Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

At present, there is a growing interest among researchers in studying the structure and function of the bee brain in relation to their cognitive behavior. The bee brain, despite its small size of approximately 1 million neurons, is known for its ability to facilitate effective communication and collaboration. Just like humans, the bee brain is also controlled by biogenic amines like dopamine, serotonin and tyramine, octopamine, and histamine. The honey bees communicate with each other by using a complex language called the “waggle dance”. Despite existing knowledge about the bee brain's neuroanatomy, there is still a need to understand which specific regions control cognition and social behavior in bees. This review aims to explore the different major parts of the bee brain and how each part contributes to modulating social behavior.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X266380231206072655
2023-12-12
2024-12-29
Loading full text...

Full text loading...

/deliver/fulltext/cis/2/1/CIS-2-E2210299X266380.html?itemId=/content/journals/cis/10.2174/012210299X266380231206072655&mimeType=html&fmt=ahah

References

  1. GiurfaM. ZhangS. JenettA. MenzelR. SrinivasanM.V. The concepts of ‘sameness’ and ‘difference’ in an insect.Nature2001410683193093310.1038/3507358211309617
    [Google Scholar]
  2. Von FriscKarl. The dance language and orientation of bees.Sci. Educ.Cambridge University Press19691967566$15.0010.1002/sce.3730530270
    [Google Scholar]
  3. SinakevitchI. BjorklundG.R. NewbernJ.M. GerkinR.C. SmithB.H. Comparative study of chemical neuroanatomy of the olfactory neuropil in mouse, honey bee, and human.Biol. Cybern.20181121-212714010.1007/s00422‑017‑0728‑828852854
    [Google Scholar]
  4. PopovT. SzyszkaP. Alpha oscillations govern interhemispheric spike timing coordination in the honey bee brain.Proc. Biol. Sci.202028719212020011510.1098/rspb.2020.011532097593
    [Google Scholar]
  5. SzyszkaP. StierleJ.S. BiergansS. GaliziaC.G. The speed of smell: Odor-object segregation within milliseconds.PLoS One201274e3609610.1371/journal.pone.003609622558344
    [Google Scholar]
  6. TorrealbaF. RiverosM.E. ContrerasM. ValdesJ.L. Histamine and motivation.Front. Syst. Neurosci.201265110.3389/fnsys.2012.0005122783171
    [Google Scholar]
  7. RöschG.A. Investigations into the division of labor in the bee colony - Part 2: The activities of worker bees under experimentally changed conditions.Z. Vgl. Physiol.193010.1007/BF00339476
    [Google Scholar]
  8. FarinaW.M. Food-exchange by foragers in the hive - a means of communication among honey bees?Behav. Ecol. Sociobiol.1996381596410.1007/s002650050217
    [Google Scholar]
  9. PaffhausenB.H. FuchsI. DuerA. HillmerI. DimitriouI.M. MenzelR. Neural correlates of social behavior in mushroom body extrinsic neurons of the honeybee apis mellifera. Front. Behav. Neurosci.2020146210.3389/fnbeh.2020.0006232372927
    [Google Scholar]
  10. ScheinerR. BaumannA. BlenauW. Aminergic control and modulation of honeybee behaviour.Curr. Neuropharmacol.20064425927610.2174/15701590677852079118654639
    [Google Scholar]
  11. BortolottiL. CostaC. Chemical communication in the honey bee society.Neurobilogy of chemical communicationBoca Raton(FL): CRC Press/Taylor and Francis2014.10.1201/b16511
    [Google Scholar]
  12. Ortíz-BarrientosD. NoorM. A. F. Evolution: Evidence for a one-allele assortative mating locusScience (80-. )200510.1126/science.1121260
    [Google Scholar]
  13. Aubin-HorthN. RennS.C.P. Genomic reaction norms: Using integrative biology to understand molecular mechanisms of phenotypic plasticity.Mol. Ecol.200918183763378010.1111/j.1365‑294X.2009.04313.x19732339
    [Google Scholar]
