Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

Colorimetric sensors are attracting considerable interest across diverse fields owing to their ease of use, cost-effectiveness, and rapidity. Within this realm, Localized Surface Plasmon Resonance (LSPR) stands out as a favorable method for designing colorimetric sensing techniques. Sensors based on LSPR control the plasmonic characteristics of metallic Nanoparticles (NPs) to produce a noticeable alteration in color when a target analyte is detected. This article explores recent advancements in this field, including the integration of LSPR sensors with microfluidics and smartphone-based detection systems. The paper also investigates the applications of LSPR-based colorimetric sensors in diverse domains, such as environmental monitoring, biomedical diagnostics, food safety, and chemical detection. Furthermore, it sheds light on the potential limitations and prospects associated with LSPR-based colorimetric sensors, with a particular emphasis on the need for improved sensitivity, selectivity, and stability to facilitate broader practical applications.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X281976240527072849
2024-01-01
2025-01-19
Loading full text...

Full text loading...

/deliver/fulltext/cis/2/1/CIS-2-E2210299X281976.html?itemId=/content/journals/cis/10.2174/012210299X281976240527072849&mimeType=html&fmt=ahah

References

  1. KantT. ShrivasK. KarbhalI. Monisha YadavS. Tikeshwari SahuS. MahipalY.K. GanesanV. A graphene-printed paper electrode for determination of H 2 O 2 in municipal wastewater during the COVID-19 pandemic.New J. Chem.20224631362137010.1039/D1NJ05763D
    [Google Scholar]
  2. WangG. ZhangS. CuiJ. GaoW. RongX. LuY. GaoC. Novel highly selective fluorescence sensing strategy for Mercury(II) in water based on nitrogen-doped carbon quantum dots.Spectrochim. Acta A Mol. Biomol. Spectrosc.202328612201010.1016/j.saa.2022.12201036308826
    [Google Scholar]
  3. GhoshJ. CooksR.G. Mass spectrometry in materials synthesis.Trends Analyt. Chem.202316111701010.1016/j.trac.2023.117010
    [Google Scholar]
  4. ZampolliS. ElmiI. StürmannJ. NicolettiS. DoriL. CardinaliG.C. Selectivity enhancement of metal oxide gas sensors using a micromachined gas chromatographic column.Sens. Actuators B Chem.2005105240040610.1016/j.snb.2004.06.036
    [Google Scholar]
  5. Kumar PatleT. ShrivasK. PatleA. PatelS. HarmukhN. KumarA. Simultaneous determination of B1, B3, B6 and C vitamins in green leafy vegetables using reverse phase-high performance liquid chromatography.Microchem. J.202217610724910.1016/j.microc.2022.107249
    [Google Scholar]
  6. JinZ. YeungJ. ZhouJ. RetoutM. YimW. FajtováP. GosselinB. JabinI. BruylantsG. MattoussiH. O’DonoghueA.J. JokerstJ.V. Empirical optimization of peptide sequence and nanoparticle colloidal stability: the impact of surface ligands and implications for colorimetric sensing.ACS Appl. Mater. Interfaces20231516204832049410.1021/acsami.3c0086237058597
    [Google Scholar]
  7. SinghR. MehraR. WaliaA. GuptaS. ChawlaP. kumarH. ThakurA. KaushikR. KumarN. Colorimetric sensing approaches based on silver nanoparticles aggregation for determination of toxic metal ions in water sample: a review.Int. J. Environ. Anal. Chem.202310361361137610.1080/03067319.2021.1873315
    [Google Scholar]
