Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

Diabetes Mellitus (DM) is a compounded, persistent illness symbolized by an increased range of glucose levels in the blood caused by cellular resistance to insulin action, insufficient insulin production by pancreatic -cells, or both. Type 1 Diabetes Mellitus (T1DM), the extremely widespread form of DM, is recorded for almost 85-90% of worldwide cases. T2DM is mostly common in middle-aged and older people, and its causes are multifaceted. The use of efficient and profitable solutions for DM screening is critical to ensure pre-identification and minimising patients' risk of acquiring the life-compromising illness. Identification of innovative biomarkers with test methods of DM is therefore critical in order to establish vigorous, non-invasive, pain-free, highly sensitive, and precise procedures for screening. The purpose of this review article is to mention and review all the necessary biomarkers that play a vital role in disease diagnosis and to highlight the present-day findings of the latest clinically validated and traditional biomarkers and procedures for determining them, which provide cost-efficient options for T2DM screening with early detection. It is concluded that various biomarkers, both conventional and innovative, go hand in hand to diagnose the DM of any type.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X257270231127062630
2023-12-20
2024-12-28
Loading full text...

Full text loading...

/deliver/fulltext/cis/2/1/CIS-2-E2210299X257270.html?itemId=/content/journals/cis/10.2174/012210299X257270231127062630&mimeType=html&fmt=ahah

References

  1. InzucchiS.E. SherwinR.S. Type 2 diabetes mellitus. Cecil Medicine.24th edPhiladelphia, PaSaunders Elsevier2011
    [Google Scholar]
  2. KaoK.T. SabinM.A. Type 2 diabetes mellitus in children and adolescents.Aust. Fam. Physician201645640140627622231
    [Google Scholar]
  3. OlokobaA.B. ObateruO.A. OlokobaL.B. Type 2 diabetes mellitus: a review of current trends.Oman Med. J.201227426927310.5001/omj.2012.6823071876
    [Google Scholar]
  4. American Diabetes AssociationDiagnosis and classification of diabetes mellitus.Diabetes Care201336S1S67S7410.2337/dc13‑S06723264425
    [Google Scholar]
  5. MayfieldJ. Diagnosis and classification of diabetes mellitus: New criteria.Am. Fam. Physician199858613551362, 1369-13709803200
    [Google Scholar]
  6. ChaturvediN. The burden of diabetes and its complications: Trends and implications for intervention.Diabetes Res. Clin. Pract.2007763S3S1210.1016/j.diabres.2007.01.01917343954
    [Google Scholar]
  7. VigerskyR.A. An overview of management issues in adult patients with type 2 diabetes mellitus.J. Diabetes Sci. Technol.20115224525010.1177/19322968110050020721527089
    [Google Scholar]
  8. FongD.S. AielloL. GardnerT.W. KingG.L. BlankenshipG. CavalleranoJ.D. FerrisF.L.III KleinR. Retinopathy in diabetes.Diabetes Care200427S1s84s8710.2337/diacare.27.2007.S8414693935
    [Google Scholar]
  9. WuY. DingY. TanakaY. ZhangW. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention.Int. J. Med. Sci.201411111185120010.7150/ijms.1000125249787
    [Google Scholar]
  10. KernerW. BrückelJ. Definition, classification and diagnosis of diabetes mellitus.Exp. Clin. Endocrinol. Diabetes2014122738438610.1055/s‑0034‑136627825014088
    [Google Scholar]
