Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007
side by side viewer icon HTML

Abstract

The earth-abundant metal chalcogenide is a highly versatile semiconductor with unique electronic and optical properties that seem to outperform the photocatalytic properties of metal oxides and metal nanoparticles. For ages, researchers are reaping the benefits of its photocatalytic properties in numerous reactions. However, the high charge recombination rates, poor compositional stability, and a smaller number of catalytically active sites restrict its application. The development of different kinds of heterojunctions by the combination of metal-chalcogenides with other conducting and semiconducting materials like metal oxides, metal nanoparticles, g-CN, single-atom catalysts, and MOF results in superior photocatalytic activity. This review provides insight into the various classes of metal-chalcogenide-based heterostructures and their application in various organic transformations. A brief overview of the synergistic properties arising from the development of such heterostructures helps to understand the surface interactions so that highly stable, efficient, and selective metal-chalcogenide-based heterostructures can be developed for industrially important photocatalytic organic transformations. This review also describes the role of mediators in boosting the stability and catalytic efficiency of the metal chalcogenides. Moreover, a thorough emphasis on the morphological impact of photocatalysts in various reactions will help with the development of metal chalcogenide heterostructures with tunable morphology and bandgap.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X311728240430151124
2024-05-09
2025-05-03
The full text of this item is not currently available.

References

  1. MuralirajanK. KancherlaR. BauJ.A. TaksandeM.R. QureshiM. TakanabeK. RuepingM. Exploring the Structure and Performance of Cd–Chalcogenide Photocatalysts in Selective Trifluoromethylation.ACS Catal.20211124147721478010.1021/acscatal.1c04053
    [Google Scholar]
  2. NaseriM. BafekryA. FarajiM. HoatD.M. FadlallahM.M. GhergherehchiM. SabbaghiN. GogovaD. Two-dimensional buckled tetragonal cadmium chalcogenides including CdS, CdSe, and CdTe monolayers as photo-catalysts for water splitting.Phys. Chem. Chem. Phys.20212321122261223210.1039/D1CP00317H34009225
    [Google Scholar]
  3. WuX.J. ChenJ. TanC. ZhuY. HanY. ZhangH. Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates.Nat. Chem.20168547047510.1038/nchem.247327102681
    [Google Scholar]
  4. LiuS. ZhangN. TangZ.R. XuY.J. Synthesis of one-dimensional CdS@TiO2 core-shell nanocomposites photocatalyst for selective redox: the dual role of TiO2 shell.ACS Appl. Mater. Interfaces20124116378638510.1021/am302074p23131118
    [Google Scholar]
  5. HuoS. ChenC. One-step synthesis CdS/single crystal ZnO nanorod heterostructures with high photocatalytic H2 production ability.Inorg. Chem. Commun.202113210884110.1016/j.inoche.2021.108841
    [Google Scholar]
  6. ZhangP. LiuY. TianB. LuoY. ZhangJ. Synthesis of core-shell structured CdS@CeO 2 and CdS@TiO 2 composites and comparison of their photocatalytic activities for the selective oxidation of benzyl alcohol to benzaldehyde.Catal. Today201728118118810.1016/j.cattod.2016.05.042
    [Google Scholar]