  8. LiZ. HouS. ZhangH. SongQ. WangS. GuoH. Recent advances in fluorescent and colorimetric sensing for volatile organic amines and biogenic amines in food.Adv. Agrochem202321798710.1016/j.aac.2023.02.001
    [Google Scholar]
  9. WuY. FengJ. HuG. ZhangE. YuH.H. Colorimetric Sensors for Chemical and Biological Sensing Applications.Sensors2023235274910.3390/s2305274936904948
    [Google Scholar]
  10. PatelS. ShrivasK. SinhaD. Monisha Kumar PatleT. YadavS. ThakurS.S. DebM.K. PervezS. Smartphone-integrated printed-paper sensor designed for on-site determination of dimethoate pesticide in food samples.Food Chem.202238313244910.1016/j.foodchem.2022.13244935183953
    [Google Scholar]
  11. Monisha ShrivasK. KantT. PatelS. DeviR. DahariyaN.S. PervezS. DebM.K. RaiM.K. RaiJ. Inkjet-printed paper-based colorimetric sensor coupled with smartphone for determination of mercury (Hg2+).J. Hazard. Mater.202141412544010.1016/j.jhazmat.2021.125440
    [Google Scholar]
  12. AliS. ChenX. ShiW. HuangG. YuanL. MengL. ChenS. ZhonghaoX. ChenX. Recent advances in silver and gold nanoparticles-based colorimetric sensors for heavy metal ions detection: a review.Crit. Rev. Anal. Chem.202353371875010.1080/10408347.2021.197388634510976
    [Google Scholar]
  13. ChienY.H. SuC.H. HuC.C. YehK.H. LinW.C. Localized surface plasmon resonance-based colorimetric assay featuring thiol-capped Au nanoparticles combined with a mobile application for on-site parathion organophosphate pesticide detection.Langmuir202238283884810.1021/acs.langmuir.1c0290134989582
    [Google Scholar]
  14. BoruahB.S. BiswasR. Localized surface plasmon resonance based U-shaped optical fiber probe for the detection of Pb2+ in aqueous medium.Sens. Actuators B Chem.2018276899410.1016/j.snb.2018.08.086
    [Google Scholar]
  15. ParkJ.H. ByunJ.Y. YimS.Y. KimM.G. A Localized Surface Plasmon Resonance (LSPR)-based, simple, receptor-free and regeneratable Hg2+ detection system.J. Hazard. Mater.201630713714410.1016/j.jhazmat.2015.12.04026780697
    [Google Scholar]
  16. ShrivasK. SahuS. PatraG.K. JaiswalN.K. ShankarR. Localized surface plasmon resonance of silver nanoparticles for sensitive colorimetric detection of chromium in surface water, industrial waste water and vegetable samples.Anal. Methods2016892088209610.1039/C5AY03120F
    [Google Scholar]
  17. AmirjaniA. FatmehsariD.H. Colorimetric detection of ammonia using smartphones based on localized surface plasmon resonance of silver nanoparticles.Talanta201817624224610.1016/j.talanta.2017.08.02228917747
    [Google Scholar]
  18. ZargarB. HatamieA. Colorimetric determination of resorcinol based on localized surface plasmon resonance of silver nanoparticles.Analyst2012137225334533810.1039/c2an35504c23016152
    [Google Scholar]
  19. FilippoE. SerraA. MannoD. Poly(vinyl alcohol) capped silver nanoparticles as localized surface plasmon resonance-based hydrogen peroxide sensor.Sens. Actuators B Chem.2009138262563010.1016/j.snb.2009.02.056
    [Google Scholar]
  20. LaghariG. NafadyA. Al-SaeediS. Sirajuddin SheraziS. NisarJ. ShahM. AbroM. ArainM. BhargavaS. Sirajuddin Ranolazine-functionalized copper nanoparticles as a colorimetric sensor for trace level detection of As3+.Nanomaterials2019918310.3390/nano901008330634575
    [Google Scholar]
  21. HussainM. NafadyA. SirajuddinS. Hussain SheraziS.T. ShahM.R. AlsalmeA. KalhoroM.S. MahesarS.A. SiddiquiS. Cefuroxime derived copper nanoparticles and their application as a colorimetric sensor for trace level detection of picric acid.RSC Advances2016686828828288910.1039/C6RA08571G
