Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007
side by side viewer icon HTML

Abstract

Due to the biological importance of amino acids, the development of optical probes for these compounds has become a popular research topic in recent years. The amino acid fluorescence or colorimetric sensors are organized according to the reactions the amino acids go through and the related structural classification. Works on reaction-based chemosensors are categorized as either imine formation, Michael addition, thiazinane or thiazolidine formation, cleavage of a sulfonate ester, cleavage of a disulfide, metal complexes-displace coordination, or other mechanisms depending on the mechanisms between sensors and amino acids.

The majority of proteins are composed of amino acids (AA), which are tiny molecules with a variety of functional side chain groups. As a result, amino acids play a number of different roles in physiological processes. This family member's histidine (His) is necessary for weight gain, tissue growth, and repair. Another member of this family, lysine (Lys), is crucial for the Krebs-Henseleit cycle and polyamine production, and animals' metabolic activities and weight gain depend on appropriate lysine intake. Tryptophan (Trp) is an essential component of biological processes like protein synthesis, animal growth, and plant development because it regulates the transfer of metal elements in biological bases.

Numerous attempts have been made to create new procedures for amino acid analysis as a result of the rising focus on human health, disease diagnosis, and therapy. Currently, spectroscopic, chromatographic, or electrochemical analytical methods are most frequently employed to identify and characterize amino acids. However, each method has certain disadvantages, such as the need for equipment and trained personnel, operational simplicity, analytical cost, test speed, and detection.

Based on the important distinguishing characteristics of various amino acids to date, much research has been done on optical probes using indicator-displacement tests, metal complex coordination, particular interactions between probes and amino acids, and other techniques. We further subdivided the reaction-based probes into the following groups: production of imines, Michael addition, thiazinane or thiazolidine, cleavage of sulfonate ester, cleavage of disulfide, and others. Metal complexes-displace coordination. Due to some amino acids' similarity in structure and reactivity, it is still challenging to develop sensors that can selectively and sensitively identify amino acids from one another, such as the three biological thiols Cys, Hcy, and GSH.

Specific reactions between probes and amino acids and other techniques have been extensively researched based on the significant characteristic features of diverse amino acids to date. We further divided the reaction-based probes into the following categories: metal complexes-displace coordination, imine creation, Michael addition, thiazinane or thiazolidine formation, cleavage of a sulfonate ester, cleavage of a disulfide; and others.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X281974240329065206
2024-01-01
2025-01-19
Loading full text...

Full text loading...

/deliver/fulltext/cis/2/1/CIS-2-E2210299X281974.html?itemId=/content/journals/cis/10.2174/012210299X281974240329065206&mimeType=html&fmt=ahah

