Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

The pharmaceutical industry is witnessing a growing demand for complex generic products, which are generic versions of drugs that possess complex formulations, delivery systems, or active ingredients. However, the approval process for these complex generic products poses unique challenges compared to traditional generics. There is no specific regulatory procedure available for the approval of complex generics, unlike small-molecule generics and biosimilars. This led to controversial arguments in the past about the scientific evidence needed for applications, which led to lengthy approval processes. The regulatory frameworks that are currently being used for complex generics are debatable and unclear. Complexity in the molecular structure, mechanism of action, route of delivery, and complex manufacturing process makes proving bioequivalence and pharmaceutical equivalence difficult. There is a need for harmonization of the regulatory framework by the agencies to help the generic manufacturers by providing scientific advice, defining the submission requirements for complex products, and fastening the approval process.

This review begins by discussing the regulatory landscape surrounding complex generic products in various regions, including the United States and Europe. It examines the specific guidelines and requirements set forth by regulatory authorities to ensure the safety, efficacy, and quality of these products. Additionally, the review explores the differences in terminology and definitions used to classify complex generics across different jurisdictions. Furthermore, it delves into the challenges faced by both regulatory agencies and pharmaceutical companies in evaluating and approving complex generic products. These challenges include establishing appropriate bioequivalence criteria, determining interchangeability with the reference product, addressing patent and exclusivity issues, and ensuring consistent quality throughout the product lifecycle. The impact of these challenges on market entry and competition is also discussed. The review highlights the need for harmonization and streamlining of regulations for complex generic products worldwide. It emphasizes the importance of clear and consistent guidelines to enable timely approvals, foster innovation, and facilitate patient access to affordable alternatives.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X269535231203164108
2023-12-08
2024-12-28
Loading full text...

Full text loading...

/deliver/fulltext/cis/2/1/CIS-2-E2210299X269535.html?itemId=/content/journals/cis/10.2174/012210299X269535231203164108&mimeType=html&fmt=ahah

References

  1. Complex Generics News | FDA.Available from: https://www.fda.gov/drugs/generic-drugs/complex-generics-news
  2. MühlebachS. Regulatory challenges of nanomedicines and their follow-on versions: A generic or similar approach?Adv. Drug Deliv. Rev.201813112213110.1016/j.addr.2018.06.02429966685
    [Google Scholar]
  3. YanM. ZhouJ. Suprasomes: An Emerging Platform for Cancer Theranostics.Sci. China Chem.202366361361410.1007/S11426‑022‑1477‑X/METRICS
    [Google Scholar]
  4. ZhouJ. RaoL. YuG. CookT.R. ChenX. HuangF. Supramolecular cancer nanotheranostics.Chem. Soc. Rev.20215042839289110.1039/D0CS00011F33524093
    [Google Scholar]
  5. YanM. WuS. WangY. LiangM. WangM. HuW. YuG. MaoZ. HuangF. ZhouJ. Recent progress of supramolecular chemotherapy based on host–guest interactions.Adv. Mater.20232304249230424910.1002/adma.20230424937478832
    [Google Scholar]
  6. TangG. HeJ. LiuJ. YanX. FanK. YanX. Nanozyme for tumor therapy: Surface modification matters.Exploration202111758910.1002/EXP.2021000537366468
    [Google Scholar]
  7. MarquardtJ.L. AutenS.R. Strategic considerations under the Biologics Price Competition and Innovation Act.Expert Opin. Ther. Pat.201323891591810.1517/13543776.2013.81393523829693
    [Google Scholar]
  8. SternS. CoghlanJ. KrishnanV. RaneyS.G. BabiskinA. JiangW. LionbergerR. XuX. SchwendemanA. PolliJ.E. Research and education needs for complex generics.Pharm. Res.202138121991200110.1007/s11095‑021‑03149‑y34950975
    [Google Scholar]
