Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

Exploring a diverse range of bioinspired molecules is crucial for addressing real-world healthcare challenges and finding effective solutions. While numerous materials have been proposed and developed, their compatibility and stability within biological systems remain not fully understood and they are still undergoing extensive examination for their potential successful therapeutic translation. In this context, we aimed to provide an overview of bioinspired molecules that incorporate peptide as well as nucleobase-derived frameworks and explore their potential applications in the field of advanced therapeutics. Unlike many synthetic materials, these scaffolds exhibit remarkable biocompatibility, making them a promising avenue for addressing these concerns.

The increasing demand for alternative biocompatible materials stems from the necessity for therapeutic solutions to address diverse biological challenges. Therefore, compiling existing technologies may offer a comprehensive resource for researchers in this field.

In this review, special attention has been given to bioinspired molecules showcasing a diverse array of therapeutic functions, encompassing gasotransmitters delivery-mediated neuromodulation, sensing, and detection of important biological analytes, tissue engineering, anti-aggregating molecules, antibacterial compounds, anti-cancer molecules, .

This review has comprehensively summarized the design, practicality, and utilization of intriguing nucleobase or peptide-based bioinspired molecules for their potential advanced therapeutic applications. Significant constraints within current biocompatible materials continue to impede their potential for clinical translation and functional utilization. Hence, this review may inspire the readers to explore further significant findings in the field of novel bioinspired molecules’ synthesis and their potential therapeutic applicability.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X308571240521052924
2024-05-24
2025-04-12
The full text of this item is not currently available.

References

  1. MohananM. HayK. MorN. Quality of health care in India: Challenges, priorities, and the road ahead.Health Aff.201635101753175810.1377/hlthaff.2016.067627702945
    [Google Scholar]
  2. KasthuriA. Challenges to healthcare in India - The five A’s.Indian J. Community Med.201843314114310.4103/ijcm.IJCM_194_1830294075
    [Google Scholar]
  3. SathishkumarK. ChaturvediM. DasP. StephenS. MathurP. Cancer incidence estimates for 2022 & projection for 2025: Result from national cancer registry programme, India.Indian J. Med. Res.20221564&559860736510887
    [Google Scholar]
  4. MathuranathP.S. GeorgeA. RanjithN. JustusS. KumarM.S. MenonR. SarmaP.S. VergheseJ. Incidence of Alzheimer′s disease in India: A 10 years follow-up study.Neurol. India201260662563010.4103/0028‑3886.10519823287326
    [Google Scholar]
  5. MehndirattaM.M. AggarwalV. Neurological disorders in India: Past, present, and next steps.Lancet Glob. Health202198e1043e104410.1016/S2214‑109X(21)00214‑X34273299
    [Google Scholar]
  6. RaghunathD. Emerging antibiotic resistance in bacteria with special reference to India.J. Biosci.200833459360310.1007/s12038‑008‑0077‑919208984
    [Google Scholar]
  7. IyerP.K. ChatterjeeK. Biomaterials research in india—An ACS applied bio materials forum.ACS Appl. Bio Mater.20192125216521710.1021/acsabm.9b0105835021524