References

  1. ShahrokhianS. Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode.Anal. Chem.200173245972597810.1021/ac010541m11791568
    [Google Scholar]
  2. YoshidaH. NakanoY. KoisoK. NohtaH. IshidaJ. YamaguchiM. Liquid chromatographic determination of ornithine and lysine based on intramolecular excimer-forming fluorescence derivatization.Anal. Sci.200117110711210.2116/analsci.17.10711993644
    [Google Scholar]
  3. ChenG.N. WuX.P. DuanJ.P. ChenH.Q. A novel histidine assay using tetraphenylporphyrin manganese (III) chloride as a molecular recognition probe by resonance light scattering technique.Talanta199949319
    [Google Scholar]
  4. MackayG.M. ForrestC.M. StoyN. ChristofidesJ. EgertonM. StoneT.W. DarlingtonL.G. Tryptophan metabolism and oxidative stress in patients with chronic brain injury.Eur. J. Neurol.2006131304210.1111/j.1468‑1331.2006.01220.x16420391
    [Google Scholar]
  5. RefsumH. UelandP.M. NygardO. VollsetS.E. Determinants and vitamin responsiveness of intermediate hyperhomocysteinemia (> or = 40 micromol/liter). The Hordaland Homocysteine Study.Annu. Rev. Med.1989493110.1146/annurev.med.49.1.319509248
    [Google Scholar]
  6. LeeC.S. TengP.F. WongW.L. KwongH.L. ChanA.S.C. New C2-symmetric 2,2′-bipyridine crown macrocycles for enantioselective recognition of amino acid derivatives.Tetrahedron200561337924793010.1016/j.tet.2005.06.014
    [Google Scholar]
  7. WangJ. ChatrathiM.P. TianB. Micromachined separation chips with a precolumn reactor and end-column electrochemical detector.Anal. Chem.200072235774577810.1021/ac000637111128935
    [Google Scholar]
  8. VardanegaD. GiradetC. Micromachined separation chips with a precolumn reactor and end-column electrochemical detector.Chem. Phys. Lett.200946917210.1016/j.cplett.2008.12.083
    [Google Scholar]
  9. ZhouY. XuZ. YoonJ. Fluorescent and colorimetric chemosensors for detection of nucleotides, FAD and NADH: Highlighted research during 2004–2010.Chem. Soc. Rev.20114052222223510.1039/c0cs00169d21336366
    [Google Scholar]
  10. ChenX. ZhouY. PengX. YoonJ. Fluorescent and colorimetric probes for detection of thiols.Chem. Soc. Rev.20103962120213510.1039/b925092a20502801
    [Google Scholar]
  11. KleinG. ReymondJ-L. Recent progress in fluorescent and colorimetric chemosensors for detection of amino acids.Angew. Chem.2001113182
    [Google Scholar]
  12. DeanK.E.S. KleinG. RenaudetO. ReymondJ.L. A green fluorescent chemosensor for amino acids provides a versatile high-throughput screening (HTS) assay for proteases.Bioorg. Med. Chem. Lett.200313101653165610.1016/S0960‑894X(03)00280‑412729634
    [Google Scholar]
  13. HortaláM.A. FabbrizziL. MarcotteN. StomeoF. TagliettiA. Designing the selectivity of the fluorescent detection of amino acids: A chemosensing ensemble for histidine.J. Am. Chem. Soc.20031251202110.1021/ja027110l12515491
    [Google Scholar]
  14. BonizzoniM. FabbrizziL. PiovaniG. TagliettiA. Fluorescent detection of glutamate with a dicopper(II) polyamine cage.Tetrahedron20046049111591116210.1016/j.tet.2004.08.102
    [Google Scholar]
  15. AndersenF.J.F. LynchV.M. AnslynE.V. “Naked-eye” detection of histidine by regulation of Cu(II) coordination modes.Chemistry200511185319532610.1002/chem.20050001616003820
    [Google Scholar]
  16. AndersenF.J.F. LynchV.M. AnslynE.V. Colorimetric enantiodiscrimination of alpha-amino acids in protic media.J. Am. Chem. Soc.2005127227986798710.1021/ja052029e15926802
    [Google Scholar]
