Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

Targeted gene and drug delivery vector developments have completely changed the therapeutic intervention by providing previously unheard-of levels of accuracy and efficacy in treating various illnesses. Cancer is one such fatal disease plaguing people across the globe. This review article highlights the potential uses of targeted delivery systems in the field of cancer treatment while providing a thorough examination of the state of the art. Chemotherapy and radiation therapy are being used to cure cancer, yet they can be frequently ineffective and have serious adverse effects. Novel techniques for therapy have to be designed. Existing chemotherapy is being superseded by particular gene therapy used for genetic diseases. Therefore, to deliver the therapeutic agent to the targeted place, a carrier or vector is needed. The current review is focused on targeted gene/drug delivery vectors concerning i) cationic lipids that target single receptors ii) ligand-peptide conjugated cationic lipids iii) modalities for targeting dual ligands for cancer therapy iv) passive active targeting v) properties of nano-formulations for gene and drug delivery. The most recent developments in lipid customization for certain receptors overexpressed in cancer cells are covered to reduce side effects and improve treatment results. By delving into the above areas, this review presents a broad overview of the changing field of cationic lipids in cancer therapy, giving scientists and medical professionals insightful knowledge about the many strategies for ensuring precise and efficient drug delivery in the battle against cancer.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X286300240408071220
2024-04-19
2025-01-31
Loading full text...

Full text loading...

/deliver/fulltext/cis/2/1/CIS-2-E2210299X286300.html?itemId=/content/journals/cis/10.2174/012210299X286300240408071220&mimeType=html&fmt=ahah

References

  1. ThunM.J. DeLanceyJ.O. CenterM.M. JemalA. WardE.M. The global burden of cancer: Priorities for prevention.Carcinogenesis201031110011010.1093/carcin/bgp26319934210
    [Google Scholar]
  2. MaloneE.R. OlivaM. SabatiniP.J.B. StockleyT.L. SiuL.L. Molecular profiling for precision cancer therapies.Genome Med.2020121810.1186/s13073‑019‑0703‑131937368
    [Google Scholar]
  3. CherwinC.H. Gastrointestinal symptom representation in cancer symptom clusters: A synthesis of the literature.Oncol. Nurs. Forum201239215716510.1188/12.ONF.157‑16522374489
    [Google Scholar]
  4. GonçalvesG.A.R. PaivaR.M.A. Gene therapy: Advances, challenges and perspectives.Einstein (Sao Paulo)201715336937510.1590/s1679‑45082017rb402429091160
    [Google Scholar]
  5. DomingoJ. Baeza-CenturionP. LehnerB. (Epistasis).Annu. Rev. Genomics Hum. Genet.201920143346010.1146/annurev‑genom‑083118‑01485731082279
    [Google Scholar]
  6. BulchaJ.T. WangY. MaH. TaiP.W.L. GaoG. Viral vector platforms within the gene therapy landscape.Signal Transduct. Target. Ther.2021615310.1038/s41392‑021‑00487‑633558455
    [Google Scholar]
  7. RaiR. AlwaniS. BadeaI. Polymeric nanoparticles in gene therapy: New avenues of design and optimization for delivery applications.Polymers (Basel)201911474510.3390/polym1104074531027272
    [Google Scholar]
  8. PaunovskaK. LoughreyD. DahlmanJ.E. Drug delivery systems for RNA therapeutics.Nat. Rev. Genet.202223526528010.1038/s41576‑021‑00439‑434983972
    [Google Scholar]
  9. TenchovR. BirdR. CurtzeA.E. ZhouQ. Lipid nanoparticles─from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement.ACS Nano20211511169821701510.1021/acsnano.1c0499634181394
    [Google Scholar]
  10. GosangiM. RavulaV. RapakaH. PatriS.V. α-Tocopherol-anchored gemini lipids with delocalizable cationic head groups: The effect of spacer length on DNA compaction and transfection properties.Org. Biomol. Chem.202119204565457610.1039/D1OB00475A33954315
    [Google Scholar]
  11. MuripitiV. LohchaniaB. RavulaV. ManturthiS. MarepallyS. VelidandiA. PatriS.V. Dramatic influence of the hydroxy functionality of azasugar moiety in the head group region of tocopherol-based cationic lipids on in vitro gene transfection efficacies.New J. Chem.202145261562710.1039/D0NJ03717F
    [Google Scholar]
  12. MuripitiV. BrijeshL. RachamallaH.K. MarepallyS.K. BanerjeeR. PatriS.V. α-Tocopherol-ascorbic acid hybrid antioxidant based cationic amphiphile for gene delivery: Design, synthesis and transfection.Bioorg. Chem.20198217819110.1016/j.bioorg.2018.02.02530326400