  9. KirchhoffC.F. WangX.Z.M. ConlonH.D. AndersonS. RyanA.M. BoseA. Biosimilars: Key regulatory considerations and similarity assessment tools.Biotechnol. Bioeng.2017114122696270510.1002/bit.2643828842986
    [Google Scholar]
  10. VerbeeckR.K. Bioequivalence, therapeutic equivalence and generic drugs.Acta Clin. Belg.200964537938310.1179/acb.2009.06319999384
    [Google Scholar]
  11. KleinK. StolkP. De BruinM.L. LeufkensH.G.M. CrommelinD.J.A. De VliegerJ.S.B. The EU regulatory landscape of non-biological complex drugs (NBCDs) follow-on products: Observations and recommendations.Eur. J. Pharm. Sci.201913322823510.1016/j.ejps.2019.03.02930953753
    [Google Scholar]
  12. HussaartsL. MühlebachS. ShahV.P. McNeilS. BorchardG. FlühmannB. WeinsteinV. NeervannanS. GriffithsE. JiangW. Wolff-HolzE. CrommelinD.J.A. de VliegerJ.S.B. Equivalence of complex drug products: advances in and challenges for current regulatory frameworks.Ann. N. Y. Acad. Sci.201714071394910.1111/nyas.1334728445611
    [Google Scholar]
  13. TinkleS. McNeilS.E. MühlebachS. BawaR. BorchardG. BarenholzY.C. TamarkinL. DesaiN. Nanomedicines: addressing the scientific and regulatory gap.Ann. N. Y. Acad. Sci.201413131355610.1111/nyas.1240324673240
    [Google Scholar]
  14. First Generic Version of NuvaRing Gets FDA Approval - MPR.Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/formal-meetings-between-fda-and-anda-applicants-complex-products-under-gdufa-guidance-industry
  15. LunawatS. Bhat K. Complex Generic Products: Insight of current regulatory frameworks in us, eu and canada and the need of harmonisation.Ther Innov Regul Sci.20205459911000
    [Google Scholar]
  16. BurgessDJ. HussainAS. IngallineraTS. ChenML. Assuring quality and performance of sustained and controlled release parenterals: Workshop report.AAPS PharmSci.200242
    [Google Scholar]
  17. Fda, Cder. Sameness Evaluations in an ANDA-Active Ingredients Guidance for industry draft guidance.Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/andas-certain-highly-purified-synthetic-peptide-drug-products-refer-listed-drugs-rdna-origin
  18. ZhangD. Comparative Analyses and Related Comparative Use Human Factors Studies for a Drug-Device Combination Product Submitted in an ANDA: Draft Guidance for Industry.Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/comparative-analyses-and-related-comparative-use-human-factors-studies-drug-device-combination (Accessed 2023-05-24).
  19. O’BrienM.N. JiangW. WangY. LoffredoD.M. Challenges and opportunities in the development of complex generic long-acting injectable drug products.J. Control. Release202133614415810.1016/j.jconrel.2021.06.01734126170
    [Google Scholar]
  20. HollowayC. Mueller-BerghausJ. LimaB.S. LeeS.L. WyattJ.S. NicholasJ.M. CrommelinD.J.A. Scientific considerations for complex drugs in light of established and emerging regulatory guidance.Ann. N. Y. Acad. Sci.201212761263610.1111/j.1749‑6632.2012.06811.x23193987
    [Google Scholar]
  21. OsterhoutJL. Draft guidance on sevelamer carbonate.http://www.accessdata.fda.gov/drugsatfda_docs/nda/2007/022127s000TOC.cfm2017
  22. GonellaA. GrizotS. Liu F. López N.A. Long-acting injectable formulation technologies: Challenges and opportunities for the delivery of fragile molecules,2022198927944
    [Google Scholar]
  23. JoseV. OzaB. RadhakrishnaS. PipalavaP. Pharmacovigilance of biosimilars – Why is it different from generics and innovator biologics?J. Postgrad. Med.201965422723210.4103/jpgmM_109_1931571620
    [Google Scholar]
  24. Fda; Cder. Sameness Evaluations in an ANDA-Active Ingredients Guidance for Industry DRAFT GUIDANCE 2002
    [Google Scholar]
  25. ZhangD. Session I: Demonstrating Complex API Sameness.2017
    [Google Scholar]
  26. JiangX. Introduction to Complex Products and FDA Considerations Demonstrating Equivalence of Generic Complex Drug Substances and Formulations.2017
    [Google Scholar]
  27. BerendtR.T. SamyR. CarlinA.S. PendseA. SchwartzP. KhanM.A. FaustinoP.J. Spontaneous carbonate formation in an amorphous, amine-rich, polymeric drug substance: sevelamer HCl product quality.J. Pharm. Sci.201210182681268510.1002/jps.2322822700351
    [Google Scholar]
