Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

One of the most popular sectors in the tech and healthcare industries right now is artificial intelligence. In the search and development of new drugs, artificial intelligence is essential. Drug design using computer-assisted design (CADD) has supplanted the traditional approach. Artificial intelligence is assisting businesses in the development of new drugs in a faster, more affordable, and more efficient manner, saving money and manpower in the process of creating new drug molecules to treat any disease. Quantitative structure-activity relationship (QSAR) analysis, activity scoring, testing, biomarker development, and mode of action identification are all aided by artificial intelligence. It is revolutionizing these sectors by swiftly identifying potential drug candidates, efficiently conducting clinical trials, and customizing patient care. AI optimizes drug manufacturing processes, augments safety monitoring, and streamlines market analysis. In clinical trials, AI streamlines patient recruitment and ensures more precise trial designs, leading to faster and more efficient research. AI empowers personalized medicine by tailoring treatment plans and drug dosages to individual patient characteristics. AI also optimizes pharmaceutical manufacturing processes, amplifies safety monitoring by analyzing real-time data for adverse events, and supports market analysis and sales strategies. AI in the pharmaceutical industry is a multifaceted tool. Artificial Intelligence (AI) has the potential to streamline complex pharmaceutical regulatory matters. Regulatory processes like audits and dossier completion can be automated with AI tools.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X313252240521111358
2024-07-10
2025-04-18
The full text of this item is not currently available.

References

  1. SahuA. MishraJ. KushwahaN. Artificial intelligence (AI) in drugs and pharmaceuticals.Comb. Chem. High Throughput Screen.202225111818183710.2174/138620732566621120715394334875986
    [Google Scholar]
  2. SchneiderG. FechnerU. Computer-based de novo design of drug-like molecules.Nat. Rev. Drug Discov.20054864966310.1038/nrd179916056391
    [Google Scholar]
  3. ChanH.C.S. ShanH. DahounT. VogelH. YuanS. Advancing drug discovery via artificial intelligence.Trends Pharmacol. Sci.201940859260410.1016/j.tips.2019.06.00431320117
    [Google Scholar]
  4. ZhongF. XingJ. LiX. LiuX. FuZ. XiongZ. LuD. WuX. ZhaoJ. TanX. LiF. LuoX. LiZ. ChenK. ZhengM. JiangH. Artificial intelligence in drug design.Sci. China Life Sci.201861101191120410.1007/s11427‑018‑9342‑230054833
    [Google Scholar]
  5. LiebmanM. The role of artificial intelligence in drug discovery and development.Chem. Int.2022441161910.1515/ci‑2022‑0105
    [Google Scholar]
  6. ReynosoR. A complete history of artificial intelligence.Retrieved.20216222021
    [Google Scholar]
  7. YadavV. ReangJ. Artificial intelligence and machine learning in drug discovery and development.Intel. Med.202323134140
    [Google Scholar]
  8. ShiammalaP.N. DuraimutharasanN.K.B. VaseeharanB. AlothaimA.S. Al-MalkiE.S. SnekaaB. SafiS.Z. SinghS.K. VelmuruganD. SelvarajC. Exploring the artificial intelligence and machine learning models in the context of drug design difficulties and future potential for the pharmaceutical sectors.Methods2023219829410.1016/j.ymeth.2023.09.01037778659
    [Google Scholar]
  9. BenderA. Cortés-CirianoI. Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 1: Ways to make an impact, and why we are not there yet.Drug Discov. Today202126251152410.1016/j.drudis.2020.12.00933346134
    [Google Scholar]
  10. MakK.K. PichikaM.R. Artificial intelligence in drug development: present status and future prospects.Drug Discov. Today201924377378010.1016/j.drudis.2018.11.01430472429
    [Google Scholar]
  11. CerchiaC. LavecchiaA. New avenues in artificial-intelligence-assisted drug discovery.Drug Discov. Today202328410351610.1016/j.drudis.2023.10351636736583