    [Google Scholar]
  13. MuripitiV. RachamallaH.K. BanerjeeR. PatriS.V. α-Tocopherol-based cationic amphiphiles with a novel pH sensitive hybrid linker for gene delivery.Org. Biomol. Chem.201816162932294610.1039/C8OB00276B29623327
    [Google Scholar]
  14. LiH. YangY. HongW. HuangM. WuM. ZhaoX. Applications of genome editing technology in the targeted therapy of human diseases: Mechanisms, advances and prospects.Signal Transduct. Target. Ther.202051110.1038/s41392‑019‑0089‑y32296011
    [Google Scholar]
  15. MendesB. B. ConniotJ. AvitalA. YaoD. JiangX. ZhouX. Sharf-PaukerN. XiaoY. AdirO. LiangH. ShiJ. SchroederA. CondeJ. Nanodelivery of nucleic acids.Nat. Rev. Methods Primers.20222124
    [Google Scholar]
  16. WahaneA. WaghmodeA. KapphahnA. DhuriK. GuptaA. BahalR. Role of lipid-based and polymer-based non-viral vectors in nucleic acid delivery for next-generation gene therapy.Molecules20202512286610.3390/molecules2512286632580326
    [Google Scholar]
  17. MuripitiV. LohchaniaB. MarepallyS.K. PatriS.V. Hepatocellular targeted α-tocopherol based pH sensitive galactosylated lipids: Design, synthesis and transfection studies.MedChemComm20189226427410.1039/C7MD00503B30108920
    [Google Scholar]
  18. RavulaV. LoY.L. WuY.T. ChangC.W. PatriS.V. WangL.F. Arginine-tocopherol bioconjugated lipid vesicles for selective pTRAIL delivery and subsequent apoptosis induction in glioblastoma cells.Mater. Sci. Eng. C202112611218910.1016/j.msec.2021.11218934082988
    [Google Scholar]
  19. RavulaV. MuripitiV. ManthurthiS. PatriS.V. α-Tocopherol-Conjugated, Open Chain Sugar-Mimicking Cationic Lipids: Design, Synthesis and In–Vitro Gene Transfection Properties.ChemistrySelect2021646130251303310.1002/slct.202102648
    [Google Scholar]
  20. PuhlD.L. D’AmatoA.R. GilbertR.J. Challenges of gene delivery to the central nervous system and the growing use of biomaterial vectors.Brain Res. Bull.201915021623010.1016/j.brainresbull.2019.05.02431173859
    [Google Scholar]
  21. MitchellM.J. BillingsleyM.M. HaleyR.M. WechslerM.E. PeppasN.A. LangerR. Engineering precision nanoparticles for drug delivery.Nat. Rev. Drug Discov.202120210112410.1038/s41573‑020‑0090‑833277608
    [Google Scholar]
  22. CullisP. R. HopeM. J. Lipid nanoparticle systems for enabling gene therapies.Mol Ther.201725714671475
    [Google Scholar]
  23. ZakrzewskiW. DobrzyńskiM. SzymonowiczM. RybakZ. Stem cells: Past, present, and future.Stem Cell Res. Ther.20191016810.1186/s13287‑019‑1165‑530808416
    [Google Scholar]
  24. MuliaG.E. Picanço-CastroV. StavrouE.F. AthanassiadouA. FigueiredoM.L. Advances in the development and the applications of nonviral, episomal vectors for gene therapy.Hum. Gene Ther.20213219-201076109510.1089/hum.2020.31034348480
    [Google Scholar]
  25. HuangQ. ChenA.T. ChanK.Y. SorensenH. BarryA.J. AzariB. ZhengQ. BeddowT. ZhaoB. TobeyI.G. Moncada-ReidC. EidF.E. WalkeyC.J. LjungbergM.C. LagorW.R. HeaneyJ.D. ChanY.A. DevermanB.E. Targeting AAV vectors to the central nervous system by engineering capsid–receptor interactions that enable crossing of the blood–brain barrier.PLoS Biol.2023217e300211210.1371/journal.pbio.300211237467291
    [Google Scholar]
  26. PlankC. ZatloukalK. CottenM. MechtlerK. WagnerE. Gene transfer into hepatocytes using asialoglycoprotein receptor mediated endocytosis of DNA complexed with an artificial tetra-antennary galactose ligand.Bioconjug. Chem.19923653353910.1021/bc00018a0121463783
    [Google Scholar]
  27. CoulstockE. SosabowskiJ. OvečkaM. PrinceR. GoodallL. MuddC. SeppA. DaviesM. FosterJ. BurnetJ. DunlevyG. WalkerA. Liver-targeting of interferon-alpha with tissue-specific domain antibodies.PLoS One201382e5726310.1371/journal.pone.005726323451195
    [Google Scholar]
  28. SchottJ. W. MorganM. GallaM. SchambachA. Viral and synthetic RNA vector technologies and applications.Mol Ther.2016249151327
    [Google Scholar]
  29. DegorsI.M.S. WangC. RehmanZ.U. ZuhornI.S. Carriers break barriers in drug delivery: Endocytosis and endosomal escape of gene delivery vectors.Acc. Chem. Res.20195271750176010.1021/acs.accounts.9b0017731243966
    [Google Scholar]
  30. DriessenW.H.P. OzawaM.G. ArapW. PasqualiniR. Ligand-directed cancer gene therapy to angiogenic vasculature.Adv. Genet.20096710312110.1016/S0065‑2660(09)67004‑819914451