  28. OsterhoutJ. L. Draft guidance on sevelamer carbonate.
    [Google Scholar]
  29. DotyA.C. ZhangY. WeinsteinD.G. WangY. ChoiS. QuW. MittalS. SchwendemanS.P. Mechanistic analysis of triamcinolone acetonide release from PLGA microspheres as a function of varying in vitro release conditions.Eur. J. Pharm. Biopharm.2017113243310.1016/j.ejpb.2016.11.00827865933
    [Google Scholar]
  30. JainS.K. JainA.K. RajpootK. Expedition of eudragit® polymers in the development of novel drug delivery systems.Curr. Drug Deliv.202017644846910.2174/156720181766620051209363932394836
    [Google Scholar]
  31. LimY.W. TanW.S. HoK.L. MariatulqabtiahA.R. Abu KasimN.H. Abd RahmanN. WongT.W. CheeC.F. Challenges and complications of poly(lactic-co-glycolic acid)-based long-acting drug product development.Pharmaceutics202214361410.3390/pharmaceutics1403061435335988
    [Google Scholar]
  32. Martín-SabrosoC. Fraguas-SánchezA.I. Aparicio-BlancoJ. Cano-AbadM.F. Torres-SuárezA.I. Critical attributes of formulation and of elaboration process of PLGA-protein microparticles.Int. J. Pharm.20154801-2273610.1016/j.ijpharm.2015.01.00825578370
    [Google Scholar]
  33. CristofolettiR. SchmidtS. DinizA. Non-procrustean pathways for complex generic drugs development.Therap Del.20189960560710.4155/tde‑2018‑0047
    [Google Scholar]
  34. CristofolettiR. SchmidtS. DinizA. Non-Procrustean Pathways for Complex Generic Drugs Development.20189960560710.4155/tde‑2018‑0047
    [Google Scholar]
  35. Di FrancescoT. PhilippE. BorchardG. Iron sucrose: assessing the similarity between the originator drug and its intended copies.Ann. N. Y. Acad. Sci.201714071637410.1111/nyas.1351729168243
    [Google Scholar]
  36. PaiA.B. Complexity of intravenous iron nanoparticle formulations: implications for bioequivalence evaluation.Ann. N. Y. Acad. Sci.201714071172510.1111/nyas.1346129027212
    [Google Scholar]
  37. RobertsT.C. LangerR. WoodM.J.A. Advances in oligonucleotide drug delivery.Nat. Rev. Drug Discov.2020191067369410.1038/s41573‑020‑0075‑732782413
    [Google Scholar]
  38. WangL. WangN. ZhangW. ChengX. YanZ. ShaoG. WangX. WangR. FuC. Therapeutic peptides: current applications and future directions.Signal Transduct. Target. Ther.2022714810.1038/s41392‑022‑00904‑435165272
    [Google Scholar]
  39. WuL.C. ChenF. LeeS.L. RawA. YuL.X. Building parity between brand and generic peptide products: Regulatory and scientific considerations for quality of synthetic peptides.Int. J. Pharm.20175181-232033410.1016/j.ijpharm.2016.12.05128027918
    [Google Scholar]
  40. KnezevicI. GriffithsE. WHO standards for biotherapeutics, including biosimilars: an example of the evaluation of complex biological products.Ann. N. Y. Acad. Sci.20171407151610.1111/nyas.1343428905423
    [Google Scholar]
  41. ZhangC. YangL. WanF. BeraH. CunD. RantanenJ. YangM. Quality by design thinking in the development of long-acting injectable PLGA/PLA-based microspheres for peptide and protein drug delivery.Int. J. Pharm.202058511944110.1016/j.ijpharm.2020.11944132442645
    [Google Scholar]