  17. AndersenF.J.F. KitamuraM. AnslynE.V. Pattern-based discrimination of enantiomeric and structurally similar amino acids: An optical mimic of the mammalian taste response.J. Am. Chem. Soc.2006128175652565310.1021/ja061313i16637629
    [Google Scholar]
  18. LeungD. AndersenF.J.F. LynchV.M. AnslynE.V. Using enantioselective indicator displacement assays to determine the enantiomeric excess of alpha-amino acids.J. Am. Chem. Soc.200813037123181232710.1021/ja803806c18714996
    [Google Scholar]
  19. PagliariS. CorradiniR. GalavernaG. SforzaS. DossenaA. MarchelliR. Enantioselective sensing of amino acids by copper(II) complexes of phenylalanine-based fluorescent β-cyclodextrins.Tetrahedron Lett.200041193691369510.1016/S0040‑4039(00)00444‑5
    [Google Scholar]
  20. CorradiniR. PaganuzziC. MarchelliR. PagliariS. SforzaS. DossenaA. GalavernaG. DuchateauA. Design and synthesis of fluorescent? -cyclodextrins for the enantioselective sensing of? -amino acids.Chirality200315S1S30S3910.1002/chir.1027212884372
    [Google Scholar]
  21. PagliariS. CorradiniR. GalavernaG. SforzaS. DossenaA. MontaltiM. ProdiL. ZaccheroniN. MarchelliR. Enantioselective fluorescence sensing of amino acids by modified cyclodextrins: Role of the cavity and sensing mechanism.Chemistry200410112749275810.1002/chem.20030544815195306
    [Google Scholar]
  22. HaddouA.H. WiskurS.L. LynchV.M. AnslynE.V. Achieving large color changes in response to the presence of amino acids: A molecular sensing ensemble with selectivity for aspartate.J. Am. Chem. Soc.200112345112961129710.1021/ja011905v11697975
    [Google Scholar]
  23. KwongH.L. WongW.L. LeeC.S. YeungC.T. TengP.F. Zinc(II) complex of terpyridine-crown macrocycle: A new motif in fluorescence sensing of zwitterionic amino acids.Inorg. Chem. Commun.200912981581810.1016/j.inoche.2009.06.013
    [Google Scholar]
  24. FabbrizziL. LicchelliM. PerottiA. PoggiA. RabaioliG. SacchiD. TagliettiA. Fluorescent molecular sensing of amino acids bearing an aromatic residue.J. Chem. Soc., Perkin Trans. 220012112108211310.1039/b105480p
    [Google Scholar]
  25. ChintaJ.P. AcharyaA. KumarA. RaoC.P. Spectroscopy and microscopy studies of the recognition of amino acids and aggregation of proteins by Zn(II) complex of lower rim naphthylidene conjugate of calix[4]arene.J. Phys. Chem. B200911335120751208310.1021/jp903099b19678658
    [Google Scholar]
  26. JosephR. ChintaJ.P. RaoC.P. Lower rim 1,3-diderivative of calix[4]arene-appended salicylidene imine (H(2)L): Experimental and computational studies of the selective recognition of H(2)L toward Zn(2+) and sensing phosphate and amino acid by [ZnL].J. Org. Chem.201075103387339510.1021/jo100424720392050
    [Google Scholar]
  27. YangR. WangK. LongL. XiaoD. YangX. TanW. A selective optode membrane for histidine based on fluorescence enhancement of meso-meso-linked porphyrin dimer.Anal. Chem.20027451088109610.1021/ac010386b11924968
    [Google Scholar]
  28. LiS.H. YuC.W. XuJ.G. A cyclometalated palladium–azo complex as a differential chromogenic probe for amino acids in aqueous solution.Chem. Commun.2005445045210.1039/B414131H15654366
    [Google Scholar]
  29. BuryakA. SeverinK. A chemosensor array for the colorimetric identification of 20 natural amino acids.J. Am. Chem. Soc.2005127113700370110.1021/ja042363v15771496
    [Google Scholar]
  30. FeusterE.K. GlassT.E. Detection of amines and unprotected amino acids in aqueous conditions by formation of highly fluorescent iminium ions.J. Am. Chem. Soc.200312552161741617510.1021/ja036434m14692743