    [Google Scholar]
  31. HammoodM. CraigA. LeytonJ. Impact of endocytosis mechanisms for the receptors targeted by the currently approved antibody-drug conjugates (ADCs)- A necessity for future adc research and development.Pharmaceuticals (Basel)202114767410.3390/ph1407067434358100
    [Google Scholar]
  32. RichardsD.M. EndresR.G. Target shape dependence in a simple model of receptor-mediated endocytosis and phagocytosis.Proc. Natl. Acad. Sci. USA2016113226113611810.1073/pnas.152197411327185939
    [Google Scholar]
  33. LeRoithD. HollyJ.M.P. ForbesB.E. Insulin-like growth factors: Ligands, binding proteins, and receptors.Mol. Metab.20215210124510.1016/j.molmet.2021.10124533962049
    [Google Scholar]
  34. BrinkmannU. KontermannR.E. The making of bispecific antibodies.MAbs20179218221210.1080/19420862.2016.126830728071970
    [Google Scholar]
  35. ZhongX. D’AntonaA.M. Recent Advances in the Molecular Design and Applications of Multispecific Biotherapeutics.Antibodies (Basel)20211021310.3390/antib1002001333808165
    [Google Scholar]
  36. RitchieM. TchistiakovaL. ScottN. Implications of receptor-mediated endocytosis and intracellular trafficking dynamics in the development of antibody drug conjugates.MAbs201351132110.4161/mabs.2285423221464
    [Google Scholar]
  37. FuZ. LiS. HanS. ShiC. ZhangY. Antibody drug conjugate: The “biological missile” for targeted cancer therapy.Signal Transduct. Target. Ther.2022719310.1038/s41392‑022‑00947‑735318309
    [Google Scholar]
  38. RizwanullahM. AhmadM.Z. GhoneimM.M. AlshehriS. ImamS.S. MdS. AlhakamyN.A. JainK. AhmadJ. Receptor-mediated targeted delivery of surface-modifiednanomedicine in breast cancer: Recent update and challenges.Pharmaceutics20211312203910.3390/pharmaceutics1312203934959321
    [Google Scholar]
  39. Appert-CollinA. HubertP. CrémelG. BennasrouneA. Role of ErbB Receptors in Cancer Cell Migration and Invasion.Front. Pharmacol.2015628310.3389/fphar.2015.0028326635612
    [Google Scholar]
  40. BékésM. LangleyD.R. CrewsC.M. PROTAC targeted protein degraders: The past is prologue.Nat. Rev. Drug Discov.202221318120010.1038/s41573‑021‑00371‑635042991
    [Google Scholar]
  41. JinS. SunY. LiangX. GuX. NingJ. XuY. ChenS. PanL. Emerging new therapeutic antibody derivatives for cancer treatment.Signal Transduct. Target. Ther.2022713910.1038/s41392‑021‑00868‑x35132063
    [Google Scholar]
  42. ManzanaresD. CeñaV. Endocytosis: The nanoparticle and submicron nanocompounds gateway into the cell.Pharmaceutics202012437110.3390/pharmaceutics1204037132316537
    [Google Scholar]
  43. El-SayedA. HarashimaH. Endocytosis of gene delivery vectors: from clathrin-dependent to lipid raft-mediated endocytosis.Mol. Ther.201321611181130
    [Google Scholar]
  44. YaoY. ZhouY. LiuL. XuY. ChenQ. WangY. WuS. DengY. ZhangJ. ShaoA. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance.Front. Mol. Biosci.2020719310.3389/fmolb.2020.0019332974385
    [Google Scholar]
  45. SaraswatA. VemanaH.P. DukhandeV.V. PatelK. Galactose-decorated liver tumor-specific nanoliposomes incorporating selective BRD4-targeted PROTAC for hepatocellular carcinoma therapy.Heliyon202281e0870210.1016/j.heliyon.2021.e0870235036599
    [Google Scholar]
  46. IbrahimM.A.I. OthmanR. CheeC.F. Ahmad FisolF. Evaluation of folate-functionalized nanoparticle drug delivery systems—effectiveness and concerns.Biomedicines2023117208010.3390/biomedicines1107208037509719
    [Google Scholar]
  47. ZhaoX. LiH. LeeR.J. Targeted drug delivery via folate receptors.Expert Opin. Drug Deliv.20085330931910.1517/17425247.5.3.30918318652
    [Google Scholar]
  48. BellottiE. CasconeM.G. BarbaniN. RossinD. RastaldoR. GiachinoC. CristalliniC. Targeting Cancer cells overexpressing folate receptors with new terpolymer-based nanocapsules: Toward a novel targeted dna delivery system for cancer therapy.Biomedicines202199127510.3390/biomedicines909127534572461
    [Google Scholar]
  49. EbrahimnejadP. Sodagar TaleghaniA. Asare-AddoK. NokhodchiA. An updated review of folate-functionalized nanocarriers: A promising ligand in cancer.Drug Discov. Today202227247148910.1016/j.drudis.2021.11.01134781032
    [Google Scholar]
  50. MuripitiV. MujahidT.Y. BoddedaV.H.V. TiwariS. MarepallyS.K. PatriS.V. GopalV. Structure-activity relationship of serotonin derived tocopherol lipids.Int. J. Pharm.201955413414810.1016/j.ijpharm.2018.10.07230389474
