Skip to content
2000
image of Diosgenin Unveiled: From Nutritional Insights to Nano Applications and Molecular Marvels

Abstract

Introduction

Diosgenin (DSG) is a steroidal sapogenin found in plants such as

Dioscorea tokoro Makino ex Miyabe, Trigonella foenum-graceum, and Solanum virginianum, and is utilized as a natural source of steroidal hormones. It exhibits anti-inflammatory, anti-apoptotic, anti-oxidant, and various other pharmacological properties, making it a reliable candidate for research purposes. The aim of this review is to provide researchers with a scientific basis for the target-specific bio-potential of DSG as an ethnomedicine and to underscore its potential for drug design and therapy modifications in the future.

Methods

Relevant literature search up to the current year by using online databases such as Scopus, Google Scholar, PubMed, Research Gate, and Science Direct by applying related search terms. This review first addressed the green nanotechnology that is widely adopted to improve DSG’s pharmacokinetic profile, and then listed numerous nano-formulations of DSG for enhancement of their physical properties. At last, this article explored the molecular action of DSG on , . that are pathologically involved in a variety of diseases for better understanding such as limited clinical research has been conducted to date.

Conclusion

Overall, the current review tries to update all information about DSG's nutritional benefits, its application as nanomedicine, and diverse pharmacological actions based on various molecular targets for its commendable pre-clinical and clinical applications.

Loading

Article metrics loading...

/content/journals/cff/10.2174/0126668629330184240914131424
2024-10-30
2024-11-26
Loading full text...

Full text loading...