  14. ElsikC.G. WorleyK.C. BennettA.K. BeyeM. CamaraF. ChildersC.P. de GraafD.C. DebyserG. DengJ. DevreeseB. ElhaikE. EvansJ.D. FosterL.J. GraurD. GuigoR. HoffK. HolderM.E. HudsonM.E. HuntG.J. JiangH. JoshiV. KhetaniR.S. KosarevP. KovarC.L. MaJ. MaleszkaR. MoritzR.F.A. Munoz-TorresM.C. MurphyT.D. MuznyD.M. NewshamI.F. ReeseJ.T. RobertsonH.M. RobinsonG.E. RueppellO. SolovyevV. StankeM. StolleE. TsurudaJ.M. VaerenberghM. WaterhouseR.M. WeaverD.B. WhitfieldC.W. WuY. ZdobnovE.M. ZhangL. ZhuD. GibbsR.A. HGSC production teams Honey Bee Genome Sequencing Consortium Finding the missing honey bee genes: lessons learned from a genome upgrade.BMC Genomics20141518610.1186/1471‑2164‑15‑8624479613
    [Google Scholar]
  15. MercerA.R. MobbsP.G. DavenportA.P. EvansP.D. Biogenic amines in the brain of the honeybee, Apis mellifera.Cell Tissue Res.1983234365567710.1007/BF002186586420063
    [Google Scholar]
  16. RoederT. SeifertM. KählerC. GeweckeM. Tyramine and octopamine: Antagonistic modulators of behavior and metabolism.Arch. Insect Biochem. Physiol.200354111310.1002/arch.1010212942511
    [Google Scholar]
  17. InselT. YoungL.J. Neuropeptides and the evolution of social behavior.Curr. Opin. Neurobiol.200010678478910.1016/S0959‑4388(00)00146‑X11240290
    [Google Scholar]
  18. TautzJ. MaierS. GrohC. RösslerW. BrockmannA. Behavioral performance in adult honey bees is influenced by the temperature experienced during their pupal development.Proc. Natl. Acad. Sci. USA2003100127343734710.1073/pnas.123234610012764227
    [Google Scholar]
  19. GoodsonJ.L. The vertebrate social behavior network: Evolutionary themes and variations.Horm. Behav.2005481112210.1016/j.yhbeh.2005.02.00315885690
    [Google Scholar]
  20. BarronA.B. MaleszkaJ. Vander MeerR.K. RobinsonG.E. MaleszkaR. Comparing injection, feeding and topical application methods for treatment of honeybees with octopamine.J. Insect Physiol.200753218719410.1016/j.jinsphys.2006.11.00917270208
    [Google Scholar]
  21. TothA. L. Wasp gene expression supports an evolutionary link between maternal behavior and eusociality Science (80-. ).200710.1126/science.1146647
    [Google Scholar]
  22. HauM. GoymannW. Endocrine mechanisms, behavioral phenotypes and plasticity: Known relationships and open questions.Front. Zool.201512Suppl 1Suppl. 1S710.1186/1742‑9994‑12‑S1‑S726816524
    [Google Scholar]
  23. SchaeferN. RotermundC. BlumrichE.M. LourencoM.V. JoshiP. HegemannR.U. JamwalS. AliN. García RomeroE.M. SharmaS. GhoshS. SinhaJ.K. LokeH. JainV. LepetaK. SalamianA. SharmaM. GolpichM. NawrotekK. PaidiR.K. ShahidzadehS.M. PiermartiriT. AminiE. PastorV. WilsonY. AdeniyiP.A. DatusaliaA.K. VafadariB. SainiV. Suárez-PozosE. KushwahN. FontanetP. TurnerA.J. The malleable brain: plasticity of neural circuits and behavior – a review from students to students.J. Neurochem.2017142679081110.1111/jnc.1410728632905
    [Google Scholar]
  24. RittschofC.C. HughesK.A. Advancing behavioural genomics by considering timescale.Nat. Commun.20189148910.1038/s41467‑018‑02971‑029434301
    [Google Scholar]
  25. Ben-ShaharY. DudekN.L. RobinsonG.E. Phenotypic deconstruction reveals involvement of manganese transporter malvolio in honey bee division of labor.J. Exp. Biol.2004207193281328810.1242/jeb.0115115326204
    [Google Scholar]
  26. Moosavi-MovahediA.A. ChamaniJ. GhourchianH. ShafieyH. SorensonC.M. SheibaniN. Electrochemical evidence for the molten globule states of cytochrome c induced by N-alkyl sulfates at low concentrations.J. Protein Chem.2003221233010.1023/A:102301160993112739895
    [Google Scholar]
  27. TaheriR. HamzkanluN. RezvaniY. NiroumandS. SamandarF. Amiri-TehranizadehZ. SaberiM.R. ChamaniJ. Exploring the HSA/DNA/lung cancer cells binding behavior of p-Synephrine, a naturally occurring phenyl ethanol amine with anti-adipogenic activity: multi spectroscopic, molecular dynamic and cellular approaches.J. Mol. Liq.202236812082610.1016/j.molliq.2022.120826
    [Google Scholar]
  28. ZhangX. ShamsodinM. WangH. NoormohammadiAraniO. KhanA.M. HabibiM. Al-FurjanM.S.H. Dynamic information of the time-dependent tobullian biomolecular structure using a high-accuracy size-dependent theory.J. Biomol. Struct. Dyn.202039911610.1080/07391102.2020.176093932338161
    [Google Scholar]
