Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007
side by side viewer icon HTML

Abstract

Aim

Despite the recent development of chromatographic and fluorogenic anions sensors, the hydrolysis of carbon dioxide into carbonic acid and subsequent transformation into carbonates and bicarbonate are harmful to the environment and the health of living creatures. This is why luminescence-based detection techniques are getting a lot of interest right now.

Background

Despite the recent intention to create a naphthalene and triazole hybrid probe, ortho phenylenediamine (O-PDA) and two different aldehydes have been used in the present to successfully synthesize new fluorescent and colorimetric derivatives (AB). Aqueous solutions include colorimetrically detectable carbonate ions study. Additionally, we describe the creation and characterization of DHMC (7,8-dihydroxy-3-(4-methylphenyl)coumarin), a new coumarin-based molecule that responds to the carbonate ion in water and acetonitrile in terms of emission turn-on and naked-eye observability.

Object

As part of current research, a 2:1 condensate of benzildihydrazone and syringaldehyde is being processed for the detection of carbonate ions in aqueous a solution.

Methods

A luminescent lanthanide MOF-based thin film [{[Eu(HBPTC)(HO)]·2DMF}n] (BPTC = benzophenone-3,3',4,4'-tetracarboxylate) is successfully fabricated by electrodepositing in an anhydride system and new receptors as PDZ-1, PDZ-2, PDZ- 3 based on 2-(aryldenehydrazinyl) pyridine have been designed and for the detection of biologically and environmentally important ions. Moreover, fluorescent-colorimetric chemosensor which is based on a Schiff base for visual detection of CO2- in an aqueous solution.

Results

Many experiments were done to detect carbonate ions through various methods by using chemosensors like novel bis Schiff base, all these methods are eco-friendly, easy to synthesize, cost-effective, naked eye detectors, and have response towards absorbance and fluorescence intensity. It has a high binding association with carbonates. It has reversibility property. On the basis of the study and results, receptors may be useful as a valuable practical sensor for environmental analyses of carbonate.

Conclusion

Detection of carbonate ions through various methods by using chemosensor like novel bis Schiff base is important for product quantity control and widely used in many daily basis products like cosmetics, glass, rayon, rubber, plastic, paper, printing ink, toothpaste and food. It has applications in therapeutic settings as well as in the fields of soil science, hydrology, and geology. Due to the hazardous effects of these, which might include death, collapse, vomiting, diarrhea, and stomach discomfort, it is also necessary to discover them. All of these techniques respond to absorbance and fluorescence intensity, are cost-effective, easy to synthesize, and visible to the naked eye.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X281973240329052611
2024-01-01
2025-01-19
Loading full text...

Full text loading...

/deliver/fulltext/cis/2/1/CIS-2-E2210299X281973.html?itemId=/content/journals/cis/10.2174/012210299X281973240329052611&mimeType=html&fmt=ahah