    [Google Scholar]
  8. SikderA. EsenC. O’ReillyR.K. Nucleobase-interaction-directed biomimetic supramolecular self-assembly.Acc. Chem. Res.202255121609161910.1021/acs.accounts.2c0013535671460
    [Google Scholar]
  9. HamleyI.W. Small bioactive peptides for biomaterials design and therapeutics.Chem. Rev.201711724140151404110.1021/acs.chemrev.7b0052229227635
    [Google Scholar]
  10. MendonçaM.C.P. KontA. AburtoM.R. CryanJ.F. O’DriscollC.M. Advances in the design of (nano)formulations for delivery of antisense oligonucleotides and small interfering RNA: Focus on the central nervous system.Mol. Pharm.20211841491150610.1021/acs.molpharmaceut.0c0123833734715
    [Google Scholar]
  11. RotoloL. VanoverD. BrunoN.C. PeckH.E. ZurlaC. MurrayJ. NoelR.K. O’FarrellL. AraíngaM. Orr-BurksN. JooJ.Y. ChavesL.C.S. JungY. BeyersdorfJ. GumberS. FerreiraG.R. CornejoS. ThoresenM. OlivierA.K. KuoK.M. GumbartJ.C. WoolumsA.R. VillingerF. LafontaineE.R. HoganR.J. FinnM.G. SantangeloP.J. Species-agnostic polymeric formulations for inhalable messenger RNA delivery to the lung.Nat. Mater.202322336937910.1038/s41563‑022‑01404‑036443576
    [Google Scholar]
  12. FriisK.P. GracinS. OagS. LeijonA. SandE. LindbergB. IbáñezL.E. LindqvistJ. WhiteheadK.A. BakA. Spray dried lipid nanoparticle formulations enable intratracheal delivery of mRNA.J. Control. Release2023363June38940110.1016/j.jconrel.2023.09.03137741463
    [Google Scholar]
  13. QinY. OuL. ZhaL. ZengY. LiL. Delivery of nucleic acids using nanomaterials.Molecular Biomedicine2023414810.1186/s43556‑023‑00160‑038092998
    [Google Scholar]
  14. MendesB.B. ConniotJ. AvitalA. YaoD. JiangX. ZhouX. PaukerS.N. XiaoY. AdirO. LiangH. ShiJ. SchroederA. CondeJ. Nanodelivery of nucleic acids.Nat. Rev. Methods Prim.2022212410.1038/s43586‑022‑00104‑y35480987
    [Google Scholar]
  15. ZhangT. LuoX. XuK. ZhongW. Peptide-containing nanoformulations: Skin barrier penetration and activity contribution.Adv. Drug Deliv. Rev.202320311513910.1016/j.addr.2023.11513937951358
    [Google Scholar]
  16. RosaE DiaferiaC GalloE MorelliG AccardoA. Stable formulations of peptide-based nanogels.Molecules20202515345510.3390/molecules25153455
    [Google Scholar]
  17. Bhargavi RamT. Belinda TangC.C. KiewS.F. LauS.Y. GobiG. JaisonJ. DanquahM.K. Nanoformulation of peptides for pharmaceutical applications: In vitro and in vivo perspectives.Appl. Sci.202212241277710.3390/app122412777
    [Google Scholar]
  18. DolaiJ. MandalK. JanaN.R. Nanoparticle size effects in biomedical applications.ACS Appl. Nano Mater.2021476471649610.1021/acsanm.1c00987
    [Google Scholar]
  19. KalhoriF. YazdyaniH. KhademorezaeianF. HamzkanlooN. MokaberiP. HosseiniS. ChamaniJ. Enzyme activity inhibition properties of new cellulose nanocrystals from Citrus medica L. pericarp: A perspective of cholesterol lowering.Luminescence202237111836184510.1002/bio.436035946171
    [Google Scholar]
  20. MaheriH. HashemzadehF. ShakibapourN. KamelniyaE. NikoueiM.B. MokaberiP. ChamaniJ. Glucokinase activity enhancement by cellulose nanocrystals isolated from jujube seed: A novel perspective for type II diabetes mellitus treatment (in vitro).J. Mol. Struct.20221269133803[Internet].10.1016/j.molstruc.2022.133803
    [Google Scholar]
