Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-8629
  • E-ISSN: 2666-8637

Abstract

Probiotic foods are functional foods that play important roles in the health of humans and animals. Over centuries, the main route for probiotics transfer into humans and animals is through fermented dairy products. However, currently, the selection of new probiotic strains and the development of new administration carriers due to consumer preference and conditions are on the rise, especially with the emergence of vegetarians. However, a number of uncertainties concerning the type of probiotic strain and the carrier exist. Therefore, this review seeks to elaborate on some plant-based probiotic carriers and discuss their shortfalls, as well as report on some recent methods being used to protect probiotics in foods to serve as a basis for researchers and probiotic producing industries to correctly select the best strains for a particular carrier and modify existing plant-based probiotic carriers to promote survivability of probiotics in order to meet the high demands for plant-based probiotic products, especially by vegetarians. This review reports that transferring health benefits and maintaining bacterial cell viability for longer storage have been a major shortfall in the plant-based probiotic products industry due to challenges, such as easy loss of cell viability and sensory attributes as a result of fermentation activities by probiotic bacteria. Hence, for reducing these problems, the review suggeststhat the adoption of techniques, such as selection of resistant probiotic bacteria, prebiotics, encapsulation, and use of appropriate packaging and storage conditions, would improve probiotic bacteria cell viability and maintain the sensory attributes in plant-based probiotic products, thus increasing consumer acceptance.

Loading

Article metrics loading...

/content/journals/cff/10.2174/2666862901666220107152746
2023-04-01
2024-11-26
Loading full text...

Full text loading...

References

  1. BindaS. HillC. JohansenE. Criteria to qualify microorganisms as “probiotic” in foods and dietary supplements.Front. Microbiol.202011166210.3389/fmicb.2020.01662 32793153
    [Google Scholar]
  2. FAO/WHOGuidelines for the Evaluation of Probiotics in Food Food and Agriculture Organization (FAO), World Health Organization.Geneva, SwitzerlandWHO2002
    [Google Scholar]
  3. HillC. GuarnerF. ReidG. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic.Nat. Rev. Gastroenterol. Hepatol.201411850651410.1038/nrgastro.2014.66 24912386
    [Google Scholar]
  4. NguyenJ. Bifidobacterium vs. Lactobacillus probiotics: what’s the difference? GeneFoods.Available from: https://www.mygenefood.com/blog/bifidobacterium-vs-lactobacillus-strains/ (Accessed March 17, 2020)
    [Google Scholar]
  5. ElghandourM.M.Y. TanZ.L. Abu HafsaS.H. Saccharomyces cerevisiae as a probiotic feed additive to non and pseudo-ruminant feeding: a review.J. Appl. Microbiol.2020128365867410.1111/jam.14416 31429174
    [Google Scholar]
  6. SonnenbornU. Escherichia coli strain Nissle 1917-from bench to bedside and back: history of a special Escherichia coli strain with probiotic properties.FEMS Microbiol. Lett.201636319fnw21210.1093/femsle/fnw212 27619890
    [Google Scholar]
  7. LeeN.K. KimW.S. PaikH.D. Bacillus strains as human probiotics: characterization, safety, microbiome, and probiotic carrier.Food Sci. Biotechnol.20192851297130510.1007/s10068‑019‑00691‑9 31695928
    [Google Scholar]
  8. FensterK. FreeburgB. HollardC. WongC. Rønhave LaursenR. OuwehandA.C. The production and delivery of probiotics: a review of a practical approach.Microorganisms2019738310.3390/microorganisms7030083 30884906
    [Google Scholar]
  9. AlfonzoA. MiceliC. NascaA. Monitoring of wheat lactic acid bacteria from the field until the first step of dough fermentation.Food Microbiol.20176225626910.1016/j.fm.2016.10.014 27889157
    [Google Scholar]