  11. SosaleA. Prasanna KumarK.M. SadikotS.M. NigamA. BajajS. ZargarA.H. SinghS.K. Chronic complications in newly diagnosed patients with Type 2 diabetes mellitus in India.Indian J. Endocrinol. Metab.201418335536010.4103/2230‑8210.13118424944931
    [Google Scholar]
  12. KumarP.R. BhansaliA. RavikiranM. BhansaliS. DuttaP. ThakurJ.S. SachdevaN. BhadadaS.K. WaliaR. Utility of glycated hemoglobin in diagnosing type 2 diabetes mellitus: a community-based study.J. Clin. Endocrinol. Metab.20109562832283510.1210/jc.2009‑243320371663
    [Google Scholar]
  13. CoxM.E. EdelmanD. Tests for screening and diagnosis of type 2 diabetes.Clin. Diabetes200927413213810.2337/diaclin.27.4.132
    [Google Scholar]
  14. GenuthS. AlbertiK.G. BennettP. BuseJ. DefronzoR. KahnR. KitzmillerJ. KnowlerW.C. LebovitzH. LernmarkA. NathanD. PalmerJ. RizzaR. SaudekC. ShawJ. SteffesM. SternM. TuomilehtoJ. ZimmetP. Follow-up report on the diagnosis of diabetes mellitus.Diabetes Care200326113160316710.2337/diacare.26.11.316014578255
    [Google Scholar]
  15. PerryR.C. ShankarR.R. FinebergN. McGillJ. BaronA.D. HbA1c measurement improves the detection of type 2 diabetes in high-risk individuals with nondiagnostic levels of fasting plasma glucose: The Early Diabetes Intervention Program (EDIP).Diabetes Care200124346547110.2337/diacare.24.3.46511289469
    [Google Scholar]
  16. DedovI. ShestakovaM. BenedettiM.M. SimonD. PakhomovI. GalstyanG. Prevalence of type 2 diabetes mellitus (T2DM) in the adult Russian population (NATION study).Diabetes Res. Clin. Pract.2016115909510.1016/j.diabres.2016.02.01027107818
    [Google Scholar]
  17. StrimbuK. TavelJ.A. What are biomarkers?Curr. Opin. HIV AIDS20105646346610.1097/COH.0b013e32833ed17720978388
    [Google Scholar]
  18. MayeuxR. Biomarkers: Potential uses and limitations.NeuroRx20041218218810.1602/neurorx.1.2.18215717018
    [Google Scholar]
  19. LaaksoM. Biomarkers for type 2 diabetes.Mol. Metab.201927S139S14610.1016/j.molmet.2019.06.01631500825
    [Google Scholar]
  20. EhtewishH ArredouaniA El-AgnafO. Diagnostic, prognostic, and mechanistic biomarkers of diabetes mellitus-associated cognitive decline.Int J Mol Sci.20222311614410.3390/ijms23116144
    [Google Scholar]
  21. SciricaB.M. Use of biomarkers in predicting the onset, monitoring the progression, and risk stratification for patients with type 2 diabetes mellitus.Clin. Chem.201763118619510.1373/clinchem.2016.25553928062618
    [Google Scholar]
  22. LuísC. BaylinaP. SoaresR. FernandesR. Metabolic dysfunction biomarkers as predictors of early diabetes.Biomolecules20211111158910.3390/biom1111158934827587
    [Google Scholar]
  23. PenaM.J. HeinzelA. HeinzeG. AlkhalafA. BakkerS.J.L. NguyenT.Q. GoldschmedingR. BiloH.J.G. PercoP. MayerB. de ZeeuwD. Lambers HeerspinkH.J. A panel of novel biomarkers representing different disease pathways improves prediction of renal function decline in type 2 diabetes.PLoS One2015105e012099510.1371/journal.pone.012099525973922
    [Google Scholar]
  24. Padilla-MartinezF. WojciechowskaG. SzczerbinskiL. KretowskiA. Circulating nucleic acid-based biomarkers of type 2 diabetes.Int. J. Mol. Sci.202123129510.3390/ijms2301029535008723
    [Google Scholar]
  25. Jiménez-LucenaR. Rangel-ZúñigaO.A. Alcalá-DíazJ.F. López-MorenoJ. Roncero-RamosI. Molina-AbrilH. Yubero-SerranoE.M. Caballero-VillarrasoJ. Delgado-ListaJ. CastañoJ.P. OrdovásJ.M. Pérez-MartinezP. CamargoA. López-MirandaJ. Circulating miRNAs as predictive biomarkers of type 2 diabetes mellitus development in coronary heart disease patients from the CORDIOPREV study.Mol. Ther. Nucleic Acids20181214615710.1016/j.omtn.2018.05.00230195754