  21. ArmanS. HadaviM. NoghaniR.A. BakhtparvarA. FotouhiM. FarhangA. MokaberiP. TaheriR. ChamaniJ. Cellulose nanocrystals from celery stalk as quercetin scaffolds: A novel perspective of human holo-transferrin adsorption and digestion behaviours.Luminescence2024391e463410.1002/bio.463438286605
    [Google Scholar]
  22. WilliamsD.S. PijpersI.A.B. RidolfoR. van HestJ.C.M. Controlling the morphology of copolymeric vectors for next generation nanomedicine.J. Control. Release2017259293910.1016/j.jconrel.2017.02.03028257992
    [Google Scholar]
  23. RidolfoR. TavakoliS. JunnuthulaV. WilliamsD.S. UrttiA. van HestJ.C.M. Exploring the impact of morphology on the properties of biodegradable nanoparticles and their diffusion in complex biological medium.Biomacromolecules202122112613310.1021/acs.biomac.0c0072632510218
    [Google Scholar]
  24. KhanI. SaeedK. KhanI. Nanoparticles: Properties, applications and toxicities.Arab. J. Chem.201912790893110.1016/j.arabjc.2017.05.011
    [Google Scholar]
  25. AbbasiR ShinehG MobarakiM DoughtyS TayebiL Structural parameters of nanoparticles affecting their toxicity for biomedical applications: A review.J Nanopart Res2023254310.1007/s11051‑023‑05690‑w
    [Google Scholar]
  26. EulissL.E. DuPontJ.A. GrattonS. DeSimoneJ. Imparting size, shape, and composition control of materials for nanomedicine.Chem. Soc. Rev.200635111095110410.1039/b600913c17057838
    [Google Scholar]
  27. MassignaniM. LoPrestiC. BlanazsA. MadsenJ. ArmesS.P. LewisA.L. BattagliaG. Controlling cellular uptake by surface chemistry, size, and surface topology at the nanoscale.Small20095212424243210.1002/smll.20090057819634187
    [Google Scholar]
  28. SiswomihardjoW. Biocompatibility issues of biomaterials.Advanced Structured Materials MahyudinF. HermawanH. 2016SpringerCham5810.1007/978‑3‑319‑14845‑8_3
    [Google Scholar]
  29. KarakullukcuA.B. TabanE. OjoO.O. Biocompatibility of biomaterials and test methods: A review.Materialprüfung202365454555910.1515/mt‑2022‑0195
    [Google Scholar]
  30. LopezA. LiuJ. Self-assembly of nucleobase, nucleoside and nucleotide coordination polymers: From synthesis to applications.ChemNanoMat201731067068410.1002/cnma.201700154
    [Google Scholar]
  31. LeeS. TrinhT.H.T. YooM. ShinJ. LeeH. KimJ. HwangE. LimY.B. RyouC. Self-assembling peptides and their application in the treatment of diseases.Int. J. Mol. Sci.20192023585010.3390/ijms2023585031766475
    [Google Scholar]
  32. YangG. SenerA. JiY. PeiY. PluthM.D. Gasotransmitters in biology and medicine: Molecular mechanisms and drug targets.Oxid. Med. Cell. Longev.201620161210.1155/2016/462730827777644
    [Google Scholar]
  33. ShefaU. YeoS.G. KimM.S. SongI.O. JungJ. JeongN.Y. Role of gasotransmitters in oxidative stresses, neuroinflammation, and neuronal repair.Biomed Res Int20172017168934110.1155/2017/1689341
    [Google Scholar]
  34. QianY. MatsonJ.B. Gasotransmitter delivery via self-assembling peptides: Treating diseases with natural signaling gases.Adv. Drug Deliv. Rev.2017110-11113715610.1016/j.addr.2016.06.01727374785
    [Google Scholar]
  35. HsuC.N. TainY.L. Gasotransmitters for the therapeutic prevention of hypertension and kidney disease.Int. J. Mol. Sci.20212215780810.3390/ijms2215780834360574
    [Google Scholar]
  36. PalH.A. SinghA. SheikhP.A. PanjlaA. KumarA. VermaS. Peptide-based scaffold for nitric oxide induced differentiation of neuroblastoma cells.ChemBioChem201819111127113110.1002/cbic.20180006529600533
    [Google Scholar]