  10. ToderK. Web review of todar’s online textbook of bacteriology. The good, the bad, and the deadly.SCIENCE Magazine20203041421Available from: http://textbookofbacteriology.net/lactics.html Accessed on 17th September, 2020
    [Google Scholar]
  11. Von WrightA. AxelssonL. Lactic Acid Bacteria: An Introduction. Lactic Acid Bacteria: Microbiological and Functional Aspects.LondonCRC Press2000116
    [Google Scholar]
  12. HolzapfelW.H. SchillingerU. Introduction to pre- and probiotics.Food Res. Int.20023510911610.1016/S0963‑9969(01)00171‑5
    [Google Scholar]
  13. CorcoranB.M. StantonC. FitzgeraldG.F. RossR.P. Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars.Appl. Environ. Microbiol.20057163060306710.1128/AEM.71.6.3060‑3067.2005 15933002
    [Google Scholar]
  14. BensonJ-A Characteristics of the best probiotics.PROGURTAvailable from: https://www.progurt.com/blogs/news/characteristics-of-the-best-probiotics (Accessed November 06, 2021)
    [Google Scholar]
  15. KechagiaM. BasoulisD. KonstantopoulouS. Health benefits of probiotics: a review.ISRN Nutr.2013201348165110.5402/2013/481651 24959545
    [Google Scholar]
  16. PopovaM. MolimardP. CourauS. Beneficial effects of probiotics in upper respiratory tract infections and their mechanical actions to antagonize pathogens.J. Appl. Microbiol.201211361305131810.1111/j.1365‑2672.2012.05394.x 22788970
    [Google Scholar]
  17. European Food Safety Authority (EFSA)Guidance of the NDA Panel: guidance on the scientific requirements for health claims related to gut and immune function.EFSA J.20119198410.2903/j.efsa.2011.1984
    [Google Scholar]
  18. MarkowiakP. ŚliżewskaK. Effects of probiotics, prebiotics, and synbiotics on human health.Nutrients201799102110.3390/nu9091021 28914794
    [Google Scholar]
  19. Anonymous World gastroenterology organisation practice guideline: Probiotics and prebiotics.Arab J. Gastroenterol.2009101334210.1016/j.ajg.2009.03.001 24842134
    [Google Scholar]
  20. CrossM.L. Microbes versus microbes: immune signals generated by probiotic lactobacilli and their role in protection against microbial pathogens.FEMS Immunol. Med. Microbiol.200234424525310.1111/j.1574‑695X.2002.tb00632.x 12443824
    [Google Scholar]
  21. MiljkovicM. StrahinicI. TolinackiM. AggLb is the largest cell-aggregation factor from Lactobacillus paracasei Subsp. paracasei BGNJ1-64, functions in collagen adhesion, and pathogen exclusion in vitro.PLoS One2015105e012638710.1371/journal.pone.0126387 25955159
    [Google Scholar]
  22. HüttP. LappE. ŠtšepetovaJ. Characterisation of probiotic properties in human vaginal lactobacilli strains.Microb. Ecol. Health Dis.20162730484 27527701
    [Google Scholar]
  23. Vahedi ShahandashtiR. Kasra KermanshahiR. GhadamP. The inhibitory effect of bacteriocin produced by Lactobacillus acidophilus ATCC 4356 and Lactobacillus plantarum ATCC 8014 on planktonic cells and biofilms of Serratia marcescens.Turk. J. Med. Sci.20164641188119610.3906/sag‑1505‑51 27513424
    [Google Scholar]
  24. TaherianM. Mahin SamadiP. RastegarH. An overview on probiotics as an alternative strategy for prevention and treatment of human diseases.Iran. J. Pharm. Res.201918Suppl. 13150 32802088
    [Google Scholar]
  25. AhlbergS.H. JoutsjokiV. KorhonenH.J. Potential of lactic acid bacteria in aflatoxin risk mitigation.Int. J. Food Microbiol.20152078710210.1016/j.ijfoodmicro.2015.04.042 26001523
    [Google Scholar]
  26. Ferreira Dos SantosT. Alves MeloT. AlmeidaM.E. Passos RezendeR. RomanoC.C. Immunomodulatory effects of lactobacillus plantarum Lp62 on intestinal epithelial and mononuclear cells.BioMed Res. Int.20162016840415610.1155/2016/8404156 27446958
    [Google Scholar]
  27. JangS.E. JeongJ.J. ChoiS.Y. HyunjiK. MyungJ.H. KimD.H. Lactobacillus rhamnosus HN001 and lactobacillus acidophilus La-14 attenuate gardnerella vaginalis-infected bacterial vaginosis in mice.Nutrients2017911410.3390/nu9060531
    [Google Scholar]