    [Google Scholar]
  51. KarmakarS. LalG. Role of serotonin receptor signaling in cancer cells and anti-tumor immunity.Theranostics202111115296531210.7150/thno.5598633859748
    [Google Scholar]
  52. VivèsE. SchmidtJ. PèlegrinA. Cell-penetrating and cell-targeting peptides in drug delivery.Biochim. Biophys. Acta20081786212613818440319
    [Google Scholar]
  53. SofiasA.M. TonerY.C. MeerwaldtA.E. van LeentM.M.T. SoultanidisG. ElschotM. GonaiH. GrendstadK. FlobakÅ. NeckmannU. WolowczykC. FisherE.L. ReinerT. DaviesC.L. BjørkøyG. TeunissenA.J.P. OchandoJ. Pérez-MedinaC. MulderW.J.M. HakS. Tumor targeting by α v β 3 -integrin-specific lipid nanoparticles occurs via phagocyte hitchhiking.ACS Nano20201477832784610.1021/acsnano.9b0869332413260
    [Google Scholar]
  54. Di BenedettoM. StarzecA. VassyR. PerretG.Y. CrépinM. Distinct heparin binding sites on VEGF165 and its receptors revealed by their interaction with a non sulfated glycoaminoglycan (NaPaC).Biochim. Biophys. Acta, Gen. Subj.20081780472373210.1016/j.bbagen.2008.01.01518325345
    [Google Scholar]
  55. ZabroskiI.O. NugentM.A. Lipid raft association stabilizes VEGF receptor 2 in endothelial cells.Int. J. Mol. Sci.202122279810.3390/ijms2202079833466887
    [Google Scholar]
  56. NgE.W.M. ShimaD.T. CaliasP. CunninghamE.T.Jr GuyerD.R. AdamisA.P. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease.Nat. Rev. Drug Discov.20065212313210.1038/nrd195516518379
    [Google Scholar]
  57. LiuY. LiY. WangY. LinC. ZhangD. ChenJ. OuyangL. WuF. ZhangJ. ChenL. Recent progress on vascular endothelial growth factor receptor inhibitors with dual targeting capabilities for tumor therapy.J. Hematol. Oncol.20221518910.1186/s13045‑022‑01310‑735799213
    [Google Scholar]
  58. DanielsT.R. DelgadoT. HelgueraG. PenichetM.L. The transferrin receptor part II: Targeted delivery of therapeutic agents into cancer cells.Clin. Immunol.2006121215917610.1016/j.clim.2006.06.00616920030
    [Google Scholar]
  59. KawakP. SawaftahN.M.A. PittW.G. HusseiniG.A. Transferrin-targeted liposomes in glioblastoma therapy: A review.Int. J. Mol. Sci.202324171326210.3390/ijms24171326237686065
    [Google Scholar]
  60. Mojarad-JabaliS. MahdinlooS. FarshbafM. SarfrazM. FatahiY. AtyabiF. ValizadehH. Transferrin receptor-mediated liposomal drug delivery: Recent trends in targeted therapy of cancer.Expert Opin. Drug Deliv.202219668570510.1080/17425247.2022.208310635698794
    [Google Scholar]
  61. LeuschnerC. KumarC.S.S.R. HanselW. SoboyejoW. ZhouJ. HormesJ. LHRH-conjugated magnetic iron oxide nanoparticles for detection of breast cancer metastases.Breast Cancer Res. Treat.200699216317610.1007/s10549‑006‑9199‑716752077
    [Google Scholar]
  62. LiX. TaratulaO. TaratulaO. SchumannC. MinkoT. LHRH-targeted drug delivery systems for cancer therapy.Mini Rev. Med. Chem.201717325826710.2174/138955751666616101311115527739358
    [Google Scholar]
  63. KirpotinD. ParkJ.W. HongK. ZalipskyS. LiW.L. CarterP. BenzC.C. PapahadjopoulosD. Sterically stabilized anti-HER2 immunoliposomes: Design and targeting to human breast cancer cells in vitro.Biochemistry1997361667510.1021/bi962148u8993319
    [Google Scholar]
  64. JangM. YoonY.I. KwonY.S. YoonT.J. LeeH.J. HwangS.I. YunB.L. KimS.M. Trastuzumab-conjugated liposome-coated fluorescent magnetic nanoparticles to target breast cancer.Korean J. Radiol.201415441142210.3348/kjr.2014.15.4.41125053899
    [Google Scholar]
  65. CutmoreN.H. KrupkaJ.A. HodsonD.J. Genetic profiling in diffuse large B-cell lymphoma: The promise and the challenge.Modern pathology: An official journal of the United States and Canadian Academy of Pathology Inc2023361100007
    [Google Scholar]
  66. ShenR. FuD. DongL. ZhangM.C. ShiQ. ShiZ.Y. ChengS. WangL. XuP.P. ZhaoW.L. Simplified algorithm for genetic subtyping in diffuse large B-cell lymphoma.Signal Transduct. Target. Ther.20238114510.1038/s41392‑023‑01358‑y37032379
    [Google Scholar]
  67. KongF. ZhouF. GeL. LiuX. WangY. Zhou Mannosylated liposomes for targeted gene delivery.Int. J. Nanomedicine201271079108910.2147/IJN.S2918322393297
    [Google Scholar]
  68. KarmaliP.P. KumarV.V. ChaudhuriA. Design, syntheses and in vitro gene delivery efficacies of novel mono-, di- and trilysinated cationic lipids: A structure-activity investigation.J. Med. Chem.20044782123213210.1021/jm030541+15056009
    [Google Scholar]