  37. AliR. PalH.A. HameedR. NazirA. VermaS. Controlled release of hydrogen sulfide significantly reduces ROS stress and increases dopamine levels in transgenic C. elegans.Chem. Commun.20195568101421014510.1039/C9CC05153H31389424
    [Google Scholar]
  38. PalH.A. MohapatraS. GuptaV. GhoshS. VermaS. Self-assembling soft structures for intracellular NO release and promotion of neurite outgrowth.Chem. Sci.2017896171617510.1039/C6SC05017D28989648
    [Google Scholar]
  39. AliR. HameedR. ChauhanD. SenS. WahajuddinM. NazirA. VermaS. Multiple actions of H 2 S-releasing peptides in human β-amyloid expressing C. elegans.ACS Chem. Neurosci.202213233378338810.1021/acschemneuro.2c0040236351248
    [Google Scholar]
  40. JiG. ChenZ. LiH. AwuyeD.E. GuanM. ZhuY. Electrospinning-based biosensors for health monitoring.Biosensors2022121087610.3390/bios1210087636291013
    [Google Scholar]
  41. SaravananR.K. NaqviT.K. PatilS. DwivediP.K. VermaS. Purine-blended nanofiber woven flexible nanomats for SERS-based analyte detection.Chem. Commun.202056435795579810.1039/D0CC00648C32323673
    [Google Scholar]
  42. KutzingM.K. FiresteinB.L. Altered uric acid levels and disease states.J. Pharmacol. Exp. Ther.200832411710.1124/jpet.107.12903117890445
    [Google Scholar]
  43. JaiswalA. NaqviT.K. DwivediP.K. VermaS. Single-platform, attomolar detection of multiple biomarkers by a flexible SERS sensor.Chem. Asian J.20231814e20230044110.1002/asia.20230044137243517
    [Google Scholar]
  44. KaurG. KumariS. SahaP. AliR. PatilS. GaneshS. VermaS. Selective cell adhesion on peptide–polymer electrospun fiber mats.ACS Omega2019424376438310.1021/acsomega.8b03494
    [Google Scholar]
  45. SenS. AliR. SinghH. OnkarA. BhadauriyaP. GaneshS. VermaS. An unnatural amino acid modified human insulin derivative for visual monitoring of insulin aggregation.Org. Biomol. Chem.202321377561756610.1039/D3OB01038D37671483
    [Google Scholar]
  46. SenS. AliR. OnkarA. GaneshS. VermaS. Strategies for interference of insulin fibrillogenesis: Challenges and advances.ChemBioChem20222311e20210067810.1002/cbic.20210067835025120
    [Google Scholar]
  47. VermaS. SenS. AliR. SinghH. A human insulin derivative for real-time monitoring of insulin quality and process for synthesizing thereof.Patent 2023110305902023
  48. ChasapisC.T. NtoupaP.S.A. SpiliopoulouC.A. StefanidouM.E. Recent aspects of the effects of zinc on human health.Arch. Toxicol.20209451443146010.1007/s00204‑020‑02702‑932394086
    [Google Scholar]
  49. PratibhaS.S. SinghS. SivakumarS. VermaS. Purine-based fluorescent sensors for imaging zinc ions in HeLa cells.Eur. J. Inorg. Chem.20172017364202420910.1002/ejic.201700806
    [Google Scholar]
  50. TomarK. KaurG. VermaS. RamanathanG. A self-assembled tetrapeptide that acts as a “turn-on” fluorescent sensor for Hg2+ ion.Tetrahedron Lett.2018594136533656[Internet].10.1016/j.tetlet.2018.08.043
    [Google Scholar]
  51. SelkoeD.J. Folding proteins in fatal ways.Nature2003426696890090410.1038/nature0226414685251
    [Google Scholar]
  52. MishraN.K. JoshiK.B. VermaS. Inhibition of human and bovine insulin fibril formation by designed peptide conjugates.Mol. Pharm.201310103903391210.1021/mp400364w24070716
    [Google Scholar]
  53. MishraN.K. DeepakK.R.N.V. SankararamakrishnanR. VermaS. Controlling in vitro insulin amyloidosis with stable peptide conjugates: A combined experimental and computational study.J. Phys. Chem. B201511950153951540610.1021/acs.jpcb.5b0821526569375