  28. VasiljevicT. ShahN. Probiotics-from Metchnikoff to Bioactives.Int. Dairy J.20081871472810.1016/j.idairyj.2008.03.004
    [Google Scholar]
  29. DuffieldS.D. ClarkeP. Current use of probiotics to prevent necrotising enterocolitis.Arch. Dis. Child. Fetal Neonatal Ed.20191042F22810.1136/archdischild‑2018‑316199 30464004
    [Google Scholar]
  30. AllakerR.P. StephenA.S. Use of probiotics and oral health.Curr. Oral Health Rep.20174430931810.1007/s40496‑017‑0159‑6 29201598
    [Google Scholar]
  31. SunN. NiX. WangH. Probiotic lactobacillus johnsonii BS15 prevents memory dysfunction induced by chronic high-fluorine intake through modulating intestinal environment and improving gut development.Probiotics Antimicrob. Proteins20201241420143810.1007/s12602‑020‑09644‑9 32166711
    [Google Scholar]
  32. XinJ. ZengD. WangH. Lactobacillus johnsonii BS15 improves intestinal environment against fluoride-induced memory impairment in mice-a study based on the gut-brain axis hypothesis.PeerJ20208e1012510.7717/peerj.10125 33083147
    [Google Scholar]
  33. WongCB KobayashiY XiaoJ Probiotics for Preventing Cognitive Impairment in Alzheimer’s Disease, Gut Microbiota - Brain Axis, Alper Evrensel and Barış Önen Ünsalver.uk: Intech Open201810.5772/intechopen.79088
    [Google Scholar]
  34. ZhongD.Y. LiL. MaR.M. DengY.H. The effect of probiotics in stroke treatment.Evid. Based Complement. Alternat. Med.20212021487731110.1155/2021/4877311 34745285
    [Google Scholar]
  35. RománG.C. JacksonR.E. GadhiaR. RománA.N. ReisJ. Mediterranean diet: the role of long-chain ω-3 fatty acids in fish; polyphenols in fruits, vegetables, cereals, coffee, tea, cacao and wine; probiotics and vitamins in prevention of stroke, age-related cognitive decline, and Alzheimer disease.Rev. Neurol. (Paris)20191751072474110.1016/j.neurol.2019.08.005 31521398
    [Google Scholar]
  36. SunZ. SunX. LiJ. Using probiotics for type 2 diabetes mellitus intervention: advances, questions, and potential.Crit. Rev. Food Sci. Nutr.202060467068310.1080/10408398.2018.1547268 30632770
    [Google Scholar]
  37. WuH. ChiouJ. Potential benefits of probiotics and prebiotics for coronary heart disease and stroke.Nutrients2021138287810.3390/nu13082878 34445037
    [Google Scholar]
  38. SunJ. LingZ. WangF. Clostridium butyricum pretreatment attenuates cerebral ischemia/reperfusion injury in mice via anti-oxidation and anti-apoptosis.Neurosci. Lett.2016613303510.1016/j.neulet.2015.12.047 26733300
    [Google Scholar]
  39. AkhoundzadehK. VakiliA. ShadnoushM. SadeghzadehJ. Effects of the oral ingestion of probiotics on brain damage in a transient model of focal cerebral ischemia in mice.Iran. J. Med. Sci.20184313240 29398750
    [Google Scholar]
  40. LiL. WangM. ChenJ. Preventive effects of bacillus licheniformis on heat stroke in rats by sustaining intestinal barrier function and modulating gut microbiota.Front. Microbiol.20211263084110.3389/fmicb.2021.630841 33889138
    [Google Scholar]
  41. RayganF. RezavandiZ. BahmaniF. The effects of probiotic supplementation on metabolic status in type 2 diabetic patients with coronary heart disease.Diabetol. Metab. Syndr.2018105110.1186/s13098‑018‑0353‑2 29946368
    [Google Scholar]
  42. RayganF OstadmohammadiV BahmaniF AsemiZ The effects of vitamin D and probiotic co-supplementation on mental health parameters and metabolic status in type 2 diabetic patients with coronary heart disease: a randomized, double-blind, placebo-controlled trial.Prog Neuropsychopharmacol Biol Psychiatry201884Pt A505510.1016/j.pnpbp.2018.02.00729432877
    [Google Scholar]
  43. RayganF. OstadmohammadiV. AsemiZ. The effects of probiotic and selenium co-supplementation on mental health parameters and metabolic profiles in type 2 diabetic patients with coronary heart disease: A randomized, double-blind, placebo-controlled trial.Clin. Nutr.20193841594159810.1016/j.clnu.2018.07.017 30057015
    [Google Scholar]