  7. WangL. WangC. LiuW. ChenQ. HeM. Visible-light-induced aerobic thiocyanation of indoles using reusable TiO2/MoS2 nanocomposite photocatalyst.Tetrahedron Lett.201657161771177410.1016/j.tetlet.2016.03.028
    [Google Scholar]
  8. ChaiZ. ZengT.T. LiQ. LuL.Q. XiaoW.J. XuD. Efficient visible light-driven splitting of alcohols into hydrogen and corresponding carbonyl compounds over a Ni-modified CdS photocatalyst.J. Am. Chem. Soc.201613832101281013110.1021/jacs.6b0686027477237
    [Google Scholar]
  9. XiangX. ZhuB. ZhangJ. JiangC. ChenT. YuH. YuJ. WangL. Photocatalytic H2-production and benzyl-alcohol-oxidation mechanism over CdS using Co2+ as hole cocatalyst.Appl. Catal. B202332412230110.1016/j.apcatb.2022.122301
    [Google Scholar]
  10. KumarP.S. Lakshmi PrabavathiS. InduraniP. KaruthapandianS. MuthurajV. Light assisted synthesis of hierarchically structured Cu/CdS nanorods with superior photocatalytic activity, stability and photocatalytic mechanism.Separ. Purif. Tech.201717219220110.1016/j.seppur.2016.08.017
    [Google Scholar]
  11. ZhangN. LiuS. FuX. XuY.J. Fabrication of coenocytic Pd@CdS nanocomposite as a visible light photocatalyst for selective transformation under mild conditions.J. Mater. Chem.201222115042505210.1039/c2jm15009c
    [Google Scholar]
  12. ChenL. XuY. ChenB. In situ photochemical fabrication of CdS/g-C3N4 nanocomposites with high performance for hydrogen evolution under visible light.Appl. Catal. B201925611784810.1016/j.apcatb.2019.117848
    [Google Scholar]
  13. VuN.N. KaliaguineS. DoT.O. Synthesis of the g-C3N4/CdS nanocomposite with a chemically bonded interface for enhanced sunlight-driven CO2 photoreduction.ACS Appl. Energy Mater.2020376422643310.1021/acsaem.0c00656
    [Google Scholar]
  14. VanK.N. HuuH.T. Nguyen ThiV.N. Thi LeT.L. HoangQ.D. DinhQ.V. VoV. TranD.L. VasseghianY. Construction of S-scheme CdS/g-C3N4 nanocomposite with improved visible-light photocatalytic degradation of methylene blue.Environ. Res.202220611255610.1016/j.envres.2021.11255634951992
    [Google Scholar]
  15. YuanC. LiuQ. WeiM. ZhaoS. YangX. CaoB. WangS. El-Fatah AbomohraA. LiuX. HuY. Selective oxidation of 5-hydroxymethylfurfural to furan-2,5-dicarbaldehyde using chitosan-based biochar composite cadmium sulfide quantum dots.Fuel202232012399410.1016/j.fuel.2022.123994
    [Google Scholar]
  16. WangX.X. MengS. ZhangS. ZhengX. ChenS. 2D/2D MXene/g-C3N4 for photocatalytic selective oxidation of 5-hydroxymethylfurfural into 2,5-formylfuran.Catal. Commun.202014710615210.1016/j.catcom.2020.106152
    [Google Scholar]
  17. SakaC. Performance of g-C3N4 nanoparticles by EDTA modification and protonation for hydrogen release from sodium borohydride methanolysis.Int. J. Hydrogen Energy20224728136541366310.1016/j.ijhydene.2022.02.121
    [Google Scholar]
  18. WangJ. PanR. HaoQ. GaoY. YeJ. WuY. van ReeT. Constructing Defect-Mediated CdS/g-C3N4 by an In-situ interlocking strategy for Cocatalyst-free photocatalytic H2 production.Appl. Surf. Sci.202259915387510.1016/j.apsusc.2022.153875
    [Google Scholar]
  19. ZhengJ. LebedevK. WuS. HuangC. AyvalıT. WuT.S. LiY. HoP.L. SooY.L. KirklandA. TsangS.C.E. High loading of transition metal single atoms on chalcogenide catalysts.J. Am. Chem. Soc.2021143217979799010.1021/jacs.1c0109734019424
    [Google Scholar]
  20. LiangR. JingF. YanG. WuL. Synthesis of CdS-decorated MIL-68(Fe) nanocomposites: Efficient and stable visible light photocatalysts for the selective reduction of 4-nitroaniline to p-phenylenediamine in water.Appl. Catal. B201721845245910.1016/j.apcatb.2017.06.075
