Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-8629
  • E-ISSN: 2666-8637

Abstract

Background

Linn belongs to the Leguminosae family and is commonly known as ‘Bakuchi’ in the Ayurvedic system of medicine. is an important medicinal herb used for the treatment of leucoderma, psoriasis, and leprosy. seed contain psoralen, psoralidin, isopsoralen, neobavaisoflavone, corylin, bavachin, and bavachalcone. has been used for the treatment of asthma, vitiligo, nephritis, calvities, and cough. Bavachin is a pure phytochemical found to be present in the seeds and fruit of .

Methods

In order to know the medicinal properties and therapeutic benefits of bavachin, numerous scientific research data have been collected and analyzed from different literature sources. The medicinal importance and pharmacological activities of bavachin have been investigated through literature data analysis of different scientific research works. Scientific research data has been collected from databases such as PubMed, Google, Google Scholar, Science Direct, and Scopus using the words and bavachin. Scientific articles on bavachin with respect to its pharmacological activities, medicinal importance, and analytical data have been collected from these databases and presented here with proper citation.

Results

Data analysis of scientific research works on bavachin revealed the biological importance of bavachin in medicine. Bavachin showed anti-inflammatory, anticancer, anti-bacterial, lipid-lowering, and cholesterol-reducing properties. Bavachin has multiple pharmacological activities, including platelet aggregation, α-glucosidase activities, and antibacterial potential. Bavachin has a potential estrogen supplement for estrogen replacement therapy. Present work summarized the biological potential of bavachin on inflammatory disorders, articular cartilage degeneration, cardiovascular disease, hyperglycemia, Parkinson's disease, Alzheimer's disease, apoptosis, melanin synthesis, estrogen receptor, UDP-glucuronosyltransferase 1A1, and various forms of pathogenic infection. Analytical data revealed the significance of HPLC-UV, HPLC, HPLC-ECD, HPLC-DAD, IT-MS, HPLC, HPLC/TOF-MS, LC-MS/MS, and ILUAE techniques for separation, identification, and quantification of bavachin in different samples.

Conclusion

Literature data analysis revealed the biological importance and therapeutic potential of bavachin in medicine for the treatment of various forms of human disorders.

Loading

Article metrics loading...

/content/journals/cff/10.2174/2666862901666220411123932
2023-04-01
2024-11-26
Loading full text...

Full text loading...