References

  1. (a) MizukamiS. NaganoT. UranoY. OdaniA. KikuchiK. A fluorescent anion sensor that works in neutral aqueous solution for bioanalytical application.J. Am. Chem. Soc.2002124153920392510.1021/ja017564311942829
    [Google Scholar]
  2. (b) ShaoJ. LinH. LinH.K. A simple and efficient colorimetric anion sensor based on a thiourea group in DMSO and DMSO–water and its real-life application.Talanta20087541015102010.1016/j.talanta.2007.12.04118585177
    [Google Scholar]
  3. (c) KuswandiB. VerboomW. ReinhoudtN. Tripodal receptors for cation and anion sensors.Sensors20066978101710.3390/s6080978
    [Google Scholar]
  4. (d) GhoshK. AdhikariS. Colorimetric and fluorescence sensing of anions using thiourea based coumarin receptors.Tetrahedron Lett.200647468165816910.1016/j.tetlet.2006.09.035
    [Google Scholar]
  5. (e) JainA.K. RaisoniJ. KumarR. JainS. Perchlorate selective sensor based on a newly synthesized hydrogen-bonding diamide receptor.Int. J. Environ. Anal. Chem.200787855356310.1080/03067310701272905
    [Google Scholar]
  6. (f) MostafaG.A.E. PVC matrix membrane sensor for potentiometric determination of dodecylsulfate.Int. J. Environ. Anal. Chem.200888643544610.1080/03067310701717735
    [Google Scholar]
  7. (g) OmsM.T. JongejanP.A.C. VeltkampA.C. WyersG.P. SlaninaJ. Continuous monitoring of atmospheric HCl, HNO 2, HNO 3 and SO 2 by wet-annular denuder air sampling with on-line chromatographic analysis.Int. J. Environ. Anal. Chem.199662320721810.1080/03067319608028134
    [Google Scholar]
  8. GaleP.A. Anion receptor chemistry.Chem. Commun.2011471828610.1039/C0CC00656D20520917
    [Google Scholar]
  9. GaleP.A. HoweE.N.W. WuX. Anion receptor chemistry.Chem20161335142210.1016/j.chempr.2016.08.004
    [Google Scholar]
  10. SesslerJ.L. GaleP.A. ChoW-S. Anion receptor chemistry.Royal Soc. Chem.2006143010.1039/9781847552471
    [Google Scholar]
  11. EnglandA.H. DuffinA.M. SchwartzC.P. UejioJ.S. PrendergastD. SaykallyR.J. On the hydration and hydrolysis of carbon dioxide.Chem. Phys. Lett.20115144-618719510.1016/j.cplett.2011.08.063
    [Google Scholar]
  12. (a) TasA.C. Monodisperse calcium carbonate microtablets forming at 70°C in prerefrigerated CaCl 2 –gelatin–urea solutions.Int. J. Appl. Ceram. Technol.200961535910.1111/j.1744‑7402.2008.02252.x
    [Google Scholar]
  13. (b) DemichelisR. RaiteriP. GaleJ.D. QuigleyD. GebauerD. Nat. Commun.201116041611
    [Google Scholar]
  14. (c) AurbachD. GnanarajJ.S. GeisslerW. SchmidtM. Vinylene carbonate and Li salicylatoborate as additives in LiPF[sub 3](CF[sub 2]CF[sub 3])[sub 3] solutions for rechargeable Li-Ion batteries.J. Electrochem. Soc.20041511A23A3010.1149/1.1631820
    [Google Scholar]
  15. HanM.S. KimD.H. Naked-eye detection of phosphate ions in water at physiological pH: A remarkably selective and easy-to-assemble colorimetric phosphate-sensing probe.Angew. Chem. Int. Ed.200241203809381110.1002/1521‑3773(20021018)41:20<3809::AID‑ANIE3809>3.0.CO;2‑N12386855
    [Google Scholar]
  16. MarinhoV.C. HigginsJ. LoganS. Fluoride toothpastes for preventing dental caries in children and adolescents.Cochrane Libr200311106
    [Google Scholar]
  17. WalshT. WorthingtonH.V. GlennyA.M. AppelbeP. MarinhoV.C.C. ShiX. Fluoride toothpastes of different concentrations for preventing dental caries in children and adolescents.Cochrane Libr.20103691CD00786810.1002/14651858.CD007868.pub220091655
    [Google Scholar]
  18. SelwitzR.H. IsmailA.I. PittsN.B. Dental caries.Lancet20073699555515910.1016/S0140‑6736(07)60031‑217208642
    [Google Scholar]
  19. BoseP. Development of receptors for sensing of fluoride, acetate and phosphate: recognition and selectivity studies.2012
    [Google Scholar]
  20. JainA.K. GuptaV.K. RaisoniJ.R. Anion recognition using newly synthesized hydrogen bonding diamide receptors: PVC based sensors for carbonate.Electrochim. Acta200652395195710.1016/j.electacta.2006.06.037
    [Google Scholar]