    [Google Scholar]
  21. Navakoteswara RaoV. RaviP. SathishM. VijayakumarM. SakarM. KarthikM. BalakumarS. ReddyK.R. ShettiN.P. AminabhaviT.M. ShankarM.V. Metal chalcogenide-based core/shell photocatalysts for solar hydrogen production: Recent advances, properties and technology challenges.J. Hazard. Mater.202141512558810.1016/j.jhazmat.2021.12558833756202
    [Google Scholar]
  22. AshrafM.A. YangY. FakhriA. Synthesis of NiS–MoO3 nanocomposites and decorated on graphene oxides for heterogeneous photocatalysis, antibacterial and antioxidant activities.Ceram. Int.20204668379838410.1016/j.ceramint.2019.12.070
    [Google Scholar]
  23. JanaT.K. MajiS.K. PalA. MaitiR.P. DolaiT.K. ChatterjeeK. Photocatalytic and antibacterial activity of cadmium sulphide/zinc oxide nanocomposite with varied morphology.J. Colloid Interface Sci.201648091610.1016/j.jcis.2016.06.07327399614
    [Google Scholar]
  24. BalapureA. Ray DuttaJ. GanesanR. Recent advances in semiconductor heterojunctions: a detailed review of the fundamentals of photocatalysis, charge transfer mechanism and materials.RSC Applied Interfaces202411436910.1039/D3LF00126A
    [Google Scholar]
  25. ShafieeA. RabieeN. AhmadiS. BaneshiM. KhatamiM. IravaniS. VarmaR.S. Core–shell nanophotocatalysts: review of materials and applications.ACS Appl. Nano Mater.202251558610.1021/acsanm.1c03714
    [Google Scholar]
  26. ShenQ. SunL. ZhuangY. ZhanW. WangX. HanX. Hollow dodecahedral structure of In2O3-In2S3 heterojunction encapsulated by N-doped C as an excellent visible-light-active photocatalyst for organic transformation.Inorg. Chem.20205923176501765810.1021/acs.inorgchem.0c0289233206500
    [Google Scholar]
  27. GogoiP. SaikiaT. HazarikaR. GargA. DeoriK. SarmaD. Ultralow-loading copper sulfide nanosheets on g-C 3 N 4 as a visible-light-active photocatalyst for the regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles.ACS Sustain. Chem. Eng.20231142152071521710.1021/acssuschemeng.3c02827
    [Google Scholar]
  28. TaghinejadH. TaghinejadM. EftekharA.A. LiZ. WestM.P. JavaniM.H. AbdollahramezaniS. ZhangX. TianM. Johnson-AveretteT. AjayanP.M. VogelE.M. ShiS.F. CaiW. AdibiA. Synthetic engineering of morphology and electronic band gap in lateral heterostructures of monolayer transition metal dichalcogenides.ACS Nano20201456323633010.1021/acsnano.0c0288532364693
    [Google Scholar]
  29. FuX.Y. LiY.B. HuangM.H. LiT. DaiX.C. HouS. WeiZ.Q. XiaoF.X. Partially self-transformed transition-metal chalcogenide interim layer: motivating charge transport cascade for solar hydrogen evolution.Inorg. Chem.20205942562257410.1021/acs.inorgchem.9b0353832013411
    [Google Scholar]
  30. LiuY. HuangD. ChengM. LiuZ. LaiC. ZhangC. ZhouC. XiongW. QinL. ShaoB. LiangQ. Metal sulfide/MOF-based composites as visible-light-driven photocatalysts for enhanced hydrogen production from water splitting.Coord. Chem. Rev.202040921322010.1016/j.ccr.2020.213220
    [Google Scholar]
  31. YangT. YuJ.M. ZhaiL. JiaS. YangC. XiongW.W. ZhangQ. An inorganic-organic hybrid indium tin selenide featuring a two-dimensional layered structure for high efficient photocatalytic Cr(VI) reduction.J. Clean. Prod.202341413764310.1016/j.jclepro.2023.137643
    [Google Scholar]
