/j.apcatb.2021.120849
    [Google Scholar]
  68. HanC. LiQ. WangD. LuQ. XingZ. YangX. Cobalt sulfide nanowires core encapsulated by a N, S, co-doped graphitic carbon shell for efficient oxygen reduction reaction.Small20181417170364210.1002/smll.201703642
    [Google Scholar]
  69. QiuX. YuY. PengZ. AsifM. WangZ. JiangL. WangW. XuZ. WangH. LiuH. Cobalt sulfides nanoparticles encapsulated in N, S co-doped carbon substrate for highly efficient oxygen reduction.J. Alloys Compd.202081515245710.1016/j.jallcom.2019.152457
    [Google Scholar]
  70. ZhangY. LiP. YinX. YanY. ZhanK. YangJ. ZhaoB. Cobalt sulfide supported on nitrogen and sulfur dual-doped reduced graphene oxide for highly active oxygen reduction reaction.RSC Advances2017779502465025310.1039/C7RA09231H
    [Google Scholar]
  71. LuoZ. TanC. ZhangX. ChenJ. CaoX. LiB. ZongY. HuangL. HuangX. WangL. HuangW. ZhangH. Preparation of cobalt sulfide nanoparticle-decorated nitrogen and sulfur co-doped reduced graphene oxide aerogel used as a highly efficient electrocatalyst for oxygen reduction reaction.Small201612435920592610.1002/smll.20160261527592615
    [Google Scholar]
  72. TranC-C. HanY. Garcia-PerezM. KaliaguineS. XiaoF. WangS. XiaoJ. Synergistic effect of Mo–W carbides on selective hydrodeoxygenation of guaiacol to oxygen-free aromatic hydrocarbons.Catal. Sci. Technol.2019961387139710.1039/C8CY02184H
    [Google Scholar]
  73. YangS. LiB. LanM. LiuL. SunY. XiaoF. XiaoJ. Heterostructuring cobalt sulfide with highly oxophilic 1T-tungsten sulfide for durable and efficient oxygen electrocatalysis.J. Mater. Chem. A Mater. Energy Sustain.20221037198111982010.1039/D2TA02157A
    [Google Scholar]
  74. ZhaoW.W. BothraP. LuZ. LiY. MeiL.P. LiuK. ZhaoZ. ChenG. BackS. SiahrostamiS. KulkarniA. NørskovJ.K. BajdichM. CuiY. Improved oxygen reduction reaction activity of nanostructured CoS2 through electrochemical tuning.ACS Appl. Energy Mater.20192128605861410.1021/acsaem.9b01527
    [Google Scholar]
  75. SongJ. ChenY. HuangH. WangJ. HuangS.C. LiaoY.F. FetohiA.E. HuF. ChenH. LiL. HanX. El-KhatibK.M. PengS. Heterointerface engineering of hierarchically assembling layered double hydroxides on cobalt selenide as efficient trifunctional electrocatalysts for water splitting and zinc-air battery.Adv. Sci.202296210452210.1002/advs.20210452235018738
    [Google Scholar]
  76. SobhaniA. Salavati-NiasariM. Cobalt selenide nanostructures: Hydrothermal synthesis, considering the magnetic property and effect of the different synthesis conditions.J. Mol. Liq.20162191089109410.1016/j.molliq.2016.03.062
    [Google Scholar]
  77. FengY. HeT. Alonso-VanteN. In situ free-surfactant synthesis and ORR- electrochemistry of carbon-supported Co3S4 and CoSe2 nanoparticles.Chem. Mater.2008201262810.1021/cm7024763
    [Google Scholar]
  78. FengY. HeT. Alonso-VanteN. Oxygen reduction reaction on carbon-supported CoSe2 nanoparticles in an acidic medium.Electrochim. Acta200954225252525610.1016/j.electacta.2009.03.052
    [Google Scholar]
  79. FengY.J. HeT. Alonso-VanteN. Carbon-supported CoSe2 nanoparticles for oxygen reduction reaction in acid medium.Fuel Cells2010101778310.1002/fuce.200900038
    [Google Scholar]