    [Google Scholar]
  22. SoomroR.A. NafadyA. Sirajuddin MemonN. SheraziT.H. KalwarN.H. l-cysteine protected copper nanoparticles as colorimetric sensor for mercuric ions.Talanta201413041542210.1016/j.talanta.2014.07.02325159429
    [Google Scholar]
  23. ZhouN. YeC. PolavarapuL. XuQ.H. Controlled preparation of Au/Ag/SnO 2 core–shell nanoparticles using a photochemical method and applications in LSPR based sensing.Nanoscale20157199025903210.1039/C5NR01579K25921493
    [Google Scholar]
  24. GhodselahiT. ArsalaniS. NeishaboorynejadT. Synthesis and biosensor application of Ag@Au bimetallic nanoparticles based on localized surface plasmon resonance.Appl. Surf. Sci.201430123023410.1016/j.apsusc.2014.02.050
    [Google Scholar]
  25. SahaA. KhalkhoB.R. DebM.K. Au–Ag core–shell composite nanoparticles as a selective and sensitive plasmonic chemical probe for l -cysteine detection in Lens culinaris (lentils).RSC Advances20211133203802039010.1039/D1RA01824H35479888
    [Google Scholar]
  26. LarsonS. ZhaoY. Localized surface plasmonic resonance and sensing properties of Ag–MgF2 composite nanotriangles.J. Phys. Chem. C2018122137374738110.1021/acs.jpcc.8b00122
    [Google Scholar]
  27. LiG. XuQ. SinghR. ZhangW. MarquesC. XieY. ZhangB. KumarS. Graphene Oxide/Multiwalled Carbon Nanotubes Assisted Serial Quadruple Tapered Structure-Based LSPR Sensor for Glucose Detection.IEEE Sens. J.20222217169041691110.1109/JSEN.2022.3193455
    [Google Scholar]
  28. GhasemiF. Hormozi-NezhadM.R. MahmoudiM. A colorimetric sensor array for detection and discrimination of biothiols based on aggregation of gold nanoparticles.Anal. Chim. Acta2015882586710.1016/j.aca.2015.04.01126043092
    [Google Scholar]
  29. AmjadiM. HallajT. NasirlooE. In situ formation of Ag/Au nanorods as a platform to design a non-aggregation colorimetric assay for uric acid detection in biological fluids.Microchem. J.202015410464210.1016/j.microc.2020.104642
    [Google Scholar]
  30. RostamiS. MehdiniaA. NiroumandR. JabbariA. Enhanced LSPR performance of graphene nanoribbons-silver nanoparticles hybrid as a colorimetric sensor for sequential detection of dopamine and glutathione.Anal. Chim. Acta20201120112310.1016/j.aca.2020.04.06032475387
    [Google Scholar]
  31. WangH. FangT. LiuH. WeiT. DaiZ. Gold Nanostar-Based Sensitive Catechol Plasmonic Colorimetric Sensing Platform with Ultra-Wide Detection Range.Chemosensors (Basel)2022101143910.3390/chemosensors10110439
    [Google Scholar]
  32. GavrilenkoN.A. SaranchinaN.V. GavrilenkoM.A. Colorimetric Sensor Based on Silver Nanoparticle – Embedded Polymethacrylate Matrix.Adv. Mat. Res.2014104092392710.4028/www.scientific.net/AMR.1040.923
    [Google Scholar]
  33. MavaeiM. ChahardoliA. FattahiA. KhoshrooA. A Simple Method for Developing a Hand‐Drawn Paper‐Based Sensor for Mercury; Using Green Synthesized Silver Nanoparticles and Smartphone as a Hand‐Held‐Device for Colorimetric Assay.Glob. Chall.202154200009910.1002/gch2.20200009933854790
    [Google Scholar]
  34. SadaniK. NagP. MukherjiS. LSPR based optical fiber sensor with chitosan capped gold nanoparticles on BSA for trace detection of Hg (II) in water, soil and food samples.Biosens. Bioelectron.2019134909610.1016/j.bios.2019.03.04630959393
    [Google Scholar]