  42. PanchalK. KatkeS. DashS.K. GaurA. ShindeA. SahaN. MehraN.K. ChaurasiyaA. An expanding horizon of complex injectable products: Development and regulatory considerations.Drug Deliv. Transl. Res.202313243347210.1007/s13346‑022‑01223‑535963928
    [Google Scholar]
  43. AndhariyaJ.V. ShenJ. ChoiS. WangY. ZouY. BurgessD.J. Development of in vitro-in vivo correlation of parenteral naltrexone loaded polymeric microspheres.J. Control. Release2017255273510.1016/j.jconrel.2017.03.39628385676
    [Google Scholar]
  44. LiT. ChandrashekarA. BeigA. WalkerJ. HongJ.K.Y. BenetA. KangJ. AckermannR. WangY. QinB. SchwendemanA.S. SchwendemanS.P. Characterization of attributes and in vitro performance of exenatide-loaded PLGA long-acting release microspheres.Eur. J. Pharm. Biopharm.202115840140910.1016/j.ejpb.2020.10.00833122118
    [Google Scholar]
  45. ShenJ. BurgessD.J. In vitro-in vivo correlation for complex non-oral drug products: Where do we stand?J. Control. Release201521964465110.1016/j.jconrel.2015.09.05226419305
    [Google Scholar]
  46. PastorinG. BenettiC. WackerM.G. From in vitro to in vivo: A comprehensive guide to IVIVC development for long-acting therapeutics.Adv. Drug Deliv. Rev.202319911490610.1016/j.addr.2023.11490637286087
    [Google Scholar]
  47. MohammedD. MattsP.J. HadgraftJ. LaneM.E. In vitro-in vivo correlation in skin permeation.Pharm. Res.201431239440010.1007/s11095‑013‑1169‑223943545
    [Google Scholar]
  48. KangH.N. ThorpeR. KnezevicI. Casas LevanoM. ChilufyaM.B. ChirachanakulP. ChuaH.M. DaliliD. FooF. GaoK. HabahbehS. HamelH. KimG.H. Perez RodriguezV. PutriD.E. RodgersJ. SavkinaM. SemeniukO. SrivastavaS. Tavares NetoJ. WadhwaM. YamaguchiT. Regulatory challenges with biosimilars: An update from 20 countries.Ann. N. Y. Acad. Sci.202114911425910.1111/nyas.1452233222245
    [Google Scholar]
  49. KleinK. BorchardG. ShahV.P. FlühmannB. McNeilS.E. de VliegerJ.S.B. A pragmatic regulatory approach for complex generics through the U.S. FDA 505(j) or 505(b)(2) approval pathways.Ann. N. Y. Acad. Sci.20211502151310.1111/nyas.1466234296458
    [Google Scholar]
  50. SaunaZ.E. LagasséH.A.D. AlexakiA. SimhadriV.L. KatagiriN.H. JankowskiW. Kimchi-SarfatyC. Recent advances in (therapeutic protein) drug development.F1000 Res.2017611310.12688/F1000RESEARCH.9970.1/DOI
    [Google Scholar]
  51. OduahE. LinhardtR. SharfsteinS. Heparin: Past, Present, and Future.Pharmaceuticals2016933810.3390/ph903003827384570
    [Google Scholar]
  52. HeodoreW Induced thrombocytopenia in patients treated with low-molecular-weight heparin or unfractionated heparin.1995332201330133610.1056/NEJM199505183322003
    [Google Scholar]
  53. HalesD. VlaseL. PoravS.A. BodokiA. Barbu-TudoranL. AchimM. TomuțăI. A quality by design (QbD) study on enoxaparin sodium loaded polymeric microspheres for colon-specific delivery.Eur. J. Pharm. Sci.201710024926110.1016/j.ejps.2017.01.00628088371
    [Google Scholar]
  54. Fda; Cder. Contains nonbinding recommendations draft guidance on enoxaparin sodium.2011
    [Google Scholar]
  55. Generic enoxaparin questions and answers | FDA.Available from: https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/generic-enoxaparin-questions-and-answers (Accessed 2023-05-25).