    [Google Scholar]
  54. SenS. SinghP. MishraN.K. GaneshS. SivakumarS. VermaS. Blended polar/nonpolar peptide conjugate interferes with human insulin amyloid-mediated cytotoxicity.Bioorg. Chem.202111110489910.1016/j.bioorg.2021.10489933882365
    [Google Scholar]
  55. CisnettiF. GautierA. Metal/N-heterocyclic carbene complexes: Opportunities for the development of anticancer metallodrugs.Angew. Chem. Int. Ed.20135246119761197810.1002/anie.20130668224115500
    [Google Scholar]
  56. MohapatraB. PratibhaP. VermaS. Directed adenine functionalization for creating complex architectures for material and biological applications.Chem. Commun.201753354748475810.1039/C7CC00222J28393940
    [Google Scholar]
  57. KhannaS. JanaB. SahaA. KurkuteP. GhoshS. VermaS. Targeting cytotoxicity and tubulin polymerization by metal–carbene complexes on a purine tautomer platform.Dalton Trans.201443269838984210.1039/C4DT00529E24854090
    [Google Scholar]
  58. VenkateshV. MishraN.K. Romero-CanelónI. VernooijR.R. ShiH. CoverdaleJ.P.C. HabtemariamA. VermaS. SadlerP.J. Supramolecular photoactivatable anticancer hydrogels.J. Am. Chem. Soc.2017139165656565910.1021/jacs.7b0018628414222
    [Google Scholar]
  59. VashistA. VashistA. GuptaY.K. AhmadS. Recent advances in hydrogel based drug delivery systems for the human body.J. Mater. Chem. B Mater. Biol. Med.20142214716610.1039/C3TB21016B32261602
    [Google Scholar]
  60. PetersG.M. SkalaL.P. PlankT.N. OhH. ReddyM.G.N. MarshA. BrownS.P. RaghavanS.R. DavisJ.T. G4-quartet·M(+) borate hydrogels.J. Am. Chem. Soc.2015137175819582710.1021/jacs.5b0275325871426
    [Google Scholar]
  61. PlankT.N. DavisJ.T. A G 4 ·K + hydrogel that self-destructs.Chem. Commun.201652285037504010.1039/C6CC01494A26984819
    [Google Scholar]
  62. GuptaA. NigamS. AvasthiI. SharmaB. AteeqB. VermaS. Caspase-3 mediated programmed cell death by a gold-stabilised peptide carbene.Bioorg. Med. Chem. Lett.2019292112667210.1016/j.bmcl.2019.12667231570209
    [Google Scholar]
  63. SinghN. SharmaS. SinghR. RajputS. ChattopadhyayN. TewariD. JoshiK.B. VermaS. A naphthalimide-based peptide conjugate for concurrent imaging and apoptosis induction in cancer cells by utilizing endogenous hydrogen sulfide.Chem. Sci.20211248160851609110.1039/D1SC04030H35024130
    [Google Scholar]
  64. WangX. AnL. TianQ. CuiK. Recent progress in H 2 S activated diagnosis and treatment agents.RSC Advances2019958335783358810.1039/C9RA06698E35528891
    [Google Scholar]
  65. ChoiS.A. ParkC.S. KwonO.S. GiongH.K. LeeJ.S. HaT.H. LeeC.S. Structural effects of naphthalimide-based fluorescent sensor for hydrogen sulfide and imaging in live zebrafish.Sci. Rep.2016612620310.1038/srep2620327188400
    [Google Scholar]
  66. LiuJ. LiuX. LuS. ZhangL. FengL. ZhongS. ZhangN. BingT. ShangguanD. Ratiometric detection and imaging of hydrogen sulfide in mitochondria based on a cyanine/naphthalimide hybrid fluorescent probe.Analyst2020145206549655510.1039/D0AN01314E32776047
    [Google Scholar]
  67. World Health OrganizationPrioritization of pathogens to guide discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis.Available from: www.who.int/publications/i/item/WHO-EMP-IAU-2017 2008
  68. RamirezMJR WinklerJA SpinaCS CollinsJJ Silver enhances antibiotic activity against gram-negative bacteria.Sci Transl Med20135190190ra8110.1126/scitranslmed.3006276