  29. HosseinzadehM. NikjooS. ZareN. DelavarD. BeigoliS. ChamaniJ. Characterization of the structural changes of human serum albumin upon interaction with single-walled and multi-walled carbon nanotubes: Spectroscopic and molecular modeling approaches.Res. Chem. Intermed.201945240142310.1007/s11164‑018‑3608‑5
    [Google Scholar]
  30. MaheriH. HashemzadehF. ShakibapourN. KamelniyaE. Malaekeh-NikoueiB. MokaberiP. ChamaniJ. Glucokinase activity enhancement by cellulose nanocrystals isolated from jujube seed: A novel perspective for type II diabetes mellitus treatment (In vitro).J. Mol. Struct.2022126913380310.1016/j.molstruc.2022.133803
    [Google Scholar]
  31. NässelD.R. Neuropeptides in the insect brain: A review.Cell Tissue Res.1993273112910.1007/BF003046088364953
    [Google Scholar]
  32. StrausfeldN.J. Chapter 33 – Brain and Optic LobesEncyclopedia of Insects2009
    [Google Scholar]
  33. KenyonF.C. The brain of the bee. A preliminary contribution to the morphology of the nervous system of the arthropoda.J. Comp. Neurol.18966313321010.1002/cne.910060302
    [Google Scholar]
  34. StrausfeldN.J. Organization of the honey bee mushroom body: Representation of the calyx within the vertical and gamma lobes.J. Comp. Neurol.2002450143310.1002/cne.1028512124764
    [Google Scholar]
  35. MenzelR. ErberJ. Learning and memory in bees.Sci. Am.1978239110211110.1038/scientificamerican0778‑102
    [Google Scholar]
  36. CaronS. AbbottL.F. Neuroscience: Intelligence in the honeybee mushroom body.Curr. Biol.2017276R220R22310.1016/j.cub.2017.02.01128324737
    [Google Scholar]
  37. HammerM. MenzelR. Learning and memory in the honeybee.J. Neurosci.19951531617163010.1523/JNEUROSCI.15‑03‑01617.19957891123
    [Google Scholar]
  38. HeisenbergM. Mushroom body memoir: From maps to models.Nat. Rev. Neurosci.20034426627510.1038/nrn107412671643
    [Google Scholar]
  39. WalkerR. Anatomy of the honey bee .Science (80-.R. E. Snodgrass. Comstock (Cornell University Press)Ithaca, N.Y195610.1126/science.124.3225.730.b
    [Google Scholar]
  40. SuzukiH. Antennal movements induced by odour and central projection of the antennal neurones in the honey-bee.J. Insect Physiol.197521483184710.1016/0022‑1910(75)90012‑8
    [Google Scholar]
  41. BurrowsM. BoeckhJ. EsslenJ. Physiological and morphological properties of interneurones in the deutocerebrum of male cockroaches which respond to female pheromoneJ. Comp. Physiol. □ A,198210.1007/BF00612810
    [Google Scholar]
  42. ChristensenT.A. HildebrandJ.G. Male-specific, sex pheromone-selective projection neurons in the antennal lobes of the mothManduca sexta.J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol.1987160555356910.1007/BF006119293612589
    [Google Scholar]
  43. BoeckhJ. ErnstK.D. SassH. WaldowU. Anatomical and physiological characteristics of individual neurones in the central antennal pathway of insects.J. Insect Physiol.1984301152610.1016/0022‑1910(84)90105‑7
    [Google Scholar]
  44. NässelD.R. HombergU. Neuropeptides in interneurons of the insect brain.Cell Tissue Res.2006326112410.1007/s00441‑006‑0210‑816761145
    [Google Scholar]
  45. HombergU. Processing of antennal information in extrinsic mushroom body neurons of the bee brain.J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol.1984154682583610.1007/BF00610683
    [Google Scholar]
  46. SchildbergerK. Multimodal interneurons in the cricket brain: Properties of identified extrinsic mushroom body cells.J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol.19841541717910.1007/BF00605392
    [Google Scholar]
  47. MazaF.J. UrbanoF.J. DelorenziA. Contextual memory reactivation modulates Ca2+-activity network state in a mushroom body-like center of the crab N. granulata.Sci. Rep.20221211140810.1038/s41598‑022‑15502‑135794138
    [Google Scholar]
  48. EvansP.D. Biogenic amines in the insect nervous system adv.Insect Phys198010.1016/S0065‑2806(08)60143‑5
    [Google Scholar]
  49. BlenauW. BaumannA. Molecular and pharmacological properties of insect biogenic amine receptors: Lessons from Drosophila melanogaster and Apis mellifera.Arch. Insect Biochem. Physiol.2001481133810.1002/arch.105511519073