  56. Fda; Cder; Winbourne. immunogenicity-related considerations for low molecular weight heparin guidance for industry.2016
    [Google Scholar]
  57. Medicines AgencyE. Committee for Medicinal Products for Human (CHMP).Guideline on Non-Clinical and Clinical Development of Similar Biological Medicinal Products Containing Low-Molecular-Weight-Heparins Adopted by CHMP for Release for Consultation2016
    [Google Scholar]
  58. GenoveseS. MannucciE. CerielloA. A review of the long-term efficacy, tolerability, and safety of exenatide once weekly for type 2 diabetes.Adv. Ther.20173481791181410.1007/s12325‑017‑0499‑628674957
    [Google Scholar]
  59. BridgesA. BistasK.G. JacobsT.F. Exenatide.StatPearls2022
    [Google Scholar]
  60. Fda. highlights of prescribing information.https://www.fda.gov/about-fda/oncology-center-excellence/how-do-i-use-prescription-drug-labeling 2002
  61. Fda; cder. exenatide synthetic subcutaneous extended release for suspension.https://www.accessdata.fda.gov/drugsatfda_docs/psg/PSG_022200.pdf 2002
  62. Medicines AgencyE. Committee for medicinal products for human use (CHMP) exenatide powder and solvent for prolonged-release suspension for injection, 2 mg, and powder and solvent for prolonged-release suspension for injection in pre-filled pen, 2 mg product-specific bioequivalence guidance.2017
    [Google Scholar]
  63. BallavC. GoughS. Bydureon: Long-acting exenatide for once-weekly injection.Prescriber2012231-2303310.1002/psb.852
    [Google Scholar]
  64. LecubeA. BuenoM. SuárezX. Twice-daily and weekly exenatide: Clinical profile of two pioneer formulations in incretin therapy.Med. Clin.2014143232710.1016/S0025‑7753(14)70105‑8
    [Google Scholar]
  65. LiangR. LiX. ShiY. WangA.` SunK. LiuW. LiY. Effect of water on exenatide acylation in poly(lactide-co-glycolide) microspheres.Int. J. Pharm.2013454134435310.1016/j.ijpharm.2013.07.01223872225
    [Google Scholar]
  66. Bydureon Development at Alkermes: Interview with rajesh kumar | controlled release society.Available from: https://www.controlledreleasesociety.org/publications/crs-inside-track/bydureon-development-alkermes-interview-rajesh-kumar (Accessed 2023-04-01).
  67. ICH reflection paper further opportunities for harmonization of standards for generic drugs 1.https://www.ich.org/page/reflection-papers2018
  68. FY 2022 gdufa science and research report | FDA.Available from: https://www.fda.gov/drugs/generic-drugs/fy-2022-gdufa-science-and-research-report (Accessed 2023-05-25).
  69. FDA-EMA Parallel Scientific Advice Pilot Program for Complex Generic/Hybrid Products | FDA.Available from: https://www.fda.gov/drugs/generic-drugs/fda-ema-parallel-scientific-advice-pilot-program-complex-generichybrid-products (Accessed 2023-05-25).
  70. 5 September pilot program: Ema-fda parallel scientific advice for hybrid/complex generic products-general principles.https://www.ema.europa.eu/en/documents/regulatory-procedural-guideline/pilot-programme-european-medicines-agency-food-drug-administration-parallel-scientific-advice-hybrid/complex-generic-products-general-principles_en.pdf2021
  71. ThorS. VetterT. MarcalA. KwederS. EMA-FDA parallel scientific advice: Optimizing development of medicines in the global age.Ther. Innov. Regul. Sci.202357465666110.1007/s43441‑023‑00501‑936871110
    [Google Scholar]
/content/journals/cis/10.2174/012210299X269535231203164108
Loading
/content/journals/cis/10.2174/012210299X269535231203164108
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test