  44. AggarwalN. BreedonA.M.E. DavisC.M. HwangI.Y. ChangM.W. Engineering probiotics for therapeutic applications: recent examples and translational outlook.Curr. Opin. Biotechnol.20206517117910.1016/j.copbio.2020.02.016 32304955
    [Google Scholar]
  45. ZhouZ. ChenX. ShengH. Engineering probiotics as living diagnostics and therapeutics for improving human health.Microb. Cell Fact.20201915610.1186/s12934‑020‑01318‑z
    [Google Scholar]
  46. MaoN. Cubillos-RuizA. CameronD.E. CollinsJ.J. Probiotic strains detect and suppress cholera in mice.Sci. Transl. Med.201810445eaa0258610.1126/scitranslmed.aao2586 29899022
    [Google Scholar]
  47. BakerD. Probiotics for fertility.Natural fertility and wellness.2020Jan 31Available from: https://www.naturalfertilityandwellness.com/probiotics-for-fertility/ Accessed on 13th December, 2020
    [Google Scholar]
  48. SimonM.C. StrassburgerK. NowotnyB. Intake of Lactobacillus reuteri improves incretin and insulin secretion in glucose-tolerant humans: a proof of concept.Diabetes Care201538101827183410.2337/dc14‑2690 26084343
    [Google Scholar]
  49. BagarolliR.A. TobarN. OliveiraA.G. Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice.J. Nutr. Biochem.201750162510.1016/j.jnutbio.2017.08.006 28968517
    [Google Scholar]
  50. KimY.A. KeoghJ.B. CliftonP.M. Probiotics, prebiotics, synbiotics and insulin sensitivity.Nutr. Res. Rev.2018311355110.1017/S095442241700018X 29037268
    [Google Scholar]
  51. ShamasbiS.G. Ghanbari-HomayiS. MirghafourvandM. The effect of probiotics, prebiotics, and synbiotics on hormonal and inflammatory indices in women with polycystic ovary syndrome: a systematic review and meta-analysis.Eur. J. Nutr.202059243345010.1007/s00394‑019‑02033‑1 31256251
    [Google Scholar]
  52. CostabileA. ButtarazziI. KolidaS. An in vivo assessment of the cholesterol-lowering efficacy of Lactobacillus plantarum ECGC 13110402 in normal to mildly hypercholesterolaemic adults.PLoS One20171212e018796410.1371/journal.pone.0187964 29228000
    [Google Scholar]
  53. LeeY. BaZ. RobertsR.F. Effects of Bifidobacterium animalis subsp. lactis BB-12® on the lipid/lipoprotein profile and short chain fatty acids in healthy young adults: a randomized controlled trial.Nutr. J.20171613910.1186/s12937‑017‑0261‑6 28662676
    [Google Scholar]
  54. LeeG.R. MaaroufM. HendricksA.J. LeeD.E. ShiV.Y. Topical probiotics: the unknowns behind their rising popularity.Dermatol. Online J.2019255510.5070/D3255044062 31220895
    [Google Scholar]
  55. BustamanteM. OomahB.D. OliveiraW.P. Burgos-DíazC. RubilarM. SheneC. Probiotics and prebiotics potential for the care of skin, female urogenital tract, and respiratory tract.Folia Microbiol. (Praha)202065224526410.1007/s12223‑019‑00759‑3 31773556
    [Google Scholar]
  56. López-VelázquezG. Parra-OrtizM. MoraL. Effects of fructans from Mexican Agave in newborns fed with infant formula: a randomized controlled trial.Nutrients20157118939895110.3390/nu7115442 26529006
    [Google Scholar]
  57. BateniE. TesterR. Al-GhazzewiF. BateniS. AlvaniK. PiggottJ. The use of konjac glucomannan hydrolysates (GMH) to improve the health of the skin and reduce acne vulgaris.Am J Dermatol Venereol201321014
    [Google Scholar]
  58. KandylisP. PissaridiK. BekatorouA. KanellakiM. KoutinasA.A. Dairy and non-dairy probiotic beverages.Curr. Opin. Food Sci.20167586310.1016/j.cofs.2015.11.012
    [Google Scholar]
  59. SongD. IbrahimS. HayekS. Recent Application of Probiotics in Food and Agricultural Science.INTECH201210.5772/50121
    [Google Scholar]
  60. KhanS.U. Probiotics in dairy foods: a review.Nutr. Food Sci.201444718810.1108/NFS‑04‑2013‑0051
    [Google Scholar]
  61. WhittemoreH. Lactobacillus rhamnosus GG (ATCC 53103) and its Probiotic Use.Micro Wiki.2013May 2Available from: https://microbewiki.kenyon.edu/index.php/Lactobacillus_rhamnosus_GG_(ATCC_53103)_and_its_Probiotic_Use Accessed on 3rd January, 2021
    [Google Scholar]