  32. MadkourM. AbdelmonemY. QaziU.Y. JavaidR. VadivelS. Efficient Cr( vi ) photoreduction under natural solar irradiation using a novel step-scheme ZnS/SnIn 4 S 8 nanoheterostructured photocatalysts.RSC Advances20211147294332944010.1039/D1RA04649G35492066
    [Google Scholar]
  33. TanY.X. ChaiZ.M. WangB.H. TianS. DengX.X. BaiZ.J. ChenL. ShenS. GuoJ.K. CaiM.Q. AuC.T. YinS.F. Boosted photocatalytic oxidation of toluene into benzaldehyde on CdIn2S4-CdS: Synergetic effect of compact heterojunction and S-vacancy.ACS Catal.20211152492250310.1021/acscatal.0c05703
    [Google Scholar]
  34. AgarwalS. DeoriK. Copper sulfide nanosheets for photocatalytic oxidation of benzyl alcohols and hydroxylation of arylboronic acids.ACS Appl. Nano Mater.2022534413442210.1021/acsanm.2c00516
    [Google Scholar]
  35. ZhouM. XiaoK. JiangX. HuangH. LinZ. YaoJ. WuY. Visible-light-responsive chalcogenide photocatalyst Ba2ZnSe3: crystal and electronic structure, thermal, optical, and photocatalytic activity.Inorg. Chem.20165524127831279010.1021/acs.inorgchem.6b0207227989175
    [Google Scholar]
  36. LiB. WangY. Synthesis, microstructure, and photocatalysis of ZnO/CdS nano-heterostructure.J. Phys. Chem. Solids201172101165116910.1016/j.jpcs.2011.07.010
    [Google Scholar]
  37. EidsvågH. BentoubaS. VajeestonP. YohiS. VelauthapillaiD. TiO2 as a photocatalyst for water splitting—An experimental and theoretical review.Molecules2021266168710.3390/molecules2606168733802911
    [Google Scholar]
  38. ZhangY. XuX. Machine learning band gaps of doped-TiO2 photocatalysts from structural and morphological parameters.ACS Omega2020525153441535210.1021/acsomega.0c0143832637808
    [Google Scholar]
  39. ArmakovićS.J. SavanovićM.M. ArmakovićS. Titanium dioxide as the most used photocatalyst for water purification: An overview.Catalysts20221312610.3390/catal13010026
    [Google Scholar]
  40. AdabalaS. DuttaD.P. A review on recent advances in metal chalcogenide-based photocatalysts for CO2 reduction.J. Environ. Chem. Eng.202210310776310.1016/j.jece.2022.107763
    [Google Scholar]
  41. GuoX. ChenC. SongW. WangX. DiW. QinW. CdS embedded TiO2 hybrid nanospheres for visible light photocatalysis.J. Mol. Catal. Chem.20143871610.1016/j.molcata.2014.02.020
    [Google Scholar]
  42. MauryaA. ChauhanP. Structural and optical characterization of CdS/TiO2 nanocomposite.Mater. Charact.201162438239010.1016/j.matchar.2011.01.014
    [Google Scholar]
  43. LeeS.Y. ParkS.J. TiO2 photocatalyst for water treatment applications.J. Ind. Eng. Chem.20131961761176910.1016/j.jiec.2013.07.012
    [Google Scholar]
  44. BanerjeeS. MohapatraS.K. DasP.P. MisraM. Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS.Chem. Mater.200820216784679110.1021/cm802282t
    [Google Scholar]
  45. XieY. AliG. YooS.H. ChoS.O. Sonication-assisted synthesis of CdS quantum-dot-sensitized TiO2 nanotube arrays with enhanced photoelectrochemical and photocatalytic activity.ACS Appl. Mater. Interfaces20102102910291410.1021/am100605a20849087
    [Google Scholar]
  46. TamiolakisI. LykakisI.N. ArmatasG.S. Mesoporous CdS-sensitized TiO2 nanoparticle assemblies with enhanced photocatalytic properties: Selective aerobic oxidation of benzyl alcohols.Catal. Today201525018018610.1016/j.cattod.2014.03.047
    [Google Scholar]
  47. WidiyandariH. Ketut UmiatiN.A. Dwi HerdiantiR. Synthesis and photocatalytic property of Zinc Oxide (ZnO) fine particle using flame spray pyrolysis method.J. Phys. Conf. Ser.2018102501200410.1088/1742‑6596/1025/1/012004