  35. WangW. YouY. GunasekaranS. LSPR‐based colorimetric biosensing for food quality and safety.Compr. Rev. Food Sci. Food Saf.20212065829585510.1111/1541‑4337.1284334601783
    [Google Scholar]
  36. WangY. ZhangP. FuW. ZhaoY. Morphological control of nanoprobe for colorimetric antioxidant detection.Biosens. Bioelectron.201812218318810.1016/j.bios.2018.09.05830265968
    [Google Scholar]
  37. LakshmiG.B.V.S. PoddarM. DhimanT.K. SinghA.K. SolankiP.R. Gold-Ceria nanocomposite based highly sensitive and selective aptasensing platform for the detection of the Chlorpyrifos in Solanum tuberosum.Colloids Surf. A Physicochem. Eng. Asp.202265312981910.1016/j.colsurfa.2022.129819
    [Google Scholar]
  38. Ben HaddadaM. HuD. SalmainM. ZhangL. PengC. WangY. LiedbergB. BoujdayS. Gold nanoparticle-based localized surface plasmon immunosensor for staphylococcal enterotoxin A (SEA) detection.Anal. Bioanal. Chem.2017409266227623410.1007/s00216‑017‑0563‑828815272
    [Google Scholar]
  39. ShrivasK. NirmalkarN. DebM.K. DewanganK. NirmalkarJ. KumarS. Application of functionalized silver nanoparticles as a biochemical sensor for selective detection of lysozyme protein in milk sample.Spectrochim. Acta A Mol. Biomol. Spectrosc.201921312713310.1016/j.saa.2019.01.03930684881
    [Google Scholar]
  40. ZorE. Silver nanoparticles-embedded nanopaper as a colorimetric chiral sensing platform.Talanta201818414915510.1016/j.talanta.2018.02.09629674026
    [Google Scholar]
  41. SunZ. WuS. MaJ. ShiH. WangL. ShengA. YinT. SunL. LiG. Colorimetric sensor array for human semen identification designed by coupling zirconium metal–organic frameworks with DNA-modified gold nanoparticles.ACS Appl. Mater. Interfaces20191140363163632310.1021/acsami.9b1072931522499
    [Google Scholar]
  42. WuR. LiK. ShenC. HuangJ. GaoZ. TangK. LengY. ChenZ. Antioxidant Recognition by Colorimetric Sensor Array Based on Differential Etching of Gold Nanorods and Gold Nanobypyramids.ACS Appl. Nano Mater.2021488482849010.1021/acsanm.1c01817
    [Google Scholar]
  43. ZhangX. WeiM. LvB. LiuY. LiuX. WeiW. Sensitive colorimetric detection of glucose and cholesterol by using Au@Ag core–shell nanoparticles.RSC Advances2016641350013500710.1039/C6RA04976A
    [Google Scholar]
  44. JiaF. LiuQ. WeiW. ChenZ. Colorimetric sensor assay for discrimination of proteins based on exonuclease I-triggered aggregation of DNA-functionalized gold nanoparticles.Analyst (Lond.)2019144164865487010.1039/C9AN00918C31297492
    [Google Scholar]
  45. ShrivasK. SahuJ. MajiP. SinhaD. Label-free selective detection of ampicillin drug in human urine samples using silver nanoparticles as a colorimetric sensing probe.New J. Chem.201741146685669210.1039/C7NJ00448F
    [Google Scholar]
  46. RotoR. MellisaniB. KuncakaA. MudasirM. SuratmanA. Colorimetric sensing of Pb2+ Ion by using Ag nanoparticles in the presence of dithizone.Chemosensors (Basel)2019732810.3390/chemosensors7030028
    [Google Scholar]
  47. LiuX. LiM. SinghR. ZhangB. KumarS. In Plasmon-based SMSMS optical fiber sensor structure for creatinine detection in aquaculture industry.Proc. SPIE2022210.1117/12.2637689
    [Google Scholar]
  48. RostamiS. MehdiniaA. JabbariA. Seed-mediated grown silver nanoparticles as a colorimetric sensor for detection of ascorbic acid.Spectrochim. Acta A Mol. Biomol. Spectrosc.201718020421010.1016/j.saa.2017.03.02028292703
    [Google Scholar]