    [Google Scholar]
  31. SecorK. PlanteJ. AvettaC. GlassT. Molecular tubes for lipid sensing: Tube conformations control analyte selectivity and fluorescent response.J. Mater. Chem.200515407310.1039/b503269e
    [Google Scholar]
  32. ZhouY. WonJ. LeeJ.Y. YoonJ. Studies leading to the development of a highly selective colorimetric and fluorescent chemosensor for lysine.Chem. Commun.20114771997199910.1039/c0cc04942e21229147
    [Google Scholar]
  33. HuoF.J. SunY.Q. SuJ. YangY.T. YinC.X. ChaoJ.B. Chromene “lock”, thiol “key”, and mercury(II) ion “hand”: A single molecular machine recognition system.Org. Lett.201012214756475910.1021/ol101771j20919731
    [Google Scholar]
  34. KwonH. LeeK. KimH.J. Coumarin–malonitrile conjugate as a fluorescence turn-on probe for biothiols and its cellular expression.Chem. Commun.20114761773177510.1039/C0CC04092D21127785
    [Google Scholar]
  35. ChenX. KoS.K. KimM.J. ShinI. YoonJ. A thiol-specific fluorescent probe and its application for bioimaging.Chem. Commun.201046162751275310.1039/b925453f20369171
    [Google Scholar]
  36. JungH.S. KoK.C. KimG.H. LeeA.R. NaY.C. KangC. LeeJ.Y. KimJ.S. Coumarin-based thiol chemosensor: Synthesis, turn-on mechanism, and its biological application.Org. Lett.20111361498150110.1021/ol200186421323377
    [Google Scholar]
  37. YueY. GuoY. XuJ. ShaoS. A Bodipy-based derivative for selective fluorescence sensing of homocysteine and cysteine.New J. Chem.2011351616410.1039/C0NJ00720J
    [Google Scholar]
  38. ZhangR. YuX. YeZ. WangG. ZhangW. YuanJ. Turn-on luminescent probe for cysteine/homocysteine based on a ruthenium(II) complex.Inorg. Chem.201049177898790310.1021/ic100810z20677794
    [Google Scholar]
  39. HuM. FanJ. LiH. SongK. WangS. ChengG. PengX. Fluorescent chemodosimeter for Cys/Hcy with a large absorption shift and imaging in living cells.Org. Biomol. Chem.20119498098310.1039/C0OB00957A21165468
    [Google Scholar]
  40. LuJ. SunC. ChenW. MaH. ShiW. LiX. Determination of non-protein cysteine in human serum by a designed BODIPY-based fluorescent probe.Talanta20118331050105610.1016/j.talanta.2010.11.02321147356
    [Google Scholar]
  41. ShaoJ. GuoH. JiS. ZhaoJ. Styryl-BODIPY based red-emitting fluorescent OFF–ON molecular probe for specific detection of cysteine.Biosens. Bioelectron.20112663012301710.1016/j.bios.2010.12.00421195598
    [Google Scholar]
  42. ZhuB. ZhangX. LiY. WangP. ZhangH. ZhuangX. A colorimetric and ratiometric fluorescent probe for thiols and its bioimaging applications.Chem. Commun.201046315710571210.1039/c0cc00477d20596554
    [Google Scholar]
  43. LouX. ZhangL. QinJ. LiZ. Colorimetric sensing of alpha-amino acids and its application for the “label-free” detection of protease.Langmuir20102631566156910.1021/la904138f20047345
    [Google Scholar]
  44. LuoC. ZhouQ. ZhangB. WangX. A new squaraine and Hg 2+ -based chemosensor with tunable measuring range for thiol-containing amino acids.New J. Chem.2011351454810.1039/C0NJ00696C
    [Google Scholar]
  45. RuanY.B. LiA.F. ZhaoJ.S. ShenJ.S. JiangY.B. Specific Hg2+-mediated perylene bisimide aggregation for highly sensitive detection of cysteine.Chem. Commun.201046274938494010.1039/c0cc00630k20523936
    [Google Scholar]
  46. YangY.K. ShimS. TaeJ. Rhodamine–sugar based turn-on fluorescent probe for the detection of cysteine and homocysteine in water.Chem. Commun.201046417766776810.1039/c0cc02381g20830360
    [Google Scholar]