    [Google Scholar]
  48. RazaW. FaisalS.M. OwaisM. BahnemannD. MuneerM. Facile fabrication of highly efficient modified ZnO photocatalyst with enhanced photocatalytic, antibacterial and anticancer activity.RSC Advances2016682783357835010.1039/C6RA06774C
    [Google Scholar]
  49. HanafiM.F. SapaweN. An overview of recent developments on semiconductor catalyst synthesis and modification used in photocatalytic reaction.Mater. Today202031A151A157
    [Google Scholar]
  50. WangS. ZhuB. LiuM. ZhangL. YuJ. ZhouM. Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity.Appl. Catal. B2019243192610.1016/j.apcatb.2018.10.019
    [Google Scholar]
  51. KunduP. DeshpandeP.A. MadrasG. RavishankarN. Nanoscale ZnO/CdS heterostructures with engineered interfaces for high photocatalytic activity under solar radiation.J. Mater. Chem. A Mater. Energy Sustain.20112142094216
    [Google Scholar]
  52. TranD.P.H. PhamM.T. BuiX.T. WangY.F. YouS.J. CeO2 as a photocatalytic material for CO2 conversion: A review.Sol. Energy202224044346610.1016/j.solener.2022.04.051
    [Google Scholar]
  53. ZhangX. ZhangN. XuY.J. TangZ.R. One-dimensional CdS nanowires–CeO2 nanoparticles composites with boosted photocatalytic activity.New J. Chem.20153996756676410.1039/C5NJ00976F
    [Google Scholar]
  54. MouQ. GuoZ. ChaiY. LiuB. LiuC. Visible light assisted production of methanol from CO2 using CdS@CeO2 heterojunction.J. Photochem. Photobiol. B202121911220510.1016/j.jphotobiol.2021.11220533957468
    [Google Scholar]
  55. LiZ. MengX. ZhangZ. Recent development on MoS2-based photocatalysis: A review.J. Photochem. Photobiol. Photochem. Rev.201835395510.1016/j.jphotochemrev.2017.12.002
    [Google Scholar]
  56. SivaranjaniP.R. JananiB. ThomasA.M. RajuL.L. KhanS.S. Recent development in MoS2-based nano-photocatalyst for the degradation of pharmaceutically active compounds.J. Clean. Prod.202235213150610.1016/j.jclepro.2022.131506
    [Google Scholar]
  57. LiuW. WangC. HuangY. ChenQ. WangL. HeM. Visible-light-mediated facile synthesis of disulfides using reusable TiO 2 /MoS 2 nanocomposite photocatalyst.Synth. Commun.201646151268127410.1080/00397911.2016.1199808
    [Google Scholar]
  58. YangH. JinZ. FanK. LiuD. LuG. The roles of Ni nanoparticles over CdS nanorods for improved photocatalytic stability and activity.Superlattices Microstruct.201711168769510.1016/j.spmi.2017.07.025
    [Google Scholar]
  59. LuoM. LiuY. HuJ. LiuH. LiJ. One-pot synthesis of CdS and Ni-doped CdS hollow spheres with enhanced photocatalytic activity and durability.ACS Appl. Mater. Interfaces2012431813182110.1021/am300090322387732
    [Google Scholar]
  60. WangW. LiT. KomarneniS. LuX. LiuB. Recent advances in Co-based co-catalysts for efficient photocatalytic hydrogen generation.J. Colloid Interface Sci.2022608Pt 21553157510.1016/j.jcis.2021.10.05134742073
    [Google Scholar]
  61. YangX. WangZ. LvX. WangY. JiaH. Enhanced photocatalytic activity of Zn-doped dendritic-like CdS structures synthesized by hydrothermal synthesis.J. Photochem. Photobiol. Chem.201632917518110.1016/j.jphotochem.2016.07.005
    [Google Scholar]
  62. MitkinaT. StanglmairC. SetzerW. GruberM. KischH. KönigB. Visible light mediated homo- and heterocoupling of benzyl alcohols and benzyl amines on polycrystalline cadmium sulfide.Org. Biomol. Chem.201210173556356110.1039/c2ob07053g22447128
    [Google Scholar]