    [Google Scholar]
  69. VenkateshV. KumaranM.D.B. SaravananR.K. KalaichelvanP.T. VermaS. Luminescent silver–purine double helicate: Synthesis, self-assembly and antibacterial action.ChemPlusChem201681121266127110.1002/cplu.20160029331964074
    [Google Scholar]
  70. World Health OrganizationGlobal tuberculosis report 2022.2022Available from: www.who.int/publications/i/item/9789240061729
  71. BaisV.S. MohapatraB. AhamadN. BoggaramS. VermaS. PrakashB. Investigating the inhibitory potential of 2-Aminopurine metal complexes against serine/threonine protein kinases from Mycobacterium tuberculosis. Tuberculosis2018108475510.1016/j.tube.2017.10.00529523327
    [Google Scholar]
  72. PratibhaS.M. ShuklaM. KaulG. ChopraS. VermaS. Nucleobase soft metallogel composites with antifouling activities against ESKAPE pathogens.ChemistrySelect2019451834183910.1002/slct.201803693
    [Google Scholar]
  73. SiZ. PetheK. Chan-ParkM.B. Chemical basis of combination therapy to combat antibiotic resistance.JACS Au20233227629210.1021/jacsau.2c0053236873689
    [Google Scholar]
  74. PanjlaA. KaulG. ShuklaM. TripathiS. NairN.N. ChopraS. VermaS. A novel molecular scaffold resensitizes multidrug-resistant S. aureus to fluoroquinolones.Chem. Commun.201955598599860210.1039/C9CC03001H31276129
    [Google Scholar]
  75. WeiS. ZhouX.R. HuangZ. YaoQ. GaoY. Hydrogen sulfide induced supramolecular self-assembly in living cells.Chem. Commun.201854659051905410.1039/C8CC05174G30051134
    [Google Scholar]
  76. ZhangW. GaoC. Morphology transformation of self-assembled organic nanomaterials in aqueous solution induced by stimuli-triggered chemical structure changes.J. Mater. Chem. A Mater. Energy Sustain.2017531160591610410.1039/C7TA02038D
    [Google Scholar]
  77. ZhangW. KangJ. LiP. WangH. TangB. Dual signaling molecule sensor for rapid detection of hydrogen sulfide based on modified tetraphenylethylene.Anal. Chem.201587178964896910.1021/acs.analchem.5b0216926237122
    [Google Scholar]
  78. SinghN. SinghR. ShuklaM. KaulG. ChopraS. JoshiK.B. VermaS. Peptide nanostructure-mediated antibiotic delivery by exploiting H 2 S-Rich environment in clinically relevant bacterial cultures.ACS Infect. Dis.2020692441245010.1021/acsinfecdis.0c0022732786296
    [Google Scholar]
  79. PanjlaA. KaulG. AkhirA. SaxenaD. JoshiS. ModakC. KumariD. JainA. ChopraS. VermaS. Targeting multidrug resistant Staphylococcus aureus with cationic chlorpromazine-peptide conjugates.Chem. Asian J.20231810e20230016910.1002/asia.20230016937071585
    [Google Scholar]
  80. CaoH. DuanL. ZhangY. CaoJ. ZhangK. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity.Signal Transduct. Target. Ther.20216142610.1038/s41392‑021‑00830‑x34916490
    [Google Scholar]
  81. JoshiS. JaiswalA. PrajapatiR.K. VermaS. Modern avenues in metal-nucleic acid chemistry.Biological Implications of Metal-Nucleobase Complexes1st edCRC Press2023
    [Google Scholar]
  82. JoshiS. MahadevanG. VermaS. ValiyaveettilS. Bioinspired adenine–dopamine immobilized polymer hydrogel adhesives for tissue engineering.Chem. Commun.20205676113031130610.1039/D0CC04909C32840264
    [Google Scholar]
  83. YinM.J. YaoM. GaoS. ZhangA.P. TamH.Y. WaiP.K.A. Rapid 3D patterning of poly(acrylic acid) ionic hydrogel for miniature pH sensors.Adv. Mater.20162871394139910.1002/adma.20150402126643765
    [Google Scholar]