  69. MokuG. VangalaS. GullaS.K. YakatiV. In vivo targeting of DNA vaccines to dendritic cells via the mannose receptor induces long-lasting immunity against melanoma.ChemBioChem202122352353110.1002/cbic.20200036432909670
    [Google Scholar]
  70. ReddyB.S. BanerjeeR. 17Beta-estradiol-associated stealth-liposomal delivery of anticancer gene to breast cancer cells.Angew. Chem. Int. Ed.200544416723672710.1002/anie.20050179316187396
    [Google Scholar]
  71. WangL. WangN. ZhangW. ChengX. YanZ. ShaoG. WangX. WangR. FuC. Therapeutic peptides: Current applications and future directions.Signal Transduct. Target. Ther.2022714810.1038/s41392‑022‑00904‑435165272
    [Google Scholar]
  72. GokhaleA.S. SatyanarayanajoisS. Peptides and peptidomimetics as immunomodulators.Immunotherapy20146675577410.2217/imt.14.3725186605
    [Google Scholar]
  73. YangY. LiuZ. MaH. CaoM. Application of peptides in construction of nonviral vectors for gene delivery.Nanomaterials (Basel)20221222407610.3390/nano1222407636432361
    [Google Scholar]
  74. KangZ. MengQ. LiuK. Peptide-based gene delivery vectors.J. Mater. Chem. B Mater. Biol. Med.20197111824184110.1039/C8TB03124J32255045
    [Google Scholar]
  75. AlhakamyN.A. NigatuA.S. BerklandC.J. RamseyJ.D. Noncovalently associated cell-penetrating peptides for gene delivery applications.Ther. Deliv.20134674175710.4155/tde.13.4423738670
    [Google Scholar]
  76. GhoraiS.M. DeepA. MagooD. GuptaC. GuptaN. Cell-penetrating and targeted peptides delivery systems as potential pharmaceutical carriers for enhanced delivery across the blood–brain barrier (BBB).Pharmaceutics2023157199910.3390/pharmaceutics1507199937514185
    [Google Scholar]
  77. Lopez-SalasF.E. NadellaR. Maldonado-BernyM. Escobedo-SanchezM.L. Fiorentino-PérezR. Gatica-GarcíaB. Fernandez-ParrillaM.A. Mario GilM. Reyes-CoronaD. GarcíaU. Orozco-BarriosC.E. Gutierrez-CastilloM.E. Martinez-FongD. Synthetic monopartite peptide that enables the nuclear import of genes delivered by the neurotensin-polyplex vector.Mol. Pharm.202017124572458810.1021/acs.molpharmaceut.0c0075533125243
    [Google Scholar]
  78. WangC. PanC. YongH. WangF. BoT. ZhaoY. MaB. HeW. LiM. Emerging non-viral vectors for gene delivery.J. Nanobiotechnology202321127210.1186/s12951‑023‑02044‑537592351
    [Google Scholar]
  79. RavulaV. LoY.L. WangL.F. PatriS.V. Gemini lipopeptide bearing an ultrashort peptide for enhanced transfection efficiency and cancer-cell-specific cytotoxicity.ACS Omega2021635229552296810.1021/acsomega.1c0362034514266
    [Google Scholar]
  80. HadianamreiR. ZhaoX. Current state of the art in peptide-based gene delivery.J Control Release2022343600619
    [Google Scholar]
  81. KimS. ShinD.H. NamB.Y. KangH.Y. ParkJ. WuM. KimN.H. KimH.S. ParkJ.T. HanS.H. KangS.W. YookJ.I. YooT.H. Newly designed protein transduction domain (PTD)-mediated BMP-7 is a potential therapeutic for peritoneal fibrosis.J. Cell. Mol. Med.20202422135071352210.1111/jcmm.1599233079436
    [Google Scholar]
  82. ChauhanA. TikooA. KapurA. K. SinghM. The taming of the cell penetrating domain of the HIV Tat: Myths and realities.J Control Release.20071172148162
    [Google Scholar]
  83. XieJ. BiY. ZhangH. DongS. TengL. LeeR.J. YangZ. Cell-penetrating peptides in diagnosis and treatment of human diseases: from preclinical research to clinical application.Front. Pharmacol.20201169710.3389/fphar.2020.0069732508641
    [Google Scholar]
  84. GostaviceanuA. GavrilaşS. CopoloviciL. CopoloviciD.M. Membrane-active peptides and their potential biomedical application.Pharmaceutics2023158209110.3390/pharmaceutics1508209137631305
    [Google Scholar]
  85. LiuS. Radiolabeled cyclic RGD peptides as integrin alpha(v)beta(3)-targeted radiotracers: Maximizing binding affinity via bivalency.Bioconjug. Chem.200920122199221310.1021/bc900167c19719118
    [Google Scholar]
  86. SarinV. GaffinR.D. MeiningerG.A. MuthuchamyM. Arginine–glycine–aspartic acid (RGD)-containing peptides inhibit the force production of mouse papillary muscle bundles via α 5 β 1 integrin.J. Physiol.2005564260361710.1113/jphysiol.2005.08323815718258
    [Google Scholar]
  87. DongY. ChenY. ZhuD. ShiK. MaC. ZhangW. RocchiP. JiangL. LiuX. Self-assembly of amphiphilic phospholipid peptide dendrimer-based nanovectors for effective delivery of siRNA therapeutics in prostate cancer therapy.J Control Release.2020322416425
    [Google Scholar]