    [Google Scholar]
  26. HiguchiC. NakatsukaA. EguchiJ. TeshigawaraS. KanzakiM. KatayamaA. YamaguchiS. TakahashiN. MurakamiK. OgawaD. SasakiS. MakinoH. WadaJ. Identification of Circulating miR-101, miR-375 and miR-802 as Biomarkers for Type 2 Diabetes.Metabolism201564448949710.1016/j.metabol.2014.12.00325726255
    [Google Scholar]
  27. Sánchez-CeinosJ. Rangel-ZuñigaO.A. Clemente-PostigoM. Podadera-HerrerosA. CamargoA. Alcalá-DiazJ.F. Guzmán-RuizR. López-MirandaJ. MalagónM.M. miR-223-3p as a potential biomarker and player for adipose tissue dysfunction preceding type 2 diabetes onset.Mol. Ther. Nucleic Acids2021231035105210.1016/j.omtn.2021.01.01433614249
    [Google Scholar]
  28. VasuS. KumanoK. DardenC.M. RahmanI. LawrenceM.C. NaziruddinB. MicroRNA signatures as future biomarkers for diagnosis of diabetes states.Cells2019812153310.3390/cells812153331795194
    [Google Scholar]
  29. GuayC. RegazziR. Circulating microRNAs as novel biomarkers for diabetes mellitus.Nat. Rev. Endocrinol.20139951352110.1038/nrendo.2013.8623629540
    [Google Scholar]
  30. ChiT. LinJ. WangM. ZhaoY. LiaoZ. WeiP. Non-coding RNA as biomarkers for Type 2 diabetes development and clinical management.Front. Endocrinol.20211263003210.3389/fendo.2021.63003234603195
    [Google Scholar]
  31. CiobanuD.M. BogdanF. PătruțC.I. RomanG. Glycated albumin is correlated with glycated hemoglobin in type 2 diabetes.Med. Pharm. Rep.201992213413810.15386/mpr‑124731086840
    [Google Scholar]
  32. YoshiuchiK. MatsuhisaM. KatakamiN. NakataniY. SakamotoK. MatsuokaT. UmayaharaY. KosugiK. KanetoH. YamasakiY. HoriM. Glycated albumin is a better indicator for glucose excursion than glycated hemoglobin in type 1 and type 2 diabetes.Endocr. J.200855350350710.1507/endocrj.K07E‑08918445997
    [Google Scholar]
  33. RescalliA. VaroniE.M. CellesiF. CerveriP. Analytical challenges in diabetes management: Towards glycated albumin point-of-care detection.Biosensors202212968710.3390/bios1209068736140073
    [Google Scholar]
  34. ToftJ.H. DalenI. SkadbergØ. GøranssonL.G. ØklandI. BleskestadI.H. Glycated albumin and continuous glucose monitoring metrics across pregnancy in women with pre‐gestational diabetes.Endocrinol. Diabetes Metab.202256e37610.1002/edm2.37636121204
    [Google Scholar]
  35. SierawskaO. Niedźwiedzka-RystwejP. Adipokines as potential biomarkers for type 2 diabetes mellitus in cats.Front. Immunol.20221395004910.3389/fimmu.2022.95004936248900
    [Google Scholar]
  36. BowkerN. ShahR.L. SharpS.J. LuanJ. StewartI.D. WheelerE. FerreiraM.A.R. BarasA. WarehamN.J. LangenbergC. LottaL.A. Meta-analysis investigating the role of interleukin-6 mediated inflammation in type 2 diabetes.EBioMedicine20206110306210.1016/j.ebiom.2020.10306233096487
    [Google Scholar]
  37. MalmströmH. WalldiusG. GrillV. JungnerI. GudbjörnsdottirS. HammarN. Fructosamine is a useful indicator of hyperglycaemia and glucose control in clinical and epidemiological studies--cross-sectional and longitudinal experience from the AMORIS cohort.PLoS One2014910e11146310.1371/journal.pone.011146325353659
    [Google Scholar]