    [Google Scholar]
  12. TrenfieldS.J. AwadA. McCoubreyL.E. ElbadawiM. GoyanesA. GaisfordS. BasitA.W. Advancing pharmacy and healthcare with virtual digital technologies.Adv. Drug Deliv. Rev.202218211409810.1016/j.addr.2021.11409834998901
    [Google Scholar]
  13. DaraS. DhamercherlaS. JadavS.S. BabuC.H.M. AhsanM.J. Machine learning in drug discovery: A review.Artif. Intell. Rev.20225531947199910.1007/s10462‑021‑10058‑434393317
    [Google Scholar]
  14. VoraL.K. GholapA.D. JethaK. ThakurR.R.S. SolankiH.K. ChavdaV.P. Artificial intelligence in pharmaceutical technology and drug delivery design.Pharmaceutics2023157191610.3390/pharmaceutics1507191637514102
    [Google Scholar]
  15. GuptaR. SrivastavaD. SahuM. TiwariS. AmbastaR.K. KumarP. Artificial intelligence to deep learning: machine intelligence approach for drug discovery.Mol. Divers.20212531315136010.1007/s11030‑021‑10217‑333844136
    [Google Scholar]
  16. NayarisseriA. KhandelwalR. TanwarP. MadhaviM. SharmaD. ThakurG. Speck-PlancheA. SinghS.K. Artificial intelligence, big data and machine learning approaches in precision medicine & drug discovery.Curr. Drug Targets202122663165510.2174/18735592MTEzsMDMnz33397265
    [Google Scholar]
  17. SelvarajC. ChandraI. SinghS.K. Artificial intelligence and machine learning approaches for drug design: Challenges and opportunities for the pharmaceutical industries.Mol. Divers.2021•••12134686947
    [Google Scholar]
  18. LuM. YinJ. ZhuQ. LinG. MouM. LiuF. PanZ. YouN. LianX. LiF. ZhangH. ZhengL. ZhangW. ZhangH. ShenZ. GuZ. LiH. ZhuF. Artificial intelligence in pharmaceutical sciences.Engineering202327376910.1016/j.eng.2023.01.014
    [Google Scholar]
  19. PaulS.M. MytelkaD.S. DunwiddieC.T. PersingerC.C. MunosB.H. LindborgS.R. SchachtA.L. How to improve R and D productivity: the pharmaceutical industry’s grand challenge.Nat. Rev. Drug Discov.20109320321410.1038/nrd307820168317
    [Google Scholar]
  20. YangF. ZhangQ. JiX. ZhangY. LiW. PengS. XueF. Machine learning applications in drug repurposing.Interdiscip. Sci.2022141152110.1007/s12539‑021‑00487‑835066811
    [Google Scholar]
  21. LusciA. PollastriG. BaldiP. Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules.J. Chem. Inf. Model.20135371563157510.1021/ci400187y23795551
    [Google Scholar]
  22. DuvenaudD.K. MaclaurinD. IparraguirreJ. BombarellR. HirzelT. Aspuru-GuzikA. AdamsR.P. Convolutional networks on graphs for learning molecular fingerprints.Adv. Neural Inf. Process. Syst.2015•••28
    [Google Scholar]
  23. Gómez-BombarelliR. WeiJ.N. DuvenaudD. Hernández-LobatoJ.M. Sánchez-LengelingB. SheberlaD. Aguilera-IparraguirreJ. HirzelT.D. AdamsR.P. Aspuru-GuzikA. Automatic chemical design using a data-driven continuous representation of molecules.ACS Cent. Sci.20184226827610.1021/acscentsci.7b0057229532027
    [Google Scholar]
  24. JinW. YangK. BarzilayR. JaakkolaT Learning multimodal graph-to-graph translation for molecular optimization arXiv:1812.01070, 2018.10.48550/arXiv.1812.01070
    [Google Scholar]
  25. ShiC. XuM. ZhuZ. ZhangW. ZhangM. TangJ Graphaf: a flow-based autoregressive model for molecular graph generation. arXiv:2001.09382, 2020
    [Google Scholar]
  26. ZangC. WangF. MoFlow: An Invertible Flow Model for Generating Molecular Graphs.KDD '20: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.August 23–27, 2020, USA, pp. 1-10.202010.1145/3394486.3403104
    [Google Scholar]
  27. JinW BarzilayR JaakkolaT Multi-objective molecule generation using interpretable substructures. arXiv:2002.03244, 2020
    [Google Scholar]
  28. BungN. KrishnanS.R. BulusuG. RoyA. De novo design of new chemical entities for SARS-CoV-2 using artificial intelligence.Future Med. Chem.202113657558510.4155/fmc‑2020‑026233590764
    [Google Scholar]
  29. WengH. LiuZ. YanS. FanM. OuA. ChenD. HaoT. A framework for automated knowledge graph construction towards traditional Chinese medicine. Health Information Science: 6th International Conference. October 7-9, 2017,Moscow, Russia, pp. 170-181.