  84. ChenT ChenY RehmanHU ChenZ YangZ WangM Ultratough, self-healing, and tissue-adhesive hydrogel for wound dressing.ACS Appl. Mater. Interfaces20181039335233353110.1021/acsami.8b10064
    [Google Scholar]
  85. MatsumotoY. IshiiD. IwataT. Synthesis and characterization of alginic acid ester derivatives.Carbohydr. Polym.201717122923510.1016/j.carbpol.2017.05.00128578958
    [Google Scholar]
  86. SharmaS. KulkarniC. KulkarniM.M. AliR. PorwalK. ChattopadhyayN. TewariD. VermaS. Tripeptide-induced modulation of mesenchymal stem cell biomechanics stimulates proliferation and wound healing.Chem. Commun.202056203043304610.1039/C9CC10043A32048649
    [Google Scholar]
  87. ViningK.H. MooneyD.J. Mechanical forces direct stem cell behaviour in development and regeneration.Nat. Rev. Mol. Cell Biol.2017181272874210.1038/nrm.2017.10829115301
    [Google Scholar]
  88. KanieK. NaritaY. ZhaoY. KuwabaraF. SatakeM. HondaS. KanekoH. YoshiokaT. OkochiM. HondaH. KatoR. Collagen type IV-specific tripeptides for selective adhesion of endothelial and smooth muscle cells.Biotechnol. Bioeng.201210971808181610.1002/bit.2445922359201
    [Google Scholar]
  89. KuwabaraF. NaritaY. OgataY.A. KanieK. KatoR. SatakeM. KanekoH. OshimaH. UsuiA. UedaY. Novel small-caliber vascular grafts with trimeric Peptide for acceleration of endothelialization.Ann. Thorac. Surg.201293115616310.1016/j.athoracsur.2011.07.05522054652
    [Google Scholar]
  90. ManissornJ. KhamchunS. VinaiphatA. ThongboonkerdV. Alpha-tubulin enhanced renal tubular cell proliferation and tissue repair but reduced cell death and cell-crystal adhesion.Sci. Rep.2016612880810.1038/srep2880827363348
    [Google Scholar]
  91. ChengF. ErikssonJ.E. Intermediate filaments and the regulation of cell motility during regeneration and wound healing.Cold Spring Harb Perspect Biol.20179a022046
    [Google Scholar]
  92. OryanA. AlidadiS. MoshiriA. MaffulliN. Bone regenerative medicine: Classic options, novel strategies, and future directions.J. Orthop. Surg. Res.2014911810.1186/1749‑799X‑9‑1824628910
    [Google Scholar]
  93. MishraR. GoelS.K. GuptaK.C. KumarA. Biocomposite cryogels as tissue engineered biomaterials for regeneration of critical-sized cranial bone defects.Tissue Eng. Part A2013203-410.1089/ten.TEA.2013.007224147880
    [Google Scholar]
  94. FerreiraF.V. SouzaL.P. MartinsT.M.M. LopesJ.H. MattosB.D. MarianoM. PinheiroI.F. ValverdeT.M. LiviS. CamilliJ.A. GoesA.M. GouveiaR.F. LonaL.M.F. RojasO.J. Nanocellulose/bioactive glass cryogels as scaffolds for bone regeneration.Nanoscale20191142198421984910.1039/C9NR05383B31441919
    [Google Scholar]
  95. PanjlaA. QayoomI. KumarA. VermaS. Anionic diketopiperazine induces osteogenic differentiation and supports osteogenesis in a 3D cryogel microenvironment.Chem. Commun.202157607422742510.1039/D1CC01985F34231564
    [Google Scholar]
  96. AnayaJ.M. BollagW.B. HamrickM.W. IsalesC.M. The role of tryptophan metabolites in musculoskeletal stem cell aging.Int. J. Mol. Sci.20202118667010.3390/ijms2118667032933099
    [Google Scholar]
  97. El RefaeyM. WatkinsC.P. KennedyE.J. ChangA. ZhongQ. DingK.H. ShiX. XuJ. BollagW.B. HillW.D. JohnsonM. HunterM. HamrickM.W. IsalesC.M. Oxidation of the aromatic amino acids tryptophan and tyrosine disrupts their anabolic effects on bone marrow mesenchymal stem cells.Mol. Cell. Endocrinol.2015410879610.1016/j.mce.2015.01.03425637715
    [Google Scholar]