  62. NielsenB. GürakanG.C. UnlüG. Kefir: a multifaceted fermented dairy product.Probiotics Antimicrob. Proteins201463-412313510.1007/s12602‑014‑9168‑0 25261107
    [Google Scholar]
  63. YerlikayaO. Starter cultures used in probiotic dairy product preparation and popular probiotic dairy drinks.Food Sci Technol20143422122910.1590/fst.2014.0050
    [Google Scholar]
  64. KarimiR. MortazavianA.M. DaCruzA.G. Viability of probiotic microorganisms in cheese during production and storage: a review.Dairy Sci. Technol.20119128330810.1007/s13594‑011‑0005‑x
    [Google Scholar]
  65. AraújoE.A. dos Santos PiresA.C. MaximilianoS.P. GwénaëlJ. de CarvalhoA.F. Probiotics in Dairy Fermented Products, Probiotics, Everlon Cid Rigobelo.Intech Open201210.5772/51939
    [Google Scholar]
  66. OngL. HenrikssonA. ShahN.P. Proteolytic pattern and organic acid profiles of probiotic Cheddar cheese as influenced by probiotic strains of Lactobacillus acidophilus, Lb. paracasei, Lb. casei or Bifidobacterium sp.Int. Dairy J.200717677810.1016/j.idairyj.2005.12.009
    [Google Scholar]
  67. PrasannaP.H.P. GrandisonA.S. CharalampopoulosD. Bifidobacteria in milk products: an overview of physiological and biochemical properties, exopolysaccharide production, selection criteria of milk products and health benefits.Food Res. Int.20145524726210.1016/j.foodres.2013.11.013
    [Google Scholar]
  68. MatsuyamaM. HarbT. DavidM. DaviesP.S.W. HillR.J. Effect of fortified milk on growth and nutritional status in young children: a systematic review and meta-analysis.Public Health Nutr.20172071214122510.1017/S1368980016003189 27938461
    [Google Scholar]
  69. DonkorO. NilminiS. StolicP. VasiljevicT. ShahN. Survival and activity of selected probiotic organisms in set-type yoghurt during cold storage.Int. Dairy J.20071765766510.1016/j.idairyj.2006.08.006
    [Google Scholar]
  70. DanutaK.K. DolatowskibJ.Z. Probiotic meat products and human nutrition.Process Biochem.2012471761177210.1016/j.procbio.2012.09.017
    [Google Scholar]
  71. VerduciE. D’EliosS. CerratoL. Cow’s milk substitutes for children: Nutritional aspects of milk from different mammalian species, special formula and plant-based beverages.Nutrients2019118173910.3390/nu11081739 31357608
    [Google Scholar]
  72. GuptaS. Abu-GhannamN. Probiotic fermentation of plant based products: Possibilities and opportunities.Crit. Rev. Food Sci. Nutr.201252218319910.1080/10408398.2010.499779 22059963
    [Google Scholar]
  73. PereiraF. LuciaA. Turning fruit juice into probiotic beverages.Fruit Juices2018279287
    [Google Scholar]
  74. FernandezM.A. MaretteA. Potential health benefits of combining yogurt and fruits based on their probiotic and prebiotic properties.Adv. Nutr.201781155S164S10.3945/an.115.011114 28096139
    [Google Scholar]
  75. XuX. BaoY. WuB. LaoF. HuX. WuJ. Chemical analysis and flavor properties of blended orange, carrot, apple and Chinese jujube juice fermented by selenium-enriched probiotics.Food Chem.201928925025810.1016/j.foodchem.2019.03.068 30955609
    [Google Scholar]
  76. WorkuK.F. KurabachewH. HassenY. Probiotication of fruit juices by supplemented culture of lactobacillus acidophilus.Intl J Food Sci Nutr Eng201994548
    [Google Scholar]
  77. PanghalA. KumarV. DhullS.B. GatY. ChhikaraN. Utilization of dairy industry waste-whey in formulation of papaya rts beverage.Curr Res Nutr Food Sci J2017516817410.12944/CRNFSJ.5.2.14
    [Google Scholar]
  78. NagpalR. KumarA. KumarM. Fortification and fermentation of fruit juices with probiotic lactobacilli.Ann. Microbiol.2012621573157810.1007/s13213‑011‑0412‑5
    [Google Scholar]
  79. PerezM.B. SaguirF.M. Transfer and subsequent growth and metabolism of Lactobacillus plantarum in orange juice medium during storage at 4 and 30°C.Lett. Appl. Microbiol.201254539840310.1111/j.1472‑765X.2012.03235.x 22409293
    [Google Scholar]