  38. BergmanM. Abdul-GhaniM. DeFronzoR.A. MancoM. SestiG. FiorentinoT.V. CerielloA. RheeM. PhillipsL.S. ChungS. CravalhoC. JagannathanR. MonnierL. ColetteC. OwensD. BianchiC. del PratoS. MonteiroM.P. NevesJ.S. MedinaJ.L. MacedoM.P. RibeiroR.T. Filipe RaposoJ. DorcelyB. IbrahimN. BuysschaertM. Review of methods for detecting glycemic disorders.Diabetes Res. Clin. Pract.202016510823310.1016/j.diabres.2020.10823332497744
    [Google Scholar]
  39. AmitaD. DhirajK. VivekS. SatyaP.M. The novel biomarkers in diabetes.J Assoc Physicians India20196776569
    [Google Scholar]
  40. PramodkumarT.A. JayashriR. GokulakrishnanK. VelmuruganK. PradeepaR. VenkatesanU. SaravananP. UmaR. AnjanaR.M. MohanV. 1,5 Anhydroglucitol in gestational diabetes mellitus.J. Diabetes Complications201933323123510.1016/j.jdiacomp.2018.11.01030594413
    [Google Scholar]
  41. Ortiz-MartínezM. González-GonzálezM. MartagónA.J. HlavinkaV. WillsonR.C. Rito-PalomaresM. Recent developments in biomarkers for diagnosis and screening of type 2 diabetes mellitus.Curr. Diab. Rep.20222239511510.1007/s11892‑022‑01453‑435267140
    [Google Scholar]
  42. ChonS. LeeY.J. FraterrigoG. PozzilliP. ChoiM.C. KwonM.K. ChinS.O. RheeS.Y. OhS. KimY.S. WooJ.T. Evaluation of glycemic variability in well-controlled type 2 diabetes mellitus.Diabetes Technol. Ther.201315645546010.1089/dia.2012.031523617251
    [Google Scholar]
  43. ChanC.L. PyleL. KelseyM. NewnesL. ZeitlerP.S. NadeauK.J. Screening for type 2 diabetes and prediabetes in obese youth: evaluating alternate markers of glycemia - 1,5-anhydroglucitol, fructosamine, and glycated albumin.Pediatr. Diabetes201617320621110.1111/pedi.1225825652226
    [Google Scholar]
  44. UedaS. NagaiK. YokotaN. HiroseD. MoriH. NomaY. DoiT. MinakuchiJ. Influence of albumin leakage on glycated albumin in patients with type 2 diabetes undergoing hemodialysis.J. Artif. Organs201922326426710.1007/s10047‑019‑01097‑430805746
    [Google Scholar]
  45. LiuL. WanX. LiuJ. HuangZ. CaoX. LiY. Increased 1,5-anhydroglucitol predicts glycemic remission in patients with newly diagnosed type 2 diabetes treated with short-term intensive insulin therapy.Diabetes Technol. Ther.201214975676110.1089/dia.2012.005522731793
    [Google Scholar]
  46. DorcelyB. KatzK. JagannathanR. ChiangS.S. OluwadareB. GoldbergI.J. BergmanM. Novel biomarkers for prediabetes, diabetes, and associated complications.Diabetes Metab. Syndr. Obes.20171034536110.2147/DMSO.S10007428860833
    [Google Scholar]
  47. Aghaei ZarchS.M. Dehghan TezerjaniM. TalebiM. Vahidi MehrjardiM.Y. Molecular biomarkers in diabetes mellitus (DM).Med. J. Islam. Repub. Iran2020342810.34171/mjiri.34.2832617267
    [Google Scholar]
  48. HilvoM. VasileV.C. DonatoL.J. HurmeR. LaaksonenR. Ceramides and ceramide scores: Clinical applications for cardiometabolic risk stratification.Front. Endocrinol.20201157062810.3389/fendo.2020.57062833133018
    [Google Scholar]
  49. GallW.E. BeebeK. LawtonK.A. AdamK.P. MitchellM.W. NakhleP.J. RyalsJ.A. MilburnM.V. NannipieriM. CamastraS. NataliA. FerranniniE. alpha-hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population.PLoS One201055e1088310.1371/journal.pone.001088320526369
    [Google Scholar]
  50. LandaasS. The formation of 2-hydroxybutyric acid in experimental animals.Clin. Chim. Acta1975581233210.1016/0009‑8981(75)90481‑7
    [Google Scholar]
  51. GarC. RottenkolberM. PrehnC. AdamskiJ. SeisslerJ. LechnerA. Serum and plasma amino acids as markers of prediabetes, insulin resistance, and incident diabetes.Crit. Rev. Clin. Lab. Sci.2018551213210.1080/10408363.2017.141414329239245