    [Google Scholar]
  50. SchürmannF.W. KlemmN. Serotonin-immunoreactive neurons in the brain of the honeybee.J. Comp. Neurol.1984225457058010.1002/cne.9022504076376546
    [Google Scholar]
  51. SchäferS. RehderV. Dopamine-like immunoreactivity in the brain and suboesophageal ganglion of the honeybee.J. Comp. Neurol.19892801435810.1002/cne.9028001052918095
    [Google Scholar]
  52. BlenauW. SchmidtM. FaensenD. SchürmannF.W. Neurons with dopamine-like immunoreactivity target mushroom body Kenyon cell somata in the brain of some hymenopteran insects.Int. J. Insect Morphol. Embryol.199928320321010.1016/S0020‑7322(99)00025‑2
    [Google Scholar]
  53. WrightG.A. MustardJ.A. SimcockN.K. Ross-TaylorA.A.R. McNicholasL.D. PopescuA. Marion-PollF. Parallel reinforcement pathways for conditioned food aversions in the honeybee.Curr. Biol.201020242234224010.1016/j.cub.2010.11.04021129969
    [Google Scholar]
  54. KreisslS. EichmüllerS. BickerG. RapusJ. EckertM. Octopamine-like immunoreactivity in the brain and subesophageal ganglion of the honeybee.J. Comp. Neurol.1994348458359510.1002/cne.9034804087530730
    [Google Scholar]
  55. BickerG. Biogenic amines in the brain of the honeybee: Cellular distribution, development, and behavioral functions.Microsc. Res. Tech.1999442-316617810.1002/(SICI)1097‑0029(19990115/01)44:2/3<166::AID‑JEMT8>3.0.CO;2‑T10084823
    [Google Scholar]
  56. HammerM. An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees.Nature19933666450596310.1038/366059a024308080
    [Google Scholar]
  57. SinakevitchI. NiwaM. StrausfeldN.J. Octopamine-like immunoreactivity in the honey bee and cockroach: Comparable organization in the brain and subesophageal ganglion.J. Comp. Neurol.2005488323325410.1002/cne.2057215952163
    [Google Scholar]
  58. SimpsonS.J. StevensonP.A. Neuromodulation of social behavior in insectsThe Oxford handbook of molecular psychology2015
    [Google Scholar]
  59. Wagener-HulmeC. KuehnJ.C. SchulzD.J. RobinsonG.E. Biogenic amines and division of labor in honey bee colonies.J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol.1999184547147910.1007/s00359005034710377980
    [Google Scholar]
  60. SchulzD.J. RobinsonG.E. Octopamine influences division of labor in honey bee colonies.J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol.20011871536110.1007/s00359000017711318378
    [Google Scholar]
  61. AB. DS. GR. Octopamine modulates responsiveness to foraging-related stimuli in honey bees ( Apis mellifera ).J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol.2002188860361010.1007/s00359‑002‑0335‑512355236
    [Google Scholar]
  62. NagayaY. KutsukakeM. ChigusaS.I. KomatsuA. A trace amine, tyramine, functions as a neuromodulator in Drosophila melanogaster.Neurosci. Lett.2002329332432810.1016/S0304‑3940(02)00596‑712183041
    [Google Scholar]
  63. BornhauserB.C. MeyerE.P. Histamine-like immunoreactivity in the visual system and brain of an orthopteran and a hymenopteran insect.Cell Tissue Res.1996287121122110.1007/s0044100507479011397
    [Google Scholar]
  64. MenzelR. A short history of studies on intelligence and brain in honeybees.Apidologie (Celle)2021521233410.1007/s13592‑020‑00794‑x
    [Google Scholar]
  65. KW.F. W. F. K. The Life of the Bee.Nature190164165323110.1038/064231a0
    [Google Scholar]
  66. WellsP.H. WennerA.M. Do honey bees have a language?Nature1973241538617117510.1038/241171a0
    [Google Scholar]
  67. SimpsonJ. von FrischK. The dance language and orientation of bees.J. Anim. Ecol.196938246010.2307/2785
    [Google Scholar]
  68. MenzelR. The waggle dance as an intended flight: A cognitive perspective.Insects2019101242410.3390/insects1012042431775270
    [Google Scholar]
/content/journals/cis/10.2174/012210299X266380231206072655
Loading
/content/journals/cis/10.2174/012210299X266380231206072655
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Bee brain; Biogenic amines; Cognition; Neuroanatomy; Social behavior; Waggle dance
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test