    [Google Scholar]
  30. RuanC MaJ WangY ZhangY YangY KrausS. Discovering regularities from traditional chinese medicine prescriptions via bipartite embedding model.IJCAI201920191710.24963/ijcai.2019/464
    [Google Scholar]
  31. WangY. JafariM. TangY. TangJ. Predicting Meridian in Chinese traditional medicine using machine learning approaches.PLOS Comput. Biol.20191511e100724910.1371/journal.pcbi.100724931765369
    [Google Scholar]
  32. SelvarajG. KaliamurthiS. PeslherbeG.H. WeiD.Q. Application of artificial intelligence in drug repurposing: A mini-review.Curr. Chinese Sci.20211333334510.2174/2210298101666210204162006
    [Google Scholar]
  33. PaulD. SanapG. ShenoyS. KalyaneD. KaliaK. TekadeR.K. Artificial intelligence in drug discovery and development.Drug Discov. Today2021261809310.1016/j.drudis.2020.10.01033099022
    [Google Scholar]
  34. RameshA.N. KambhampatiC. MonsonJ.R.T. DrewP.J. Artificial intelligence in medicine.Ann. R. Coll. Surg. Engl.200486533433810.1308/14787080429015333167
    [Google Scholar]
  35. MilesJ.C. WalkerA.J. The potential application of artificial intelligence in transport.IEE Proceed. Intel. Transp. Sys.2006153318319810.1049/ip‑its:20060014
    [Google Scholar]
  36. YangY. SiauKL. A qualitative research on marketing and sales in the artificial intelligence age.Thirteenth Annual Midwest Association for Information Systems Conference (MWAIS 2018).May 17-18, 2018, St. Louis, Missouri, pp. 1-6.
    [Google Scholar]
  37. WirtzB.W. WeyererJ.C. GeyerC. Artificial intelligence and the public sector applications and challenges.Int. J. Public Adm.201942759661510.1080/01900692.2018.1498103
    [Google Scholar]
  38. SmithR.G. FarquharA. The road ahead for knowledge management: an AI perspective.AI Mag.200021417
    [Google Scholar]
  39. LambertiM.J. WilkinsonM. DonzantiB.A. WohlhieterG.E. ParikhS. WilkinsR.G. GetzK. A study on the application and use of artificial intelligence to support drug development.Clin. Ther.20194181414142610.1016/j.clinthera.2019.05.01831248680
    [Google Scholar]
  40. BenekeF. MackenrodtMO. Artificial intelligence and collusion. IIC - Int. Rev. Intel. Prop. Comp. Law.20195010913410.1007/s40319‑018‑00773‑x
    [Google Scholar]
  41. SteelsL. BrooksR. The artificial life route to artificial intelligence: Building embodied, situated agents.Routledge201810.4324/9781351001885
    [Google Scholar]
  42. BieleckiA. Models of neurons and perceptrons: selected problems and challenges.Berlin/Heidelberg, GermanySpringer International Publishing201910.1007/978‑3‑319‑90140‑4
    [Google Scholar]
  43. KalyaneD. SanapG. PaulD. ShenoyS. AnupN. PolakaS. TambeV. TekadeRK. Artificial intelligence in the pharmaceutical sector: current scene and future prospect.The Future of Pharmaceutical Product Development and ResearchAcademic Press7310710.1016/B978‑0‑12‑814455‑8.00003‑7
    [Google Scholar]