  80. LuckowT. SheehanV. FitzgeraldG. DelahuntyC. Exposure, health information and flavour-masking strategies for improving the sensory quality of probiotic juice.Appetite200647331532310.1016/j.appet.2006.04.006 16857295
    [Google Scholar]
  81. RanadheeraC.S. PrasannaP.H.P. VidanarachchiJ.K. Fruit juice as probiotic carriers.Fruit Juices: Types, Nutritional Composition and Health Benefits.Hauppauge, New York, USANova Science Publishers2014119
    [Google Scholar]
  82. PatelM. ViholN.J. PatelA.D. PatelH.C. Effect of integrated nutrient management on quality parameters of sapota [Manilkara achrus (Mill) Forsberg] CV. Kalipatti.Int. J. Chem. Stud.20175889891
    [Google Scholar]
  83. TripathiM.K. GiriS.K. Probiotic functional foods: Survival of probiotics during processing and storage.J. Funct. Foods2014922524110.1016/j.jff.2014.04.030
    [Google Scholar]
  84. PakbinB. RazaviS.H. MahmoudiR. GajarbeygiP. Producing probiotic peach juice.Biotech Health Sci2014115
    [Google Scholar]
  85. SivuduS.N. UmamaheshK. ReddyO.V.S. A Comparative study on probiotication of mixed watermelon and tomato juice by using probiotic strains of lactobacilli.Int. J. Curr. Microbiol. Appl. Sci.20143977984
    [Google Scholar]
  86. Di CagnoR. CodaR. De AngelisM. GobbettiM. Exploitation of vegetables and fruits through lactic acid fermentation.Food Microbiol.201333111010.1016/j.fm.2012.09.003 23122495
    [Google Scholar]
  87. PereiraA.L.F. AlmeidaF.D.L. de JesusA.L.T. de CostaJ.M.C. RodriguesS. Storage stability and acceptance of probiotic beverage from cashew apple juice.Food Bioprocess Technol.201363155316510.1007/s11947‑012‑1032‑1
    [Google Scholar]
  88. ReidG. Probiotics and prebiotics – Progress and challenges.Int. Dairy J.20081896997510.1016/j.idairyj.2007.11.025
    [Google Scholar]
  89. YahyaouiG. BouzaieneA. AouidiT. AbdelkarimF.A. MoktarH. Traditional cereal food as container of probiotic bacteria Lb. rhamnosus GG”: optimization by response surface methodology.J. Food Qual.2017201711210.1155/2017/1742143
    [Google Scholar]
  90. EnujiughaV.N. BadejoA.A. Probiotic potentials of cereal-based beverages.Crit. Rev. Food Sci. Nutr.201757479080410.1080/10408398.2014.930018 26558644
    [Google Scholar]
  91. CharalampopoulosD. WangR. PandiellaS.S. WebbC. Application of cereals and cereal components in functional foods: a review.Int. J. Food Microbiol.2002791-213114110.1016/S0168‑1605(02)00187‑3 12382693
    [Google Scholar]
  92. KaluiC.M. MatharaJ.M. KutimaP.M. Probiotic potential of spontaneously fermented cereal based foods – A review.Afr. J. Biotechnol.2010924902498
    [Google Scholar]
  93. AwaishehSS Probiotic food products classes, types, and processing.Probiotics. Everlon Cid Rigobelo. uk: Intech Open201210.5772/51267
    [Google Scholar]
  94. SettaM.C. MatemuA. MbegaE.R. Potential of probiotics from fermented cereal-based beverages in improving health of poor people in Africa.J. Food Sci. Technol.202057113935394610.1007/s13197‑020‑04432‑3 33071315
    [Google Scholar]
  95. NuraidaL. A review: health promoting lactic acid bacteria in traditional Indonesian fermented foods.Food Sci. Hum. Wellness20154475510.1016/j.fshw.2015.06.001
    [Google Scholar]
  96. GibsonG.R. HutkinsR. SandersM.E. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics.Nat. Rev. Gastroenterol. Hepatol.201714849150210.1038/nrgastro.2017.75 28611480
    [Google Scholar]
  97. RashidinejadA. BahramiA. RehmanA. Co-encapsulation of probiotics with prebiotics and their application in functional/synbiotic dairy products.Crit. Rev. Food Sci. Nutr.2020125 33251846
    [Google Scholar]
  98. EhsaniA. BanihabibE.K. HashemiM. SaravaniM. YarahmadiE. Evaluation of various properties of symbiotic yoghurt of buffalo milk.J. Food Process. Preserv.2016401466147310.1111/jfpp.12732
    [Google Scholar]
  99. ShokryazdanP. Faseleh JahromiM. NavidshadB. LiangJ.B. Effects of prebiotics on immune system and cytokine expression.Med. Microbiol. Immunol. (Berl.)201720611910.1007/s00430‑016‑0481‑y 27704207
    [Google Scholar]