References

  1. KatiyarC. GuptaA. KanjilalS. KatiyarS. Drug discovery from plant sources: An integrated approach.Ayu2012331101910.4103/0974‑8520.10029523049178
    [Google Scholar]
  2. YuanH. MaQ. YeL. PiaoG. The traditional medicine and modern medicine from natural products.Molecules201621555910.3390/molecules2105055927136524
    [Google Scholar]
  3. SenS. ChakrabortyR. Revival, modernization and integration of Indian traditional herbal medicine in clinical practice: Importance, challenges and future.J. Tradit. Complement. Med.20167223424410.1016/j.jtcme.2016.05.00628417092
    [Google Scholar]
  4. CalixtoJ.B. Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents).Braz. J. Med. Biol. Res.200033217918910.1590/S0100‑879X200000020000410657057
    [Google Scholar]
  5. SadeghiZ. MahmoodA. Ethno-gynecological knowledge of medicinal plants used by Baluch tribes, southeast of Baluchistan, Iran.Rev. Bras. Farmacogn.201424670671510.1016/j.bjp.2014.11.006
    [Google Scholar]
  6. PatelK. KumarV. VermaA. RahmanM. PatelD.K. Amarogentin as topical anticancer and anti-infective potential: Scope of lipid based vesicular in its effective delivery.Recent Pat Antiinfect Drug Discov201914171510.2174/1574891X1366618091315435530210007
    [Google Scholar]
  7. PatelK. KumarV. RahmanM. VermaA. PatelD.K. Rhamnazin: A systematic review on ethnopharmacology, pharmacology and analytical aspects of an important phytomedicine.Curr. Tradit. Med.20184212012710.2174/2215083804666180416124949
    [Google Scholar]
  8. DhimanA. NandaA. AhmadS. A quest for staunch effects of flavonoids: Utopian protection against hepatic ailments.Arab. J. Chem.20169S1813S182310.1016/j.arabjc.2012.05.001
    [Google Scholar]
  9. BorateA. UdgireM. KhambhapatiA. Antifungal activity associated with Psoralea corylifolia linn. (bakuchi) seed and chemical profile crude methanol seed extract.Mintage J Pharm Med Sci2014346
    [Google Scholar]
  10. ChopraB. DhingraA.K. DharK.L. Psoralea corylifolia L. (Buguchi) - folklore to modern evidence: Review.Fitoterapia201390445610.1016/j.fitote.2013.06.01623831482
    [Google Scholar]
  11. HungY-L. WangS-C. SuzukiK. Bavachin attenuates LPS-induced inflammatory response and inhibits the activation of NLRP3 inflammasome in macrophages.Phytomedicine20195915278510.1016/j.phymed.2018.12.00831009850
    [Google Scholar]
  12. HaoW. ZhangX. ZhaoW. ChenX. Psoralidin induces autophagy through ROS generation which inhibits the proliferation of human lung cancer A549 cells.PeerJ20142e55510.7717/peerj.55525250213
    [Google Scholar]
  13. KhushbooP.S. JadhavV.M. KadamV.J. Development and validation of a HPTLC method for determination of psoralen in Psoralea corylifolia (Bavachi).Int. J. Pharm. Tech. Res.2009111221128
    [Google Scholar]
  14. LiuR. LiA. SunA. KongL. Preparative isolation and purification of psoralen and isopsoralen from Psoralea corylifolia by high-speed counter-current chromatography.J. Chromatogr. A200410571-222522810.1016/j.chroma.2004.09.04915584243
    [Google Scholar]
  15. LeeH. LiH. NohM. RyuJ-H. Bavachin from Psoralea corylifolia improves insulin-dependent glucose uptake through insulin signaling and AMPK activation in 3T3-L1 Adipocytes.Int. J. Mol. Sci.201617452710.3390/ijms1704052727070585
    [Google Scholar]
  16. ParkJ. KimD-H. AhnH-N. SongY-S. LeeY-J. RyuJ-H. Activation of estrogen receptor by bavachin from Psoralea corylifolia.Biomol. Ther. (Seoul)201220218318810.4062/biomolther.2012.20.2.18324116293
    [Google Scholar]
  17. ChenQ. LiY. ChenZ. Separation, identification, and quantification of active constituents in Fructus Psoraleae by high-performance liquid chromatography with UV, ion trap mass spectrometry, and electrochemical detection.J. Pharm. Anal.20122214315110.1016/j.jpha.2011.11.00529403734
    [Google Scholar]