  21. HanC. CuiZ. ZouZ. SabahaitiD. TianD. LiH. Urea-type ligand-modified CdSe quantum dots as a fluorescence “turn-on” sensor for CO32− anions.Photochem. Photobiol. Sci.2010991269127310.1039/c0pp00119h20714674
    [Google Scholar]
  22. SmithD.G. TopolnickiI.L. ZwickerV.E. JolliffeK.A. NewE.J. Fluorescent sensing arrays for cations and anions.Analyst2017142193549356310.1039/C7AN01200D28853482
    [Google Scholar]
  23. KombanR. KoempeK. HaaseM. Influence of different ligand isomers on the growth of lanthanide phosphate nanoparticles.Cryst. Growth Des.20111141033103910.1021/cg1010314
    [Google Scholar]
  24. DukeR.M. VealeE.B. PfefferF.M. KrugerP.E. GunnlaugssonT. Colorimetric and fluorescent anion sensors: An overview of recent developments in the use of 1,8-naphthalimide-based chemosensors.Chem. Soc. Rev.201039103936395310.1039/b910560n20818454
    [Google Scholar]
  25. ChenL.D. MandalD. PozziG. GladyszJ.A. BühlmannP. Potentiometric sensors based on fluorous membranes doped with highly selective ionophores for carbonate.J. Am. Chem. Soc.201113351208692087710.1021/ja207680e22070518
    [Google Scholar]
  26. ZhaoH. ParkS.J. ShiF. FuY. BattagliaV. RossP.N.Jr LiuG. Propylene carbonate (PC)-based electrolytes with high coulombic efficiency for lithium-ion batteries.J. Electrochem. Soc.20141611A194A20010.1149/2.095401jes
    [Google Scholar]
  27. ZougaghM. RíosA. ValcárcelM. Direct determination of total carbonate salts in soil samples by continuous-flow piezoelectric detection.Talanta2005651293518969760
    [Google Scholar]
  28. VladimirovaN. PolukeevV. AshinaJ. BabainV. LeginA. KirsanovD. Prediction of carbonate selectivity of PVC-plasticized sensor membranes with newly synthesized ionophores through QSPR modeling.Chemosensors20221024310.3390/chemosensors10020043
    [Google Scholar]
  29. MorrisR.V. RuffS.W. GellertR. MingD.W. ArvidsonR.E. ClarkB.C. GoldenD.C. SiebachK. KlingelhöferG. SchröderC. FleischerI. YenA.S. SquyresS.W. Identification of carbonate-rich outcrops on mars by the spirit rover.Science2010329599042142410.1126/science.118966720522738
    [Google Scholar]
  30. ToalaS. N. SunZ. YueY. GonskibS. F. CaiW-J. Recent developments in ionophore-based potentiometric electrochemical sensors for oceanic carbonate detection.Sens. Diagn.2024
    [Google Scholar]
  31. AbramovaN. LevichevS. BratovA. The influence of CO2 on ISFETs with polymer membranes and characterization of a carbonate ion sensor.Talanta2010814-51750175410.1016/j.talanta.2010.03.03420441968
    [Google Scholar]
  32. DókaO. BicanicD. SzücsM. LubbersM. Direct measurement of carbonate content in soil samples by means of CO laser infrared photoacoustic spectroscopy.Appl. Spectrosc.199852121526152910.1366/0003702981943239
    [Google Scholar]
  33. AmundsonR.G. TraskJ. PendallE. A rapid method of soil carbonate analysis using gas chromatography.Soil Sci. Soc. Am. J.198852388088310.2136/sssaj1988.03615995005200030050x
    [Google Scholar]
  34. ShinJ.H. LeeH.J. KimC.Y. OhB.K. RhoK.L. NamH. ChaG.S. ISFET-based differential pCO2 sensors employing a low-resistance gas-permeable membrane.Anal. Chem.199668183166317210.1021/ac960473h
    [Google Scholar]
  35. TsukadaK. MiyaharaY. ShibataY. MiyagiH. An integrated chemical sensor with multiple ion and gas sensors.Sens. Actuators B Chem.19902429129510.1016/0925‑4005(90)80156‑T
    [Google Scholar]
  36. LeeH.K. OhH. NamK.C. JeonS. Urea-functionalized calix[4]arenes as carriers for carbonate-selective electrodes.Sens. Actuators B Chem.2005106120721110.1016/j.snb.2004.07.032
    [Google Scholar]
  37. MeruvaR.K. MeyerhoffM.E. Catheter-type sensor for potentiometric monitoring of oxygen, pH and carbon dioxide.Biosens. Bioelectron.199813220121210.1016/S0956‑5663(97)00097‑39597736
    [Google Scholar]
  38. BurtE.E. RauA.H. The determination of the level of bicarbonate, carbonate, or carbon dioxide in aqueous solutions.Drug Dev. Ind. Pharm.199420192955296410.3109/03639049409041960
    [Google Scholar]