  88. LeeJ.M. YoonT.J. ChoY.S. Recent developments in nanoparticle-based siRNA delivery for cancer therapy.BioMed Res. Int.2013201311010.1155/2013/78204123844368
    [Google Scholar]
  89. BellisS.L. Advantages of RGD peptides for directing cell association with biomaterials.Biomaterials201132184205421010.1016/j.biomaterials.2011.02.02921515168
    [Google Scholar]
  90. BajracharyaR. SongJ.G. PatilB.R. LeeS.H. NohH.M. KimD.H. KimG.L. SeoS.H. ParkJ.W. JeongS.H. LeeC.H. HanH.K. Functional ligands for improving anticancer drug therapy: Current status and applications to drug delivery systems.Drug Deliv.20222911959197010.1080/10717544.2022.208929635762636
    [Google Scholar]
  91. NavyaP.N. KaphleA. SrinivasS.P. BhargavaS.K. RotelloV.M. DaimaH.K. Current trends and challenges in cancer management and therapy using designer nanomaterials.Nano Converg.2019612310.1186/s40580‑019‑0193‑231304563
    [Google Scholar]
  92. FanD. CaoY. CaoM. WangY. CaoY. GongT. Nanomedicine in cancer therapy.Signal Transduct. Target. Ther.20238129310.1038/s41392‑023‑01536‑y37544972
    [Google Scholar]
  93. KhanN. Ruchika DhritlahreR.K. SanejaA. Recent advances in dual-ligand targeted nanocarriers for cancer therapy.Drug Discov. Today20222782288229910.1016/j.drudis.2022.04.01135439614
    [Google Scholar]
  94. SannaV. PalaN. SechiM. Targeted therapy using nanotechnology: Focus on cancer.Int. J. Nanomedicine2014946748324531078
    [Google Scholar]
  95. JingF. LiJ. LiuD. WangC. SuiZ. Dual ligands modified double targeted nano-system for liver targeted gene delivery.Pharm. Biol.201351564364910.3109/13880209.2012.76124523527957
    [Google Scholar]
  96. FaresJ. FaresM.Y. KhachfeH.H. SalhabH.A. FaresY. Molecular principles of metastasis: A hallmark of cancer revisited.Signal Transduct. Target. Ther.2020512810.1038/s41392‑020‑0134‑x32296047
    [Google Scholar]
  97. MasudaH. ZhangD. BartholomeuszC. DoiharaH. HortobagyiG.N. UenoN.T. Role of epidermal growth factor receptor in breast cancer.Breast Cancer Res. Treat.2012136233134510.1007/s10549‑012‑2289‑923073759
    [Google Scholar]
  98. Gandullo-SanchezL. OcanaA. PandiellaA. HER3 in cancer: From the bench to the bedside. Journal of experimental & clinical cancer research.CR (East Lansing Mich.)2022411310
    [Google Scholar]
  99. HsuJ.L. HungM.C. The role of HER2, EGFR, and other receptor tyrosine kinases in breast cancer.Cancer Metastasis Rev.201635457558810.1007/s10555‑016‑9649‑627913999
    [Google Scholar]
  100. BianchiM.E. MezzapelleR. The chemokine receptor CXCR4 in cell proliferation and tissue regeneration.Front. Immunol.202011210910.3389/fimmu.2020.0210932983169
    [Google Scholar]
  101. WieduwiltM.J. MoasserM.M. The epidermal growth factor receptor family: Biology driving targeted therapeutics.Cell. Mol. Life Sci.200865101566158410.1007/s00018‑008‑7440‑818259690
    [Google Scholar]
  102. WuX. ChenJ. WuM. ZhaoJ.X. Aptamers: Active targeting ligands for cancer diagnosis and therapy.Theranostics20155432234410.7150/thno.1025725699094
    [Google Scholar]
  103. YangT. ZhaiJ. HuD. YangR. WangG. LiY. LiangG. “Targeting Design” of nanoparticles in tumor therapy.Pharmaceutics2022149191910.3390/pharmaceutics1409191936145668
    [Google Scholar]
  104. MachadoJ.F. CorreiaJ.D.G. MoraisT.S. Emerging molecular receptors for the specific-target delivery of ruthenium and gold complexes into cancer cells.Molecules20212611315310.3390/molecules2611315334070457
    [Google Scholar]
  105. GurunathanS. KangM.H. QasimM. KimJ.H. Nanoparticle-mediated combination therapy: Two-in-one approach for cancer.Int. J. Mol. Sci.20181910326410.3390/ijms1910326430347840
    [Google Scholar]
  106. VermaJ. WarsameC. SeenivasagamR.K. KatiyarN.K. AleemE. GoelS. Nanoparticle-mediated cancer cell therapy: Basic science to clinical applications.Cancer Metastasis Rev.202342360162710.1007/s10555‑023‑10086‑236826760
    [Google Scholar]
  107. DinF. AmanW. UllahI. QureshiO.S. MustaphaO. ShafiqueS. ZebA. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors.Int. J. Nanomedicine2017127291730910.2147/IJN.S14631529042776
    [Google Scholar]
  108. BloiseN. OkkehM. RestivoE. Della PinaC. VisaiL. Targeting the “Sweet Side” of tumor with glycan-binding molecules conjugated-nanoparticles: Implications in cancer therapy and diagnosis.Nanomaterials (Basel)202111228910.3390/nano1102028933499388
    [Google Scholar]