  49. ShrivasK. Monisha KantT. KarbhalI. KurreyR. SahuB. SinhaD. PatraG.K. DebM.K. PervezS. Smartphone coupled with paper-based chemical sensor for on-site determination of iron (III) in environmental and biological samples.Anal. Bioanal. Chem.202041271573158310.1007/s00216‑019‑02385‑x31932862
    [Google Scholar]
  50. NanM. DarmawanB.A. GoG. ZhengS. LeeJ. KimS. LeeT. ChoiE. ParkJ.O. BangD. Wearable localized surface plasmon resonance-based biosensor with highly sensitive and direct detection of cortisol in human sweat.Biosensors (Basel)202313218410.3390/bios1302018436831950
    [Google Scholar]
  51. ChoeA. YeomJ. ShankerR. KimM.P. KangS. KoH. Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film.NPG Asia Mater.201810991292210.1038/s41427‑018‑0086‑6
    [Google Scholar]
  52. VaquerA. BarónE. de la RicaR. Wearable Analytical Platform with Enzyme-Modulated Dynamic Range for the Simultaneous Colorimetric Detection of Sweat Volume and Sweat Biomarkers.ACS Sens.20216113013610.1021/acssensors.0c0198033371672
    [Google Scholar]
  53. OhS.Y. HeoN.S. ShuklaS. ChoH.J. VilianA.T.E. KimJ. LeeS.Y. HanY.K. YooS.M. HuhY.S. Development of gold nanoparticle-aptamer-based LSPR sensing chips for the rapid detection of Salmonella typhimurium in pork meat.Sci. Rep.2017711013010.1038/s41598‑017‑10188‑228860462
    [Google Scholar]
  54. XuB. XiangX. DingZ. LuoZ. HuangJ. A colorimetric assay for detection of glucose by enzymatic etching of triangular gold nanosheets.Mater. Chem. Phys.202330112761910.1016/j.matchemphys.2023.127619
    [Google Scholar]
  55. MalmirM. ShemiraniF. Gold nanoparticles coated with PVP as a novel colorimetric sensor for sensitive and selective determination of Atenolol.Heliyon2023912e2267510.1016/j.heliyon.2023.e2267538213583
    [Google Scholar]
  56. Badi’ahH.I. PuspaningsihN.N.T. SupriyantoG. NasronudinN. Rapid Colorimetric Sensor Based on Gold Nanoparticles Functionalized 4-Amino-3-hydrazino-5-mercapto-1,2,4-triazole for Cortisol Detection in Saliva Sample.Indonesian Journal of Chemistry2023234100910.22146/ijc.80874
    [Google Scholar]
  57. TirkeyA. BabuP.J. Synthesis and characterization of citrate-capped gold nanoparticles and their application in selective detection of creatinine (A kidney biomarker).Sensors International2024510025210.1016/j.sintl.2023.100252
    [Google Scholar]
  58. MondalH.S. HossainM.Z. BirbilisN. A selective LSPR biosensor for molecular-level glycated albumin detection.Heliyon2023912e2279510.1016/j.heliyon.2023.e2279538125431
    [Google Scholar]
  59. SamuelV.R. RaoK.J. A rapid colorimetric dual sensor for the detection of mercury and lead ions in water using cysteine capped silver nanoparticles.Chem. Phys. Impact.20236100161
    [Google Scholar]
  60. ZhangW. LiuG. BiJ. BaoK. WangP. In-situ and ultrasensitive detection of mercury (II) ions (Hg2+) using the localized surface plasmon resonance (LSPR) nanosensor and the microfluidic chip.Sensor Actuat A-Phys.2023349114074
    [Google Scholar]
  61. HarishaK.S. NarayanaB. SangappaY. Highly selective and sensitive colorimetric detection of arsenic(III) in aqueous solution using green synthesized unmodified gold nanoparticles.J. Dispers. Sci. Technol.202344113214310.1080/01932691.2021.1931286
    [Google Scholar]
  62. ArainM. NafadyA. HaqM.A.U. AsifH.M. AhmadH.B. SoomroR.A. ShahM.R. Mujeeb-Ur-Rehman Sirajuddin Secnidazole functionalized silver nanoparticles as trace level colorimetric sensor for the detection of cadmium ions.Optik (Stuttg.)202429917162010.1016/j.ijleo.2024.171620