  47. LongL. LinW. ChenB. GaoW. YuanL. Construction of a FRET-based ratiometric fluorescent thiol probe.Chem. Commun.201147389389510.1039/C0CC03806G21072403
    [Google Scholar]
  48. ShiuH.Y. WongM.K. CheC.M. “Turn-on” FRET-based luminescent iridium(iii) probes for the detection of cysteine and homocysteine.Chem. Commun.201147154367436910.1039/c0cc04288a21399821
    [Google Scholar]
  49. LiuS.Y. FangL. HeY.B. ChanW.H. YeungK.T. ChengY.K. YangR.H. Cholic-acid-based fluorescent sensor for dicarboxylates and acidic amino acids in aqueous solutions.Org. Lett.20057265825582810.1021/ol052341t16354076
    [Google Scholar]
  50. WangH. ChanW.H. LeeA.W.M. Cholic acid-based fluorescent probes for enantioselective recognition of trifunctional amino acids.Org. Biomol. Chem.20086592993410.1039/b717544b18292886
    [Google Scholar]
  51. KimY.K. LeeH.N. SinghN.J. ChoiH.J. XueJ.Y. KimK.S. YoonJ. HyunM.H. Anthracene derivatives bearing thiourea and glucopyranosyl groups for the highly selective chiral recognition of amino acids: Opposite chiral selectivities from similar binding units.J. Org. Chem.200873130130410.1021/jo702281318052393
    [Google Scholar]
  52. ChoiM.K. KimH.N. ChoiH.J. YoonJ. HyunM.H. Chiral anion recognition by color change utilizing thiourea, azophenol, and glucopyranosyl groups.Tetrahedron Lett.20084929-304522452510.1016/j.tetlet.2008.05.055
    [Google Scholar]
  53. HuangX.H. HeY.B. ChenZ.H. HuC.G. QingG.Y. Novel chiral fluorescent chemosensors for malate and acidic amino acids based on two-arm thiourea and amide.Can. J. Chem.200886217017610.1139/v07‑147
    [Google Scholar]
  54. HuangX-H. HeY-B. HuC-G. ChenZ-H. Detection of amines and unprotected amino acids in aqueous conditions by formation of highly fluorescent iminium ions.J. Fluoresc.2009199710.1007/s10895‑008‑0385‑318548339
    [Google Scholar]
  55. ZhouX. YipY.W. ChanW.H. LeeA.W.M. An easy assembled fluorescent sensor for dicarboxylates and acidic amino acids.Beilstein J. Org. Chem.20117758110.3762/bjoc.7.1121286397
    [Google Scholar]
  56. AhujaR. SinghalN.K. RamanujamB. RavikumarM. RaoC.P. Experimental and computational studies of the recognition of amino acids by galactosyl-imine and -amine derivatives: An attempt to understand the lectin-carbohydrate interactions.J. Org. Chem.20077293430344210.1021/jo070097917394358
    [Google Scholar]
  57. MitraA. ChintaJ.P. RaoC.P. 1-(d-Glucopyranosyl-2′-deoxy-2′-iminomethyl)-2-hydroxybenzene as chemosensor for aromatic amino acids by switch-on fluorescence.Tetrahedron Lett.201051113914210.1016/j.tetlet.2009.10.105
    [Google Scholar]
  58. SchmuckC. BickertV. N′-alkylated guanidiniocarbonyl pyrroles: New receptors for amino acid recognition in water.Org. Lett.20035244579458110.1021/ol035634014627388
    [Google Scholar]
  59. ZhouY. YoonJ. Recent progress in fluorescent and colorimetric chemosensors for detection ofamino acids.Chem. Soc. Rev.2012411526710.1039/C1CS15159B21799954
    [Google Scholar]
  60. MykytyukZ.M. SushynskyiO.E. PrystaiT.V. KremerI.P. IvakhM.S. ZaichenkoA.S. ShevchukO.M. Liquid crystal material with gold nanoparticles as optical sensors active medium for the amino acids detection.Mol. Cryst. Liq. Cryst.20206991576210.1080/15421406.2020.1732539
    [Google Scholar]
/content/journals/cis/10.2174/012210299X281974240329065206
Loading
/content/journals/cis/10.2174/012210299X281974240329065206
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Amino acid; Colorimetric; Fluorometric; Optical probes; Optical sensors; Sensor
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test