  109. ZhengQ.C. JiangS. WuY.Z. ShangD. ZhangY. HuS.B. ChengX. ZhangC. SunP. GaoY. SongZ.F. LiM. Dual-targeting nanoparticle-mediated gene therapy strategy for hepatocellular carcinoma by delivering small interfering RNA.Front. Bioeng. Biotechnol.2020851210.3389/fbioe.2020.0051232587849
    [Google Scholar]
  110. XiongL. DuX. KleitzF. QiaoS.Z. Cancer-cell-specific nuclear-targeted drug delivery by dual-ligand-modified mesoporous silica nanoparticles.Small201511445919592610.1002/smll.20150105626426251
    [Google Scholar]
  111. JoseS. AC.T. SebastianR. HS.M. AA.N. DurazzoA. LucariniM. SantiniA. SoutoE.B. Transferrin-conjugated docetaxel–PLGA nanoparticles for tumor targeting: Influence on MCF-7 Cell Cycle.Polymers (Basel)20191111190510.3390/polym1111190531752417
    [Google Scholar]
  112. CuiY. XuQ. DavoodiP. WangD. WangC.H. Enhanced intracellular delivery and controlled drug release of magnetic PLGA nanoparticles modified with transferrin.Acta Pharmacol. Sin.201738694395310.1038/aps.2017.4528552909
    [Google Scholar]
  113. SpellerbergR. Benli-HoppeT. KitzbergerC. HageneierM. SchwenkN. ÖztürkÖ. SteigerK. MulthoffG. EiberM. SchillingF. WeberW.A. KälinR.E. GlassR. NelsonP.J. WagnerE. SpitzwegC. Dual EGFR- and TfR-targeted gene transfer for sodium iodide symporter gene therapy of glioblastoma.Mol. Ther. Oncolytics20222727228710.1016/j.omto.2022.10.01336458201
    [Google Scholar]
  114. LuL. ChenH. WangL. ZhaoL. ChengY. WangA. WangF. ZhangX. A dual receptor targeting- and bbb penetrating- peptide functionalized polyethyleneimine nanocomplex for secretory endostatin gene delivery to malignant glioma.Int. J. Nanomedicine2020158875889210.2147/IJN.S27020833209022
    [Google Scholar]
  115. ChenP. WangD. WangY. ZhangL. WangQ. LiuL. LiJ. SunX. RenM. WangR. FangY. ZhaoJ.J. ZhangK. Maximizing TLR9 activation in cancer immunotherapy with dual-adjuvanted spherical nucleic acids.Nano Lett.202222104058406610.1021/acs.nanolett.2c0072335522597
    [Google Scholar]
  116. PengJ. LiuK. CaoL. DuanD. SongG. LiuS. WangL. LiJ. ZhangX. HuangK. ZhaoY. NiuY. HanG. Adenoviral vector for enhanced prostate cancer specific transferrin conjugated drug targeted therapy.Nano Lett.202222104168417510.1021/acs.nanolett.2c0093135522032
    [Google Scholar]
  117. ZhangL. YaoK. WangY. ZhouY.L. FuZ. LiG. LingJ. YangY. Brain-targeted dual site-selective functionalized poly (β-Amino Esters) delivery platform for nerve regeneration.Nano Lett.20212173007301510.1021/acs.nanolett.1c0017533797927
    [Google Scholar]
  118. ZhangB. ZhangY. YuD. Lung cancer gene therapy: Transferrin and hyaluronic acid dual ligand-decorated novel lipid carriers for targeted gene delivery.Oncol. Rep.201737293794410.3892/or.2016.529827959442
    [Google Scholar]
  119. KeX. LinW. LiX. WangH. XiaoX. GuoZ. Synergistic dual-modified liposome improves targeting and therapeutic efficacy of bone metastasis from breast cancer.Drug Deliv.20172411680168910.1080/10717544.2017.139638429092646
    [Google Scholar]
  120. LakkadwalaS. Dos Santos RodriguesB. SunC. SinghJ. Dual functionalized liposomes for efficient co-delivery of anti-cancer chemotherapeutics for the treatment of glioblastoma.J Control Release.2019307247260
    [Google Scholar]
  121. LakkadwalaS. dos Santos RodriguesB. SunC. SinghJ. Biodistribution of TAT or QLPVM coupled to receptor targeted liposomes for delivery of anticancer therapeutics to brain in vitro and in vivo.Nanomedicine20202310211210.1016/j.nano.2019.10211231669083
    [Google Scholar]
  122. PuY. ZhangH. PengY. FuQ. YueQ. ZhaoY. GuoL. WuY. Dual-targeting liposomes with active recognition of GLUT5 and αvβ3 for triple-negative breast cancer.Eur. J. Med. Chem.201918311172010.1016/j.ejmech.2019.11172031553933
    [Google Scholar]
  123. DeshpandeP. JhaveriA. PattniB. BiswasS. TorchilinV. Transferrin and octaarginine modified dual-functional liposomes with improved cancer cell targeting and enhanced intracellular delivery for the treatment of ovarian cancer.Drug Deliv.201825151753210.1080/10717544.2018.143574729433357
    [Google Scholar]
  124. ZhaoZ. ZhaoY. XieC. ChenC. LinD. WangS. LinD. CuiX. GuoZ. ZhouJ. Dual-active targeting liposomes drug delivery system for bone metastatic breast cancer: Synthesis and biological evaluation.Chem. Phys. Lipids201922310478510.1016/j.chemphyslip.2019.10478531194968
    [Google Scholar]