  63. YuW. ZhangD. GuoX. SongC. ZhaoZ. Enhanced visible light photocatalytic non-oxygen coupling of amines to imines integrated with hydrogen production over Ni/CdS nanoparticles.Catal. Sci. Technol.20188205148515410.1039/C8CY01326H
    [Google Scholar]
  64. IqbalM. IbrarA. AliA. RehmanF. JatoiA.H. JatoiW.B. PhulpotoS.N. TheboK.H. Facile synthesis of Zn-doped CdS nanowires with efficient photocatalytic performance.Environ. Technol.202243121783179010.1080/09593330.2020.185088033180681
    [Google Scholar]
  65. LinX. XuS. WeiZ.Q. HouS. MoQ.L. FuX.Y. XiaoF.X. Selective organic transformation over a self-assembled all-solid-state Z-scheme core–shell photoredox system.J. Mater. Chem. A Mater. Energy Sustain.2020838201512016110.1039/D0TA07235D
    [Google Scholar]
  66. ZhangN. LiuS. XuY.J. Recent progress on metal core@semiconductor shell nanocomposites as a promising type of photocatalyst.Nanoscale2012472227223810.1039/c2nr00009a22362188
    [Google Scholar]
  67. LiuS. ZhangN. XuY.J. Core–shell structured nanocomposites for photocatalytic selective organic transformations.Part. Part. Syst. Charact.201431554055610.1002/ppsc.201300235
    [Google Scholar]
  68. HigashimotoS. KitaoN. YoshidaN. SakuraT. AzumaM. OhueH. SakataY. Selective photocatalytic oxidation of benzyl alcohol and its derivatives into corresponding aldehydes by molecular oxygen on titanium dioxide under visible light irradiation.J. Catal.2009266227928510.1016/j.jcat.2009.06.018
    [Google Scholar]
  69. WuH. MengS. ZhangJ. ZhengX. WangY. ChenS. QiG. FuX. Construction of two-dimensionally relative p-n heterojunction for efficient photocatalytic redox reactions under visible light.Appl. Surf. Sci.202050514463810.1016/j.apsusc.2019.144638
    [Google Scholar]
  70. YeX. DaiX. MengS. FuX. ChenS. A Novel CdS /g‐ C 3 N 4 Composite Photocatalyst: Preparation, Characterization and Photocatalytic Performance with Different Reaction Solvents under Visible Light Irradiation.Chin. J. Chem.201735221722510.1002/cjoc.201600251
    [Google Scholar]
  71. WangZ. LuD. PanJ. Kumar KondamareddyK. GuW. LiJ. ZhangB. WuJ. FanH. HoW. Efficient photocatalytic dehydrogenation and synergistic selective oxidation of benzyl alcohol to benzaldehyde for Zn0.5Cd0.5S co-modified with MoS2 nanoflowers and g-C3N4 nanosheets.Appl. Surf. Sci.202364015838410.1016/j.apsusc.2023.158384
    [Google Scholar]
  72. TianS. YangQ. ZhengW. YangA. CdS decorated graphitic carbon nitride catalyzed one-pot hydrogenation of nitroaromatics and benzylamine derivatives coupling under visible light irradiation.Fuel202333412658610.1016/j.fuel.2022.126586
    [Google Scholar]
  73. HeJ. ChenL. DingD. YangY.K. AuC.T. YinS.F. Facile fabrication of novel Cd3(C3N3S3)2/CdS porous composites and their photocatalytic performance for toluene selective oxidation under visible light irradiation.Appl. Catal. B201823324324910.1016/j.apcatb.2018.04.008
    [Google Scholar]
  74. TangZ.R. YinX. ZhangY. XuY.J. Synthesis of titanate nanotube-CdS nanocomposites with enhanced visible light photocatalytic activity.Inorg. Chem.20135220117581176610.1021/ic401048324074302
    [Google Scholar]
  75. XiaoM. WangL. WuY. HuangX. DangZ. Preparation and characterization of CdS nanoparticles decorated into titanate nanotubes and their photocatalytic properties.Nanotechnology200819101570610.1088/0957‑4484/19/01/01570621730547
    [Google Scholar]