    [Google Scholar]
  52. SaltevoJ. KautiainenH. VanhalaM. Gender differences in adiponectin and low-grade inflammation among individuals with normal glucose tolerance, prediabetes, and type 2 diabetes.Gend. Med.20096346347010.1016/j.genm.2009.09.00619850242
    [Google Scholar]
  53. ZhangX. ZhangC. ChenL. HanX. JiL. Human serum acylcarnitine profiles in different glucose tolerance states.Diabetes Res. Clin. Pract.2014104337638210.1016/j.diabres.2014.04.01324837145
    [Google Scholar]
  54. SunL. LiangL. GaoX. ZhangH. YaoP. HuY. MaY. WangF. JinQ. LiH. LiR. LiuY. HuF.B. ZengR. LinX. WuJ. Early prediction of developing type 2 diabetes by plasma acylcarnitines: A population-based study.Diabetes Care20163991563157010.2337/dc16‑023227388475
    [Google Scholar]
  55. Ruiz-CanelaM. Guasch-FerréM. ToledoE. ClishC.B. RazquinC. LiangL. WangD.D. CorellaD. EstruchR. HernáezÁ. YuE. Gómez-GraciaE. ZhengY. ArósF. RomagueraD. DennisC. RosE. LapetraJ. Serra-MajemL. PapandreouC. PortolesO. FitóM. Salas-SalvadóJ. HuF.B. Martínez-GonzálezM.A. Plasma branched chain/aromatic amino acids, enriched Mediterranean diet and risk of type 2 diabetes: case-cohort study within the PREDIMED Trial.Diabetologia20186171560157110.1007/s00125‑018‑4611‑529663011
    [Google Scholar]
  56. ChenX. YangW. Branched‐chain amino acids and the association with type 2 diabetes.J. Diabetes Investig.20156436937010.1111/jdi.1234526221513
    [Google Scholar]
  57. SabanayagamC. ShankarA. LimS.C. LeeJ. TaiE.S. WongT.Y. Serum C-reactive protein level and prediabetes in two Asian populations.Diabetologia201154476777510.1007/s00125‑011‑2052‑521267537
    [Google Scholar]
  58. GrossmannV. SchmittV.H. ZellerT. Panova-NoevaM. SchulzA. Laubert-RehD. JuengerC. SchnabelR.B. AbtT.G.J. LaskowskiR. WiltinkJ. SchulzE. BlankenbergS. LacknerK.J. MünzelT. WildP.S. Profile of the immune and inflammatory response in individuals with prediabetes and type 2 diabetes.Diabetes Care20153871356136410.2337/dc14‑300825877811
    [Google Scholar]
  59. KunutsorS.K. ApekeyT.A. WalleyJ. KainK. Ferritin levels and risk of type 2 diabetes mellitus: An updated systematic review and meta-analysis of prospective evidence.Diabetes Metab. Res. Rev.201329430831810.1002/dmrr.239423381919
    [Google Scholar]
  60. ForouhiN.G. HardingA.H. AllisonM. SandhuM.S. WelchA. LubenR. BinghamS. KhawK.T. WarehamN.J. Elevated serum ferritin levels predict new-onset type 2 diabetes: Results from the EPIC-Norfolk prospective study.Diabetologia200750594995610.1007/s00125‑007‑0604‑517333112
    [Google Scholar]
  61. LeeJ.E. Alternative biomarkers for assessing glycemic control in diabetes: Fructosamine, glycated albumin, and 1,5-anhydroglucitol.Ann. Pediatr. Endocrinol. Metab.2015202747810.6065/apem.2015.20.2.7426191510
    [Google Scholar]
  62. DaneseE. MontagnanaM. NouvenneA. LippiG. Advantages and pitfalls of fructosamine and glycated albumin in the diagnosis and treatment of diabetes.J. Diabetes Sci. Technol.20159216917610.1177/193229681456722725591856
    [Google Scholar]
  63. LongJ. YangZ. WangL. HanY. PengC. YanC. YanD. Metabolite biomarkers of type 2 diabetes mellitus and pre-diabetes: A systematic review and meta-analysis.BMC Endocr. Disord.202020117410.1186/s12902‑020‑00653‑x33228610
    [Google Scholar]