  18. GaoQ. XuZ. ZhaoG. Simultaneous quantification of 5 main components of Psoralea corylifolia L. in rats’ plasma by utilizing ultra high pressure liquid chromatography tandem mass spectrometry.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2016101112813510.1016/j.jchromb.2015.12.04426773881
    [Google Scholar]
  19. YanC. WuY. WengZ. Development of an HPLC method for absolute quantification and QAMS of flavonoids components in Psoralea corylifolia L.J. Anal. Methods Chem.2015201579263710.1155/2015/79263726587307
    [Google Scholar]
  20. ZhuG. LuoY. XuX. ZhangH. ZhuM. Anti-diabetic compounds from the seeds of Psoralea corylifolia.Fitoterapia201913910437310.1016/j.fitote.2019.10437331629053
    [Google Scholar]
  21. XuQ-X. ZhangY-B. LiuX-Y. XuW. YangX-W. Cytotoxic heterodimers of meroterpene phenol from the fruits of Psoralea corylifolia.Phytochemistry202017611239410.1016/j.phytochem.2020.11239432361500
    [Google Scholar]
  22. GaoH-T-Y. LangG-Z. ZangY-D. Bioactive monoterpene phenol dimers from the fruits of Psoralea corylifolia L.Bioorg. Chem.202111210492410.1016/j.bioorg.2021.10492433933806
    [Google Scholar]
  23. FeiW-T. ZhangJ-J. TangR-Y. YueN. ZhouX. WangL-Y. Two new prenylated flavonoids from the seeds of Psoralea corylifolia with their inhibitory activity on α-glucosidase.Phytochem. Lett.202039646710.1016/j.phytol.2020.07.005
    [Google Scholar]
  24. XiuM-X. ZhaoY-M. ZhangY. Diacylglycerol acyltransferase inhibitory new meroterpenes from the seeds of Psoralea corylifolia, and their structure-activity relationship study.Fitoterapia202115110488110.1016/j.fitote.2021.10488133713740
    [Google Scholar]
  25. HeZ-C. XuQ-X. YangX-W. WangZ-J. XuW. The benzofuran glycosides from the fruits of Psoralea corylifolia L.Fitoterapia202115510505710.1016/j.fitote.2021.10505734655701
    [Google Scholar]
  26. XuQ-X. XuW. YangX-W. Meroterpenoids from the fruits of Psoralea corylifolia.Tetrahedron20207631-3213134310.1016/j.tet.2020.131343
    [Google Scholar]
  27. LiH-Z. MengX. JiangY-Y. Four new flavonoids with DGAT inhibitory activity from Psoralea corylifolia.Phytochem. Lett.20182813013410.1016/j.phytol.2018.10.005
    [Google Scholar]
  28. KimH-J. JinB-R. AnH-J. Psoralea corylifolia L. extract ameliorates benign prostatic hyperplasia by regulating prostate cell proliferation and apoptosis.J. Ethnopharmacol.202127311384410.1016/j.jep.2021.11384433485982
    [Google Scholar]
  29. WangD. GuoJ. ChaiX. YangJ. WangY. GaoX. Dynamic variations of bioactive compounds driven by enzymes in Psoralea corylifolia L. from growth to storage and processing.Arab. J. Chem.202215110346110.1016/j.arabjc.2021.103461
    [Google Scholar]
  30. YangY. TangX. HaoF. Bavachin induces apoptosis through mitochondrial regulated ER stress pathway in HepG2 cells.Biol. Pharm. Bull.201841219820710.1248/bpb.b17‑0067229187671
    [Google Scholar]
  31. HeH-Q. LawB.Y.K. ZhangN. Bavachin protects human aortic smooth muscle cells against β-glycerophosphate-mediated vascular calcification and apoptosis via activation of mtor-dependent autophagy and suppression of β-catenin signaling.Front. Pharmacol.201910142710.3389/fphar.2019.0142731920640
    [Google Scholar]
  32. WangJ.H. PeiY.Y. XuH.D. Effects of bavachin and its regulation of melanin synthesis in A375 cells.Biomed. Rep.201651879210.3892/br.2016.68827347410
    [Google Scholar]
  33. ChengC-C. ChenY-H. ChangW-L. Phytoestrogen bavachin mediates anti-inflammation targeting Ikappa B kinase-I kappaB α-NF-kappaB signaling pathway in chondrocytes in vitro.Eur. J. Pharmacol.20106361-318118810.1016/j.ejphar.2010.03.03120361957
    [Google Scholar]
  34. LeeS.W. YunB.R. KimM.H. Phenolic compounds isolated from Psoralea corylifolia inhibit IL-6-induced STAT3 activation.Planta Med.201278990390610.1055/s‑0031‑129848222573369
    [Google Scholar]
  35. LeeG-J. ChoI-A. KangK-R. Biological effects of the herbal plant-derived phytoestrogen bavachin in primary rat chondrocytes.Biol. Pharm. Bull.20153881199120710.1248/bpb.b15‑0019826235583
    [Google Scholar]