  44. Da SilvaI.N. Hernane SpattiD. Andrade FlauzinoR. LiboniL.H. dos Reis AlvesS.F. da SilvaI.N. Hernane SpattiD. Andrade FlauzinoR. LiboniL.H. dos Reis AlvesS.F. Artificial neural network architectures and training processes.Springer International Publishing2017212810.1007/978‑3‑319‑43162‑8_2
    [Google Scholar]
  45. MedskerL. JainL.C. Recurrent neural networks: design and applications.CRC press199910.1201/9781420049176
    [Google Scholar]
  46. HänggiM. MoschytzG.S. Cellular neural networks: analysis, design and optimization.Springer200010.1007/978‑1‑4757‑3220‑7
    [Google Scholar]
  47. RouseM. IBM Watson Supercomputer.2017Available from: https://www.ibm.com/watson
  48. MishraV. Artificial intelligence: the beginning of a new era in pharmacy profession.Asian J. Pharm.20181202
    [Google Scholar]
  49. DuchW. SwaminathanK. MellerJ. Artificial intelligence approaches for rational drug design and discovery.Curr. Pharm. Des.200713141497150810.2174/13816120778076595417504169
    [Google Scholar]
  50. BlasiakA. KhongJ. KeeT. CURATE. AI: Optimizing personalized medicine with artificial intelligence.SLAS Technol.20202529510510.1177/247263031989031631771394
    [Google Scholar]
  51. GurungA.B. AliM.A. LeeJ. FarahM.A. Al-AnaziK.M. An updated review of computer-aided drug design and its application to COVID-19.BioMed Res. Int.2021202111810.1155/2021/885305634258282
    [Google Scholar]
  52. SongC.M. LimS.J. TongJ.C. Recent advances in computer-aided drug design.Brief. Bioinform.200910557959110.1093/bib/bbp02319433475
    [Google Scholar]
  53. DiMasiJ.A. GrabowskiH.G. HansenR.W. Innovation in the pharmaceutical industry: New estimates of R and D costs.J. Health Econ.201647203310.1016/j.jhealeco.2016.01.01226928437
    [Google Scholar]
  54. MacalinoS.J.Y. GosuV. HongS. ChoiS. Role of computer aided drug design in modern drug discovery.Arch. Pharm. Res.20153891686170110.1007/s12272‑015‑0640‑526208641
    [Google Scholar]
  55. RazaM.A. AzizS. NoreenM. SaeedA. AnjumI. AhmedM. RazaS.M. Artificial intelligence (AI) in pharmacy: An overview of innovations.Innov. Pharm.20221321310.24926/iip.v13i2.483936654703
    [Google Scholar]
  56. KhanO. ParvezM. KumariP. ParvezS. AhmadS. The future of pharmacy: How AI is revolutionizing the industry.Intel. Pharm.202311324010.1016/j.ipha.2023.04.008
    [Google Scholar]
  57. PatilP. NripN. HajareA. HajareD. PatilM. KantheR. GaikwadA. VidyapeethB. Artificial intelligence and tools in pharmaceuticals: An overview.Res. J. Pharm. Technol.20231642075208210.1080/13696998.2023.2265245
    [Google Scholar]
  58. JarabA.S. Abu HeshmehS.R. Al MeslamaniA.Z. Artificial intelligence (AI) in pharmacy: An overview of innovations.J. Med. Econ.20232611261126510.1080/13696998.2023.226524537772743
    [Google Scholar]
/content/journals/cis/10.2174/012210299X313252240521111358
Loading
/content/journals/cis/10.2174/012210299X313252240521111358
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): AI; AI tools; Computer-aided drug design; Drug development; Drug discovery; QSAR
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test