  64. Wang-SattlerR. YuZ. HerderC. MessiasA.C. FloegelA. HeY. HeimK. CampillosM. HolzapfelC. ThorandB. GrallertH. XuT. BaderE. HuthC. MittelstrassK. DöringA. MeisingerC. GiegerC. PrehnC. Roemisch-MarglW. CarstensenM. XieL. Yamanaka-OkumuraH. XingG. CeglarekU. ThieryJ. GianiG. LickertH. LinX. LiY. BoeingH. JoostH.G. de AngelisM.H. RathmannW. SuhreK. ProkischH. PetersA. MeitingerT. RodenM. WichmannH.E. PischonT. AdamskiJ. IlligT. Novel biomarkers for pre‐diabetes identified by metabolomics.Mol. Syst. Biol.20128161510.1038/msb.2012.4323010998
    [Google Scholar]
  65. Pérez-MatosM.C. Morales-ÁlvarezM.C. TolozaF.J.K. Ricardo-SilgadoM.L. Mantilla-RivasJ.O. Pinzón-CortesJ.A. Perez-MayorgaM. JiménezE. GuevaraE. MendivilC.O. The phospholipid linoleoylglycerophosphocholine as a biomarker of directly measured insulin resistance.Diabetes Metab. J.201741646647310.4093/dmj.2017.41.6.46629199411
    [Google Scholar]
  66. AhnN. BaumeisterS.E. AmannU. RathmannW. PetersA. HuthC. ThorandB. MeisingerC. Visceral adiposity index (VAI), lipid accumulation product (LAP), and product of triglycerides and glucose (TyG) to discriminate prediabetes and diabetes.Sci. Rep.201991969310.1038/s41598‑019‑46187‑831273286
    [Google Scholar]
  67. HamasakiH. NodaM. MoriyamaS. YoshikawaR. KatsuyamaH. SakoA. MishimaS. KakeiM. EzakiO. YanaiH. Daily physical activity assessed by a triaxial accelerometer is beneficially associated with waist circumference, serum triglycerides, and insulin resistance in japanese patients with prediabetes or untreated early type 2 diabetes.J. Diabetes Res.201520151610.1155/2015/52620126064983
    [Google Scholar]
  68. BarrR.G. NathanD.M. MeigsJ.B. SingerD.E. Tests of glycemia for the diagnosis of type 2 diabetes mellitus.Ann. Intern. Med.2002137426327210.7326/0003‑4819‑137‑4‑200208200‑0001112186517
    [Google Scholar]
  69. JiangY. OweiI. WanJ. EbeniboS. Dagogo-JackS. Adiponectin levels predict prediabetes risk: The pathobiology of prediabetes in a biracial cohort (POP-ABC) study.BMJ Open Diabetes Res. Care201641e00019410.1136/bmjdrc‑2016‑00019427026810
    [Google Scholar]
  70. PescadorN. Pérez-BarbaM. IbarraJ.M. CorbatónA. Martínez-LarradM.T. Serrano-RíosM. Serum circulating microRNA profiling for identification of potential type 2 diabetes and obesity biomarkers.PLoS One2013810e7725110.1371/journal.pone.007725124204780
    [Google Scholar]
  71. BelgardtB.F. AhmedK. SprangerM. LatreilleM. DenzlerR. KondratiukN. von MeyennF. VillenaF.N. HerrmannsK. BoscoD. Kerr-ConteJ. PattouF. RülickeT. StoffelM. The microRNA-200 family regulates pancreatic beta cell survival in type 2 diabetes.Nat. Med.201521661962710.1038/nm.386225985365
    [Google Scholar]
  72. HeA. ZhuL. GuptaN. ChangY. FangF. Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes.Mol. Endocrinol.200721112785279410.1210/me.2007‑016717652184
    [Google Scholar]
  73. StefanN. SunQ. FritscheA. MachannJ. SchickF. GerstF. JeppesenC. JoostH.G. HuF.B. BoeingH. UllrichS. HäringH.U. SchulzeM.B. Impact of the adipokine adiponectin and the hepatokine fetuin-A on the development of type 2 diabetes: Prospective cohort- and cross-sectional phenotyping studies.PLoS One201493e9223810.1371/journal.pone.009223824643166
    [Google Scholar]
/content/journals/cis/10.2174/012210299X257270231127062630
Loading
/content/journals/cis/10.2174/012210299X257270231127062630
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Conventional biomarker; Diabetes mellitus; Diagnosis; Hb1Ac; Insulin; Screening technique
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test