  98. ParkS. KimH. KimS.J. Stimulation of ERK2 by taurine with enhanced alkaline phosphatase activity and collagen synthesis in osteoblast-like UMR-106 cells.Biochem. Pharmacol.20016281107111110.1016/S0006‑2952(01)00741‑911597579
    [Google Scholar]
  99. HuxtableR.J. Physiological actions of taurine.Physiol. Rev.199272110116310.1152/physrev.1992.72.1.1011731369
    [Google Scholar]
  100. RessurreiçãoA.S.M. DelatoucheR. GennariC. PiarulliU. Bifunctional 2,5-diketopiperazines as rigid three-dimensional scaffolds in receptors and peptidomimetics.Eur. J. Org. Chem.201120112217228[Internet].10.1002/ejoc.201001330
    [Google Scholar]
  101. BorthwickA.D. 2,5-Diketopiperazines: Synthesis, reactions, medicinal chemistry, and bioactive natural products.Chem. Rev.201211273641371610.1021/cr200398y22575049
    [Google Scholar]
  102. VermaS. KumarA. PanjlaA. QayoomI. Taurine functionalized diketopiperazine and process to synthesise the same.Patent 2020110047832022
  103. AvasthiI. Gaganjot KatiyarM. VermaS. Environmentally benign, intrinsically coordinated, lithium-based solid electrolyte with a modified purine as supporting ligand.Chemistry20202670167061671110.1002/chem.20200200232706143
    [Google Scholar]
  104. AvasthiI. KulkarniM.M. VermaS. Exfoliating a Cd II –purine framework: Conversion of nanosheets-to-nanofibers and studies of elastic and capacitive properties.Chemistry201925286988699510.1002/chem.20190054130892754
    [Google Scholar]
  105. JoshiS KathuriaH VermaS ValiyaveettilS. Functional catechol–metal polymers via interfacial polymerization for applications in water purification.ACS Appl Mater. Interf.20201216190441905310.1021/acsami.0c03133
    [Google Scholar]
  106. QayoomI. TeotiaA.K. PanjlaA. VermaS. KumarA. Local and sustained delivery of rifampicin from a bioactive ceramic carrier treats bone infection in rat tibia.ACS Infect. Dis.20206112938294910.1021/acsinfecdis.0c0036932966037
    [Google Scholar]
  107. LiJ. CaoF. YinH. HuangZ. LinZ. MaoN. SunB. WangG. Ferroptosis: Past, present and future.Cell Death Dis.20201128810.1038/s41419‑020‑2298‑232015325
    [Google Scholar]
  108. JoshiS. AgarwalS. PanjlaA. ValiyaveettilS. GaneshS. VermaS. Inhibiting erastin-induced ferroptotic cell death by purine-based chelators.ChemBioChem2022239e20210065410.1002/cbic.20210065435188704
    [Google Scholar]
  109. DattaL.P. ManchineellaS. GovindarajuT. Biomolecules-derived biomaterials.Biomaterials202023011963310.1016/j.biomaterials.2019.11963331831221
    [Google Scholar]
  110. LomaeA. PreechakasedkitP. HanpanichO. OzerT. HenryC.S. MaruyamaA. PasomsubE. PhuphuakratA. RengpipatS. VilaivanT. ChailapakulO. RuechaN. NgamrojanavanichN. Label free electrochemical DNA biosensor for COVID-19 diagnosis.Talanta202325312399210.1016/j.talanta.2022.12399236228554
    [Google Scholar]
  111. AminN. AlmasiA. OzerT. HenryC.S. HosseinzadehL. KeshavarziZ. Recent advances of optical biosensors in veterinary medicine: Moving towards the point of care applications.Curr. Top. Med. Chem.202323232242226510.2174/156802662366623071816361337464828
    [Google Scholar]
  112. YuD.G. ZhaoP. The key elements for biomolecules to biomaterials and to bioapplications.Biomolecules2022129123410.3390/biom1209123436139073
    [Google Scholar]
/content/journals/cis/10.2174/012210299X308571240521052924
Loading
/content/journals/cis/10.2174/012210299X308571240521052924
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test