  100. do Espírito SantoA.P. CartolanoN.S. SilvaT.F. Fibers from fruit by-products enhance probiotic viability and fatty acid profile and increase CLA content in yoghurts.Int. J. Food Microbiol.2012154313514410.1016/j.ijfoodmicro.2011.12.025 22264421
    [Google Scholar]
  101. FengK. HuangR.M. WuR.Q. A novel route for doublelayered encapsulation of probiotics with improved viability under adverse conditions.Food Chem.202031012597710.1016/j.foodchem.2019.125977 31837527
    [Google Scholar]
  102. WhiteJ. ShararehH. Development of probiotic fruit juices using Lactobacillus rhamnosus GR-1 fortified with short chain and long chain inulin fiber.Fermentation (Basel)201842710.3390/fermentation4020027
    [Google Scholar]
  103. ComanM.M. VerdenelliM.C. CecchiniC. Effect of buckwheat flour and oat bran on growth and cell viability of the probiotic strains Lactobacillus rhamnosus IMC 501®, Lactobacillus paracasei IMC 502® and their combination SYNBIO®, in synbiotic fermented milk.Int. J. Food Microbiol.2013167226126810.1016/j.ijfoodmicro.2013.09.015 24140807
    [Google Scholar]
  104. VasileA. ParaschivD. DimaS. BahrimG. Growth and cell viability improve of the Probiotic Strain Lactobacillus casei sp. paracasei in the presence of oat bran and buckwheat Flour.Innov. Rom. Food Biotechnol.201195259
    [Google Scholar]
  105. DemirciT. AktaşK. SözeriD. ÖztürkH.I. AkınN. Rice bran improve probiotic viability in yoghurt and provide added antioxidative benefits.J. Funct. Foods20173639640310.1016/j.jff.2017.07.019
    [Google Scholar]
  106. PourjafarH. NooriN. GandomiH. BastiA.A. AnsariF. Viability of microencapsulated and non-microencapsulated Lactobacilli in a commercial beverage.Biotechnol. Rep. (Amst.)202025e0043210.1016/j.btre.2020.e00432 32099822
    [Google Scholar]
  107. AnekellaK. OrsatV. Optimization of microencapsulation of probiotics in raspberry juice by spray drying.Lebensm. Wiss. Technol.201350172410.1016/j.lwt.2012.08.003
    [Google Scholar]
  108. NualkaekulS. CookM.T. KhutoryanskiyV.V. CharalampopoulosD. Influence of encapsulation and coating materials on the survival of Lactobacillus plantarum and Bifidobacterium longum in fruit juices.Food Res. Int.20135330431110.1016/j.foodres.2013.04.019
    [Google Scholar]
  109. KrasaekooptW. WatcharapokaS. Effect of addition of inulin and galactooligosaccharide on the survival of microencapsulated probiotics in alginate beads coated with chitosan in simulated digestive system, yogurt and fruit juic.Lebensm. Wiss. Technol.20145776176610.1016/j.lwt.2014.01.037
    [Google Scholar]
  110. HolkemA.T. RaddatzG.C. BarinJ.S. Production of microcapsules containing Bifidobacterium BB-12 by emulsification/internal gelation.Lebensm. Wiss. Technol.20177621622110.1016/j.lwt.2016.07.013
    [Google Scholar]
  111. De AraújoE-M. RaddatzG.C. CichoskiA.J. Effect of resistant starch (Hi-maize) on the survival of Lactobacillus acidophilus microencapsulated with sodium alginate.J. Funct. Foods20162132132910.1016/j.jff.2015.12.025
    [Google Scholar]
  112. KiaE.M. GhasempourZ. GhanbariS. PirmohammadiR. EhsaniA. Development of probiotic yogurt by incorporation of milk protein concentrate (MPC) and microencapsulated Lactobacillus paracasei ‎in gellan-caseinate mixture.Br. Food J.20181201516152810.1108/BFJ‑12‑2017‑0668
    [Google Scholar]
  113. LoyeauP. SpottiM. BraberM.N.V. Microencapsulation of Bifidobacterium animalis subsp. lactis INL1 using whey proteins and dextrans conjugates as wall materials.Food Hydrocoll.20188512913510.1016/j.foodhyd.2018.06.051
    [Google Scholar]
  114. ShiL.E. LiZ.H. LiD.T. Encapsulation of probiotic Lactobacillus bulgaricus in alginate-milk microspheres and evaluation of the survival in simulated gastrointestinal conditions.J. Food Eng.20131179910410.1016/j.jfoodeng.2013.02.012
    [Google Scholar]