  76. LongL. YuX. WuL. LiJ. LiX. Nano-CdS confined within titanate nanotubes for efficient photocatalytic hydrogen production under visible light illumination.Nanotechnology201425303560310.1088/0957‑4484/25/3/03560324356534
    [Google Scholar]
  77. WangQ. ZhangD. ChenY. FuW.F. LvX.J. Single-atom catalysts for photocatalytic reactions.ACS Sustain. Chem.& Eng.2019776430644310.1021/acssuschemeng.8b06273
    [Google Scholar]
  78. GaoC. LowJ. LongR. KongT. ZhuJ. XiongY. Heterogeneous Single-atom photocatalysts: fundamentals and applications.Chem. Rev.202012021121751221610.1021/acs.chemrev.9b0084032186373
    [Google Scholar]
  79. DiMeglioJ.L. Breuhaus-AlvarezA.G. LiS. BartlettB.M. Nitrate-mediated alcohol oxidation on cadmium sulfide photocatalysts.ACS Catal.2019965732574110.1021/acscatal.9b01051
    [Google Scholar]
  80. XiaoY. WangT. QiuG. ZhangK. XueC. LiB. Synthesis of EDTA-bridged CdS/g-C3N4 heterostructure photocatalyst with enhanced performance for photoredox reactions.J. Colloid Interface Sci.202057745947010.1016/j.jcis.2020.05.09932505006
    [Google Scholar]
  81. LiuB.J. LiangH. MoQ.L. LiS. TangB. ZhuS.C. XiaoF.X. Unleashing non-conjugated polymers as charge relay mediators.Chem. Sci. (Camb.)202213249750910.1039/D1SC04877E35126982
    [Google Scholar]
  82. ZhangY. XuX. Predictions of glass transition onset temperature of chalcogenide glass Ge Se1−.J. Phys. Chem. Solids202115911024610.1016/j.jpcs.2021.110246
    [Google Scholar]
  83. ZhangY. ZhangN. TangZ.R. XuY.J. Transforming CdS into an efficient visible light photocatalyst for selective oxidation of saturated primary C–H bonds under ambient conditions.Chem. Sci. (Camb.)2012392812282210.1039/c2sc20603j
    [Google Scholar]
  84. ChaiZ.M. WangB.H. TanY.X. BaiZ.J. PanJ.B. ChenL. ShenS. GuoJ.K. XieT.L. AuC.T. YinS.F. Enhanced photocatalytic activity for selective oxidation of toluene over cubic–hexagonal cds phase junctions.Ind. Eng. Chem. Res.20216030111061111610.1021/acs.iecr.1c01505
    [Google Scholar]
  85. PahariS.K. PalP. SrivastavaD.N. GhoshS.C. PandaA.B. Efficient photocatalytic selective nitro-reduction and C–H bond oxidation over ultrathin sheet mediated CdS flowers.Chem. Commun. (Camb.)20155151103221032510.1039/C5CC01685A26024214
    [Google Scholar]
  86. SunC. GuY. WenW. ZhaoL. ZnSe based semiconductor core-shell structures: From preparation to application.Opt. Mater.201881122210.1016/j.optmat.2018.05.005
    [Google Scholar]
  87. LiuS. YangM.Q. TangZ.R. XuY.J. A nanotree-like CdS/ZnO nanocomposite with spatially branched hierarchical structure for photocatalytic fine-chemical synthesis.Nanoscale20146137193719810.1039/c4nr01227e24853606
    [Google Scholar]
  88. GaoH. ChenY. LiH. ZhangF. TianG. Hierarchical Cu7S4-Cu9S8 heterostructure hollow cubes for photothermal aerobic oxidation of amines.Chem. Eng. J.201936324725810.1016/j.cej.2019.01.137
    [Google Scholar]
  89. WuX. XieS. ZhangH. ZhangQ. SelsB.F. WangY. Metal sulfide photocatalysts for lignocellulose valorization.Adv. Mater.20213350200712910.1002/adma.20200712934117812
    [Google Scholar]
  90. LiQ. LiX. WagehS. Al-GhamdiA.A. YuJ. CdS/graphene nanocomposite photocatalysts.Adv. Energy Mater.2015514150001010.1002/aenm.201500010
    [Google Scholar]
/content/journals/cis/10.2174/012210299X311728240430151124
Loading
/content/journals/cis/10.2174/012210299X311728240430151124
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test