  36. WengZ-B. GaoQ-Q. WangF. Positive skeletal effect of two ingredients of Psoralea corylifolia L. on estrogen deficiency-induced osteoporosis and the possible mechanisms of action.Mol. Cell. Endocrinol.201541710311310.1016/j.mce.2015.09.02526419930
    [Google Scholar]
  37. WangD. LiF. JiangZ. Osteoblastic proliferation stimulating activity of Psoralea corylifolia extracts and two of its flavonoids.Planta Med.200167874874910.1055/s‑2001‑1834311731919
    [Google Scholar]
  38. LiuM. XuH. MaY. ChengJ. HuaZ. HuangG. Osteoblasts proliferation and differentiation stimulating activities of the main components of Epimedii folium.Pharmacogn. Mag.20171349909428216889
    [Google Scholar]
  39. LiW.D. YanC.P. WuY. Osteoblasts proliferation and differentiation stimulating activities of the main components of Fructus Psoraleae corylifoliae.Phytomedicine201421440040510.1016/j.phymed.2013.09.01524220018
    [Google Scholar]
  40. ZarmouhN.O. MazzioE.A. ElshamiF.M. MessehaS.S. EyunniS.V.K. SolimanK.F.A. Evaluation of the inhibitory effects of bavachinin and bavachin on human monoamine oxidases A and B.Evid. Based Complement. Alternat. Med.2015201585219410.1155/2015/85219426557867
    [Google Scholar]
  41. XuQ-X. HuY. LiG-Y. XuW. ZhangY-T. YangX-W. Multi-target Anti-Alzheimer activities of four prenylated compounds from psoralea fructus.Molecules201823361410.3390/molecules2303061429518051
    [Google Scholar]
  42. TakedaT. TsubakiM. TomonariY. Bavachin induces the apoptosis of multiple myeloma cell lines by inhibiting the activation of nuclear factor kappa B and signal transducer and activator of transcription 3.Biomed. Pharmacother.201810048649410.1016/j.biopha.2018.02.01929477912
    [Google Scholar]
  43. OhnoO. WatabeT. NakamuraK. Inhibitory effects of bakuchiol, bavachin, and isobavachalcone isolated from Piper longum on melanin production in B16 mouse melanoma cells.Biosci. Biotechnol. Biochem.20107471504150610.1271/bbb.10022120622433
    [Google Scholar]
  44. DongX. FanY. YuL. HuY. Synthesis of four natural prenylflavonoids and their estrogen-like activities.Arch. Pharm. (Weinheim)2007340737237610.1002/ardp.20070005717610303
    [Google Scholar]
  45. WangX-X. LvX. LiS-Y. Identification and characterization of naturally occurring inhibitors against UDP-glucuronosyltransferase 1A1 in Fructus Psoraleae (Bu-gu-zhi).Toxicol. Appl. Pharmacol.20152891707810.1016/j.taap.2015.09.00326348140
    [Google Scholar]
  46. ChengC. Yu-FengS. YangH. Highly efficient inhibition of spring viraemia of carp virus replication in vitro mediated by bavachin, a major constituent of psoralea corlifonia Lynn.Virus Res.2018255243510.1016/j.virusres.2018.06.00229913251
    [Google Scholar]
  47. YangY-F. ZhangY-B. ChenZ-J. ZhangY-T. YangX-W. Plasma pharmacokinetics and cerebral nuclei distribution of major constituents of Psoraleae fructus in rats after oral administration.Phytomedicine20183816617410.1016/j.phymed.2017.12.00229425649
    [Google Scholar]
  48. ChenQ. LiP. ZhangJ. ZhuJ. Preclinical pharmacokinetic analysis of armillarisin succinate ester in mouse plasma and tissues by LC-MS/MS.Biomed. Chromatogr.201327113013610.1002/bmc.276222674750
    [Google Scholar]
  49. ZhouZ.X. YangL. ChengL.Y. Simultaneous characterization of multiple Psoraleae Fructus bioactive compounds in rat plasma by ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry for application in sex-related differences in pharmacokinetics.J. Sep. Sci.202043142804281610.1002/jssc.20200028632384213
    [Google Scholar]
  50. TangX.Y. DaiZ.Q. WuQ.C. Simultaneous determination of multiple components in rat plasma and pharmacokinetic studies at a pharmacodynamic dose of Xian-Ling-Gu-Bao capsule by UPLC-MS/MS.J. Pharm. Biomed. Anal.202017711283610.1016/j.jpba.2019.11283631473481
    [Google Scholar]
  51. LiY. WangF. ChenZ. Determination of bavachin and isobavachalcone in Fructus Psoraleae by high-performance liquid chromatography with electrochemical detection.J. Sep. Sci.201134551451910.1002/jssc.20100080121265020