  115. JiR. WuJ. ZhangJ. Extending viability of Bifidobacterium longum in chitosan-coated alginate microcapsules using emulsification and internal gelation encapsulation technology.Front. Microbiol.201910138910.3389/fmicb.2019.01389 31316479
    [Google Scholar]
  116. LeeY. JiY.R. LeeS. ChoiM.J. ChoY. Microencapsulation of probiotic lactobacillus acidophilus KBL409 by extrusion technology to enhance survival under simulated intestinal and freeze-drying conditions.J. Microbiol. Biotechnol.201929572173010.4014/jmb.1903.03018 31030452
    [Google Scholar]
  117. SilvaP.T.D. FriesL.L.M. MenezesC.R.D. Microencapsulation of probiotics by spray drying: Evaluation of survival in simulated gastrointestinal conditions and availability under different storage temperatures.Cienc. Rural2015451342134710.1590/0103‑8478cr20140211
    [Google Scholar]
  118. SchellD. BeermannC. Fluidized bed microencapsulation of Lactobacillus reuteri with sweet whey and shellac for improved acid resistance and in-vitro gastro-intestinal survival.Food Res. Int.20146230831410.1016/j.foodres.2014.03.016
    [Google Scholar]
  119. TangH.W. AbbasiliasiS. MuruganP. TamY.J. NgH.S. TanJ.S. Influence of freeze-drying and spray-drying preservation methods on survivability rate of different types of protectants encapsulated Lactobacillus acidophilus FTDC 3081.Biosci. Biotechnol. Biochem.20208491913192010.1080/09168451.2020.1770572 32448058
    [Google Scholar]
  120. Turuvekere SadguruprasadL. BasavarajM. Statistical modelling for optimized lyophilization of Lactobacillus acidophilus strains for improved viability and stability using response surface methodology.AMB Express20188112910.1186/s13568‑018‑0659‑3 30097787
    [Google Scholar]
  121. MeybodiN.M. MortazavianA.M. ArabM. NematollahiA. Probiotic viability in yoghurt: a review of influential factors.Int. Dairy J.202010910479310.1016/j.idairyj.2020.104793
    [Google Scholar]
  122. CălinoiuL.F. VodnarD.C. PrecupG. The probiotic bacteria viability under different conditions.Bulletin UASVM Food Science and Technology201673556010.15835/buasvmcn‑fst:12448
    [Google Scholar]
  123. Moineau-JeanA. ChampagneC.P. RoyD. RaymondY. LaPointeG. Effect of Greek-style yoghurt manufacturing processes on starter and probiotic bacteria populations during storage.Int. Dairy J.201993354410.1016/j.idairyj.2019.02.003
    [Google Scholar]
  124. AfzaalM. KhanA.U. SaeedF. Functional exploration of free and encapsulated probiotic bacteria in yogurt and simulated gastrointestinal conditions.Food Sci. Nutr.20197123931394010.1002/fsn3.1254 31890171
    [Google Scholar]
  125. AbesingheA.M.N.L. PriyashanthaH. PrasannaH.P. KurukulasuriyaM.S. RanadheeraC.S. VidanarachchiJ.K. Inclusion of probiotics into fermented buffalo (Bubalus bubalis) Milk: an overview of challenges and opportunities.Fermentation (Basel)2020612110.3390/fermentation6040121
    [Google Scholar]
  126. Mani-LópezE. PalouE. López-MaloA. Probiotic viability and storage stability of yogurts and fermented milks prepared with several mixtures of lactic acid bacteria.J. Dairy Sci.20149752578259010.3168/jds.2013‑7551 24745665
    [Google Scholar]
  127. Senaka RanadheeraC. EvansC.A. AdamsM.C. BainesS.K. Probiotic viability and physico-chemical and sensory properties of plain and stirred fruit yogurts made from goat’s milk.Food Chem.201213531411141810.1016/j.foodchem.2012.06.025 22953874
    [Google Scholar]
  128. CelikO.F. O’SullivanD.J. Factors influencing the stability of freeze-dried stress-resilient and stress-sensitive strains of bifidobacteria.J. Dairy Sci.20139663506351610.3168/jds.2012‑6327 23587387
    [Google Scholar]
  129. BrinquesG.B. AyubM.A.Z. Effect of microencapsulation on survival of Lactobacillus plantarum in simulated gastrointestinal conditions, refrigeration, and yogurt.J. Food Eng.201110312312810.1016/j.jfoodeng.2010.10.006
    [Google Scholar]
/content/journals/cff/10.2174/2666862901666220107152746
Loading
/content/journals/cff/10.2174/2666862901666220107152746
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test