  39. GhoraiA. MondalJ. ChandraR. PatraG.K. A reversible fluorescent-colorimetric chemosensor based on a novel Schiff base for visual detection of CO 3 2− in aqueous solution.RSC Advances2016676721857219210.1039/C5RA24549D
    [Google Scholar]
  40. JiaJ. ZhaoH. A multi-responsive AIE-active tetraphenylethylene-functioned salicylaldehyde-based schiff base for reversible mechanofluorochromism and Zn2+ and CO32− detection.Org. Electron.201973556110.1016/j.orgel.2019.05.050
    [Google Scholar]
  41. BünzliJ.C.G. PiguetC. Taking advantage of luminescent lanthanide ions.Chem. Soc. Rev.200534121048107710.1039/b406082m16284671
    [Google Scholar]
  42. Jesu RajJ. G. QuintanillaM. MahmoudK. A. NgA. VetroneF. ZourobM. Sensitive detection of ssDNA using an LRET-based upconverting nanohybrid material.ACS Appl Mater Interfaces20157331825718265
    [Google Scholar]
  43. LiuHuiping WangHongming ChuTianshu YuMinghao YangYangyi An electrodeposited lanthanide MOF thin film as a luminescent sensor for carbonate detection in aqueous solution.J. Royal soc. chem.201441
    [Google Scholar]
  44. ThimaradkaV. Srikala PangannayaTrivedi201815
    [Google Scholar]
  45. LinQ. LuT.T. ZhuX. SunB. YangQ.P. WeiT.B. ZhangY.M. A novel supramolecular metallogel-based high-resolution anion sensor array.Chem. Commun.20155191635163810.1039/C4CC07814D25503444
    [Google Scholar]
  46. LinQ. ZhongK.P. ZhuJ.H. DingL. SuJ.X. YaoH. WeiT.B. ZhangY.M. Iodine controlled pillar[5]arene- based multiresponsive supramolecular polymer for fluorescence detection of cyanide, mercury, and cysteine.Macromolecules201750207863787110.1021/acs.macromol.7b01835
    [Google Scholar]
  47. LinQ. MaoP.P. FanY.Q. JiaP.P. LiuJ. ZhangY.M. YaoH. WeiT.B. Novel multi-analyte responsive ionic supramolecular gels based on pyridinium functionalized-naphthalimide.Soft Matter201713407360736410.1039/C7SM01624G28933493
    [Google Scholar]
  48. LinQ. MaoP.P. FanY.Q. LiuL. LiuJ. ZhangY.M. YaoH. WeiT.B. A novel supramolecular polymer gel based on naphthalimide functionalized-pillar[5]arene for the fluorescence detection of Hg 2+ and I − and recyclable removal of Hg 2+ via cation–π interactions.Soft Matter201713397085708910.1039/C7SM01447C28849853
    [Google Scholar]
  49. WongK.L. LawG.L. YangY.Y. WongW.T. A highly porous luminescent terbium–organic framework for reversible anion sensing.Adv. Mater.20061881051105410.1002/adma.200502138
    [Google Scholar]
  50. DarroudiM. ZiaraniG.M. BaharS. GhasemiJ.B. BadieiA. Lansoprazole-based colorimetric chemosensor for efficient binding and sensing of carbonate ion: Spectroscopy and DFT studies.Frontiers in Chemistry2021662647210.3389/fchem.2020.626472
    [Google Scholar]
  51. AdusumalliV.N.K.B. KoppisettiH.V.S.R.M. MadhukarN. MondalA. MahalingamV. Gallic acid capped Tb 3+ -doped CaF 2 nanocrystals: An efficient optical probe for the detection of carbonate and bicarbonate ions.J. Mater. Chem. C Mater. Opt. Electron. Devices20219124267427410.1039/D0TC06050J
    [Google Scholar]
  52. MuniyasamyH. ChinnaduraiC. NelsonM. ChinnamadhaiyanM. AyyanarS. Triazole-naphthalene based fluorescent chemosensor for highly selective naked eye detection of carbonate ion and real sample analyses.Inorg. Chem. Commun.202113310888310.1016/j.inoche.2021.108883
    [Google Scholar]
  53. DarroudiM. Mohammadi ZiaraniG. GhasemiJ.B. BadieiA. Facile and green preparation of colorimetric and fluorescent sensors for mercury, silver, and carbonate ions visual detecting: Spectroscopy and theoretical studies.J. Mol. Struct.2021124113062610.1016/j.molstruc.2021.130626
    [Google Scholar]
  54. Karuk ElmasŞ.N. OzenF. KoranK. GorguluA.O. SadiG. YilmazI. ErdemirS. Selective and sensitive fluorescent and colorimetric chemosensor for detection of CO3 2- anions in aqueous solution and living cells.Talanta201818861462210.1016/j.talanta.2018.06.03630029421
    [Google Scholar]
/content/journals/cis/10.2174/012210299X281973240329052611
Loading
/content/journals/cis/10.2174/012210299X281973240329052611
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test