    [Google Scholar]
  52. ZhangY. ChenZ. Separation of isomeric bavachin and isobavachalcone in the fructus Psoraleae by capillary electrophoresis-mass spectrometry.J. Sep. Sci.201235131644165010.1002/jssc.20120017322761143
    [Google Scholar]
  53. ShiM. ZhangJ. LiuC. Ionic liquid-based ultrasonic-assisted extraction to analyze seven compounds in Psoralea Fructus coupled with HPLC.Molecules2019249169910.3390/molecules2409169931052330
    [Google Scholar]
  54. LuanL. ShenX. LiuX. WuY. TanM. Qualitative analysis of Psoraleae Fructus by HPLC-DAD/TOF-MS fingerprint and quantitative analysis of multiple components by single marker.Biomed. Chromatogr.2018322e405910.1002/bmc.405928777876
    [Google Scholar]
  55. ZhaoH. ChenZ. Screening of neuraminidase inhibitors from traditional Chinese medicines by integrating capillary electrophoresis with immobilized enzyme microreactor.J. Chromatogr. A2014134013914510.1016/j.chroma.2014.03.02824679826
    [Google Scholar]
  56. ZhangW. ZhouW. ChenZ. Graphene/polydopamine-modified polytetrafluoroethylene microtube for the sensitive determination of three active components in Fructus Psoraleae by online solid-phase microextraction with high-performance liquid chromatography.J. Sep. Sci.201437213110311610.1002/jssc.20140070625132311
    [Google Scholar]
  57. LinR.M. WangD.W. XiongZ.L. XuY. LiF.M. HPLC determination of two flavonoid compounds in Psoralea corylifolia.Zhongguo Zhongyao Zazhi200227966967112776567
    [Google Scholar]
  58. YinF.Z. LiL. LuT.L. LiW.D. CaiB.C. YinW. Quality assessment of Psoralea fructus by HPLC fingerprint coupled with multi-components analysis.Indian J. Pharm. Sci.201577671572210.4103/0250‑474X.17499626997699
    [Google Scholar]
  59. ZhangY. ChenZ. XuX. Rapid separation and simultaneous quantitative determination of 13 constituents in Psoraleae Fructus by a single marker using high-performance liquid chromatography with diode array detection.J. Sep. Sci.201740214191420210.1002/jssc.20170048228869337
    [Google Scholar]
  60. WangT-X. YinZ-H. ZhangW. PengT. KangW-Y. Chemical constituents from Psoralea corylifolia and their antioxidant alpha-glucosidase inhibitory and antimicrobial activities.Zhongguo Zhongyao Zazhi201338142328233324199566
    [Google Scholar]
  61. SongX. QiA. WangY. JingY. ChaiX. LiuY. Variation of 4 kinds of compounds in Psoralea corylifolia processed by different methods.Zhongguo Zhongyao Zazhi201136152071207522066442
    [Google Scholar]
  62. MatsudaH. SugimotoS. MorikawaT. Bioactive constituents from Chinese natural medicines. XX. Inhibitors of antigen-induced degranulation in RBL-2H3 cells from the seeds of Psoralea corylifolia.Chem. Pharm. Bull. (Tokyo)200755110611010.1248/cpb.55.10617202711
    [Google Scholar]
  63. TsaiW-J. HsinW-C. ChenC-C. Antiplatelet flavonoids from seeds of Psoralea corylifolia.J. Nat. Prod.199659767167210.1021/np960157y8759164
    [Google Scholar]
  64. HaraguchiH. InoueJ. TamuraY. MizutaniK. Antioxidative components of Psoralea corylifolia (Leguminosae).Phytother. Res.200216653954410.1002/ptr.97212237811
    [Google Scholar]
  65. ShresthaS. JadavH.R. BedarkarP. Pharmacognostical evaluation of Psoralea corylifolia Linn. seed.J. Ayurveda Integr. Med.20189320921210.1016/j.jaim.2017.05.00530121145
    [Google Scholar]
  66. WangD. XiuM-X. LiH-Z. Two new meroterpenes with activity against diacylglycerol acyltransferase from seeds of Psoralea corylifolia.Phytochem. Lett.20204017117510.1016/j.phytol.2020.10.006
    [Google Scholar]
  67. ZhaoY-M. XiuM-X. WangD. Flavonoids from the seeds of Psoralea corylifolia inhibit diacylglycerol acyltransferase.Phytochem. Lett.20214412012410.1016/j.phytol.2021.06.013
    [Google Scholar]
/content/journals/cff/10.2174/2666862901666220411123932
Loading
/content/journals/cff/10.2174/2666862901666220411123932
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test