  125. YangY. ZhaoZ. XieC. ZhaoY. Dual-targeting liposome modified by glutamic hexapeptide and folic acid for bone metastatic breast cancer.Chem. Phys. Lipids202022810488210.1016/j.chemphyslip.2020.10488232017901
    [Google Scholar]
  126. ClemonsT.D. SinghR. SorollaA. ChaudhariN. HubbardA. IyerK.S. Distinction between active and passive targeting of nanoparticles dictate their overall therapeutic efficacy.Langmuir20183450153431534910.1021/acs.langmuir.8b0294630441895
    [Google Scholar]
  127. BazakR. HouriM. AchyS.E. HusseinW. RefaatT. Passive targeting of nanoparticles to cancer: A comprehensive review of the literature.Mol. Clin. Oncol.20142690490810.3892/mco.2014.35625279172
    [Google Scholar]
  128. KamalyN. XiaoZ. ValenciaP.M. Radovic-MorenoA.F. FarokhzadO.C. Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation.Chem. Soc. Rev.20124172971301010.1039/c2cs15344k22388185
    [Google Scholar]
  129. TorchilinV.P. Passive and active drug targeting: Drug delivery to tumors as an example.Handb. Exp. Pharmacol.201019719735310.1007/978‑3‑642‑00477‑3_120217525
    [Google Scholar]
  130. IzciM. MaksoudianC. ManshianB.B. SoenenS.J. The use of alternative strategies for enhanced nanoparticle delivery to solid tumors.Chem. Rev.202112131746180310.1021/acs.chemrev.0c0077933445874
    [Google Scholar]
  131. ZhuL. StaleyC. KoobyD. El-RaysB. MaoH. YangL. Current status of biomarker and targeted nanoparticle development: The precision oncology approach for pancreatic cancer therapy.Cancer Lett.201738813914810.1016/j.canlet.2016.11.03027916607
    [Google Scholar]
  132. HamiZ. A brief review on advantages of nano-based drug delivery systems.Annals of Military and Health Sciences Research2021191e11227410.5812/amh.112274
    [Google Scholar]
  133. MaheriH. HashemzadehF. ShakibapourN. KamelniyaE. Malaekeh-NikoueiB. MokaberiP. ChamaniJ. Glucokinase activity enhancement by cellulose nanocrystals isolated from jujube seed: A novel perspective for type II diabetes mellitus treatment (In vitro).J. Mol. Struct.2022126913380310.1016/j.molstruc.2022.133803
    [Google Scholar]
  134. KalhoriF. YazdyaniH. KhademorezaeianF. HamzkanlooN. MokaberiP. HosseiniS. ChamaniJ. Enzyme activity inhibition properties of new cellulose nanocrystals from Citrus medica L. pericarp: A perspective of cholesterol lowering.Luminescence202237111836184510.1002/bio.436035946171
    [Google Scholar]
  135. KhievD. MohamedZ.A. VichareR. PaulsonR. BhatiaS. MohapatraS. LoboG.P. ValapalaM. KerurN. PassagliaC.L. MohapatraS.S. BiswalM.R. Emerging nano-formulations and nanomedicines applications for ocular drug delivery.Nanomaterials (Basel)202111117310.3390/nano1101017333445545
    [Google Scholar]
  136. RahmaniR. GharanfoliM. GholaminM. DarroudiM. ChamaniJ. SadriK. HashemzadehA. Plant-mediated synthesis of superparamagnetic iron oxide nanoparticles (SPIONs) using aloe vera and flaxseed extracts and evaluation of their cellular toxicities.Ceram. Int.20204633051305810.1016/j.ceramint.2019.10.005
    [Google Scholar]
  137. ThapaR.K. KimJ.O. Nanomedicine-based commercial formulations: Current developments and future prospects.J. Pharm. Investig.2023531193310.1007/s40005‑022‑00607‑636568502
    [Google Scholar]
  138. PengY. ChenL. YeS. KangY. LiuJ. ZengS. YuL. Research and development of drug delivery systems based on drug transporter and nano-formulation.Asian Journal of Pharmaceutical Sciences202015222023610.1016/j.ajps.2020.02.00432373201
    [Google Scholar]
  139. TianY. SunY. WangX. KasparisG. MaoS. Chitosan and its derivatives-based nano-formulations in drug delivery. Nanobiomaterials in Drug DeliveryAmsterdamElsevier201610.1016/B978‑0‑323‑42866‑8.00015‑0
    [Google Scholar]
  140. RizviS.A.A. SalehA.M. Applications of nanoparticle systems in drug delivery technology.Saudi Pharm. J.2018261647010.1016/j.jsps.2017.10.01229379334
    [Google Scholar]
  141. WhelessJ.W. PhelpsS.J. A clinician’s guide to oral extended-release drug delivery systems in epilepsy.J. Pediatr. Pharmacol. Ther.201823427729210.5863/1551‑6776‑23.4.27730181718
    [Google Scholar]
  142. GuptaS. KesarlaR. OmriA. Formulation strategies to improve the bioavailability of poorly absorbed drugs with special emphasis on self-emulsifying systems.ISRN Pharm.2013201311610.1155/2013/84804324459591
    [Google Scholar]
/content/journals/cis/10.2174/012210299X286300240408071220
Loading
/content/journals/cis/10.2174/012210299X286300240408071220
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test