    [Google Scholar]
  63. BhattacharyyaM. HossainM. Label free colorimetric assay for selective and sensitive detection of exceedingly noxious Cd2+ ions based on Heliotropium indicum leaf extract mediated gold nanoparticles and its application in real sample analysis.J. Environ. Chem. Eng.202412211229510.1016/j.jece.2024.112295
    [Google Scholar]
  64. NafisahS. MorsinM. IwantonoI. SanudinR. Mohd ZainZ. SatriaL. RazaliN.L. MardiansyahD. Growth time dependency on the formation of gold nanobipyramids for efficient detection towards chlorpyrifos-based LSPR sensor.Optik (Stuttg.)202328917127010.1016/j.ijleo.2023.171270
    [Google Scholar]
  65. WangW.Y. ChiuC.L. HuC.C. ChiuT.C. Ag Nanoparticles Decorated by Gallic Acid as a Colorimetric Sensor for the Detection of Cartap Pesticide.ACS Appl. Nano Mater.2023616153241532910.1021/acsanm.3c03402
    [Google Scholar]
  66. TranN.B. NguyenQ.K. VuT.V. HoangA.Q. PhamT.D. PhamD.T. NguyenT.A.H. PhamT.N.M. Polycation-stabilized PDADMAC-gold nanoparticles as a highly sensitive colorimetric sensor for the detection of the chlorpyrifos pesticide.Colloid Polym. Sci.2023301323925010.1007/s00396‑023‑05058‑5
    [Google Scholar]
  67. SahuB. KurreyR. DebM.K. KhalkhoB.R. ManikpuriS. Recognition of malathion pesticides in agricultural samples by using α-CD functionalized gold nanoparticles as a colorimetric sensor.Talanta202325912452610.1016/j.talanta.2023.12452637054619
    [Google Scholar]
  68. KhatoonR. Sibt-e-HassanS. AnwarF. JanB. UddinR. BhuttoM.A. BalochP.A. Polyethylene glycol (PEG) stabilized silver nanoparticles as colorimetric nano-sensor for diazinon detection in water.Appl. Nanosci.20231385467547610.1007/s13204‑023‑02903‑5
    [Google Scholar]
  69. YadavM. SinghR. SinghA.K. SharmaM. TiwariI. UpadhyayK.K. Colorimetric and SERS detection of H2S by D (±) galactose functionalized truncated hexagonal bipyramidal silver nanoresonators.Inorg. Chem. Commun.202315611131610.1016/j.inoche.2023.111316
    [Google Scholar]
  70. Davoodi-RadK. ShokrollahiA. Shahdost-FardF. AzadkishK. Copper-Guanosine Nanorods (Cu-Guo NRs) as a Laccase Mimicking Nanozyme for Colorimetric Detection of Rutin.Biosensors (Basel)202313337410.3390/bios1303037436979586
    [Google Scholar]
  71. SamiA.S. BaraniS.S.I. RashidR.F. ZeebareeS.Y.S. ZeebareeA.Y.S. ZebariO.I.H. AliA.M. IlyasK.S. BisoF.H. IssaM.M. Novel biosensor for highly sensitive detection of serum albumin in artificial human urine using CuNPs@AG. Sens. Bio-Sens. Res.202443100633
    [Google Scholar]
  72. HeH. HuangJ. WangQ. SiX. YanX. LeiY. LiH. LuoL. Colorimetric and visual sensing of ferrous ion by Fenton reaction-stimulated etching of triangular gold nanoplates.Spectrochim. Acta A Mol. Biomol. Spectrosc.202329912283710.1016/j.saa.2023.12283737209473
    [Google Scholar]
  73. BastamiT.R. GhamariY. KhadempirS. KhorasaniM.E. PaolesseR. BayatM. Discriminative detection of morphine and methamphetamine-like street samples by label-free Cu doped-silver nanoparticles chemosensor.J. Ind. Eng. Chem.202413145946910.1016/j.jiec.2023.10.050
    [Google Scholar]
/content/journals/cis/10.2174/012210299X281976240527072849
Loading
/content/journals/cis/10.2174/012210299X281976240527072849
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Bacteria; Colorimetric sensor; DNA; LSPR-based sensor; Nanomaterials sensing; Viruses
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test