  80. HeM. LongJ. LiM. ZhengR. HuA. DuD. YanY. RanZ. RenL. LiR. ZhaoC. WenX. XuH. ShuC. Synergy of cobalt vacancies and iron doping in cobalt selenide to promote oxygen electrode reactions in lithium-oxygen batteries.J. Colloid Interface Sci.202261217118010.1016/j.jcis.2021.12.14834992017
    [Google Scholar]
  81. MasudJ. NathM. Co7Se8 nanostructures as catalysts for oxygen reduction reaction with high methanol tolerance.ACS Energy Lett.201611273110.1021/acsenergylett.6b00006
    [Google Scholar]
  82. WangX. LiF. LiW. GaoW. TangY. LiR. Hollow bimetallic cobalt-based selenide polyhedrons derived from metal–organic framework: An efficient bifunctional electrocatalyst for overall water splitting.J. Mater. Chem. A Mater. Energy Sustain.2017534179821798910.1039/C7TA03167J
    [Google Scholar]
  83. ChaeS.H. MuthurasuA. KimT. KimJ.S. KhilM.S. LeeM. KimH. LeeJ.Y. KimH.Y. Templated fabrication of perfectly aligned metal-organic framework-supported iron-doped copper-cobalt selenide nanostructure on hollow carbon nanofibers for an efficient trifunctional electrode material.Appl. Catal. B202129312020910.1016/j.apcatb.2021.120209
    [Google Scholar]
  84. DingJ. JiS. WangH. LinkovV. WangR. Mesoporous cobalt selenide/nitrogen-doped carbon hybrid as bifunctional electrocatalyst for hydrogen evolution and oxygen reduction reactions.J. Power Sources20194231810.1016/j.jpowsour.2019.03.051
    [Google Scholar]
  85. SanchoH. ZhangY. LiuL. BarevadiaV.G. WuS. ZhangY. HuangP.W. ZhangY. WuT.H. YouW. NiCo2Se4 nanowires as a high-performance bifunctional oxygen electrocatalyst.J. Colloid Interface Sci.2020167056503
    [Google Scholar]
  86. DingH. XuG. ZhangL. WeiB. HeiJ. ChenL. A highly effective bifunctional catalyst of cobalt selenide nanoparticles embedded nitrogen-doped bamboo-like carbon nanotubes toward hydrogen and oxygen evolution reactions based on metal-organic framework.J. Colloid Interface Sci.202056629630310.1016/j.jcis.2020.01.09632007740
    [Google Scholar]
  87. ShahS.S.A. KhanN.A. ImranM. RashidM. TufailM.K. RehmanA. BalkouraniG. SohailM. NajamT. TsiakarasP. Recent advances in transition metal tellurides (TMTs) and phosphides (TMPs) for hydrogen evolution electrocatalysis.Membranes202313111310.3390/membranes1301011336676920
    [Google Scholar]
  88. GaoF. HeJ. WangH. LinJ. ChenR. YiK. HuangF. LinZ. WangM. Te-mediated electro-driven oxygen evolution reaction.Nano Research Energy202213e912002910.26599/NRE.2022.9120029
    [Google Scholar]
  89. WuC.H. WangK.C. ChangS.T. ChangY.C. ChenH.Y. YamanakaI. ChiangT.C. HuangH.C. WangC.H. High performance of metal-organic framework-derived catalyst supported by tellurium nanowire for oxygen reduction reaction.Renew. Energy202015832433110.1016/j.renene.2020.05.114
    [Google Scholar]
  90. MajhiK.C. KarfaP. DeS. MadhuriR. Hydrothermal synthesis of zinc cobalt telluride nanorod towards oxygen evolution reaction (OER).IOP Conference Series: Mater. Sci. Eng.201957701207610.1088/1757‑899X/577/1/012076
    [Google Scholar]
  91. RashkovaV. KitovaS. VitanovT. Electrocatalytic behavior of thin Co–Te–O films in oxygen evolution and reduction reactions.Electrochim. Acta200752113794380310.1016/j.electacta.2006.10.054
    [Google Scholar]
/content/journals/cis/10.2174/012210299X313143240524074022
Loading
/content/journals/cis/10.2174/012210299X313143240524074022
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test