References

  1. Parama D. Boruah M. Yachna K. Rana V. Banik K. Harsha C. Thakur K.K. Dutta U. Arya A. Mao X. Ahn K.S. Kunnumakkara A.B. Diosgenin, a steroidal saponin, and its analogs: Effective therapies against different chronic diseases. Life Sci. 2020 260 118182 10.1016/j.lfs.2020.118182 32781063
    [Google Scholar]
  2. Chatterjee S. Yadav S. Anticarcinogenic activity of diosgenin: A special class of saponins. IISUNIV J. Sci Technol 2012 1 1 18
    [Google Scholar]
  3. Thomford N.E. Senthebane D.A. Rowe A. Munro D. Seele P. Maroyi A. Dzobo K. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. Int. J. Mol. Sci. 2018 19 6 1578 10.3390/ijms19061578 29799486
    [Google Scholar]
  4. Sun W. Shahrajabian M.H. Cheng Q. Fenugreek cultivation with emphasis on historical aspects and its uses in traditional medicine and modern pharmaceutical science. Mini Rev. Med. Chem. 2021 21 6 724 730 10.2174/18755607MTEx4OTAn5 33245271
    [Google Scholar]
  5. Nazir R. Kumar V. Gupta S. Dwivedi P. Pandey D.K. Dey A. Biotechnological strategies for the sustainable production of diosgenin from Dioscorea spp. Appl. Microbiol. Biotechnol. 2021 105 2 569 585 10.1007/s00253‑020‑11055‑3 33404834
    [Google Scholar]
  6. Chen Y. Tang Y.M. Yu S.L. Han Y.W. Kou J.P. Liu B.L. Yu B.Y. Advances in the pharmacological activities and mechanisms of diosgenin. Chin. J. Nat. Med. 2015 13 8 578 587 10.1016/S1875‑5364(15)30053‑4 26253490
    [Google Scholar]
  7. Cai B. Zhang Y. Wang Z. Xu D. Jia Y. Guan Y. Liao A. Liu G. Chun C. Li J. Therapeutic potential of diosgenin and its major derivatives against neurological diseases: Recent advances. Oxid. Med. Cell. Longev. 2020 2020 1 16 10.1155/2020/3153082 32215172
    [Google Scholar]
  8. Deshpande H.A. Bhalsing S.R. Plant derived novel biomedicinal: Diosgenin. Int. J. Pharmacogn. Phytochem. Res. 2014 6 780 784
    [Google Scholar]
  9. Manobharathi V. Mirunalini S. Pharmacological characteristics of a phytosteroidal food saponin: Diosgenin. Afr. J. Biotechnol. 2020 2 77 87
    [Google Scholar]
  10. Huang N. Yu D. Wu J. Xiaowei DU. Diosgenin: An important natural pharmaceutical active ingredient. Food Sci Technol 2021 42
    [Google Scholar]
  11. Global Phytosterols Market – Industry Reports. 2020 Available from: https://www.360researchreports.com/global-phytosterols-market-15041569
  12. Marahatha R. Gyawali K. Sharma K. Gyawali N. Tandan P. Adhikari A. Timilsina G. Bhattarai S. Lamichhane G. Acharya A. Pathak I. Devkota H.P. Parajuli N. Pharmacologic activities of phytosteroids in inflammatory diseases: Mechanism of action and therapeutic potentials. Phytother. Res. 2021 35 9 5103 5124 10.1002/ptr.7138 33957012
    [Google Scholar]
  13. Wang H.W. Liu H.J. Cao H. Qiao Z.Y. Xu Y.W. Diosgenin protects rats from myocardial inflammatory injury induced by ischemia-reperfusion. Med. Sci. Monit. 2018 24 246 253 10.12659/MSM.907745 29329279
    [Google Scholar]
  14. Dong M. Meng Z. Kuerban K. Qi F. Liu J. Wei Y. Diosgenin promotes antitumor immunity and PD-1 antibody efficacy against melanoma by regulating intestinal microbiota. Cell Death Dis. 2018 9 10 1039 10.1038/s41419‑018‑1099‑3
    [Google Scholar]
  15. Londzin P. Kisiel-Nawrot E. Kocik S. Janas A. Trawczyński M. Cegieła U. Folwarczna J. Effects of diosgenin on the skeletal system in rats with experimental type 1 diabetes. Biomed 2020 129 110342 32554252
    [Google Scholar]
  16. Mohamadi-Zarch S.M. Baluchnejadmojarad T. Nourabadi D. Khanizadeh A.M. Roghani M. Protective effect of diosgenin on LPS/D-Gal-induced acute liver failure in C57BL/6 mice. Microb. Pathog. 2020 146 104243 10.1016/j.micpath.2020.104243 32389705
    [Google Scholar]
  17. Selim S. Al Jaouni S. Anti-inflammatory, antioxidant and antiangiogenic activities of diosgenin isolated from traditional medicinal plant, Costus speciosus (Koen ex.Retz.) Sm. Nat. Prod. Res. 2016 30 16 1830 1833 10.1080/14786419.2015.1065493 26222585
    [Google Scholar]
  18. Leng J. Li X. Tian H. Liu C. Guo Y. Zhang S. Neuroprotective effect of diosgenin in a mouse model of diabetic peripheral neuropathy involves the Nrf2/HO-1 pathway. BMC Complement Med. Ther. 2020 20 1 9
    [Google Scholar]
  19. Sun F. Yang X. Ma C. Zhang S. Yu L. Lu H. Yin G. Liang P. Feng Y. Zhang F. The effects of diosgenin on hypolipidemia and its underlying mechanism: A review. Diabetes Metab. Syndr. Obes. 2021 14 4015 4030 10.2147/DMSO.S326054 34552341
    [Google Scholar]
  20. Hernández-Vázquez J.M.V. López-Muñoz H. Escobar-Sánchez M.L. Flores-Guzmán F. Weiss-Steider B. Hilario-Martínez J.C. Sandoval-Ramírez J. Fernández-Herrera M.A. Sánchez Sánchez L. Apoptotic, necrotic, and antiproliferative activity of diosgenin and diosgenin glycosides on cervical cancer cells. Eur. J. Pharmacol. 2020 871 172942 10.1016/j.ejphar.2020.172942 31972180
    [Google Scholar]
  21. Liu Y. Zhou Z. Yan J. Wu X. Xu G. Diosgenin exerts antitumor activity via downregulation of Skp2 in breast cancer cells. BioMed Res. Int. 2020 2020 1 10 10.1155/2020/8072639 32626765
    [Google Scholar]
  22. Ma L. Zhang J. Wang X. Yang J. Guo L. Wang X. Song B. Dong W. Wang W. Design and synthesis of diosgenin derivatives as apoptosis inducers through mitochondria-related pathways. Eur. J. Med. Chem. 2021 217 113361 10.1016/j.ejmech.2021.113361 33740546
    [Google Scholar]
  23. Olaiya C.O. Soetan K.O. A review of the health benefits of fenugreek (Trigonella foenum-graecum L.): Nutritional, Biochemical and pharmaceutical perspectives. Int J Adv Social Sci Humanit 2014 3 12
    [Google Scholar]
  24. Wani S.A. Kumar P. Fenugreek: A review on its nutraceutical properties and utilization in various food products. J. Saudi Soc. Agric. Sci. 2018 17 2 97 106 10.1016/j.jssas.2016.01.007
    [Google Scholar]
  25. Żuk-Gołaszewska Wierzbowska J. Fenugreek: Productivity, nutritional value and uses. J. Elem. 2017 22 3 1067 1080
    [Google Scholar]
  26. Yadav U.C.S. Baquer N.Z. Pharmacological effects of Trigonella foenum-graecum L. in health and disease. Pharm. Biol. 2014 52 2 243 254 10.3109/13880209.2013.826247 24102093
    [Google Scholar]
  27. Lee E.L. Genotype X Environment Impact on Selected Bioactive Compound Content of Fenugreek (Trigonella foenum-graecum). Canada Department of Biological Sciences, University of Lethbridge 2009 1 150
    [Google Scholar]
  28. Im K.K. Maliakel B. Fenugreek dietary fibre a novel class of functional food ingredient. Agro Food Ind 2008 19 18 21
    [Google Scholar]
  29. Kumar S. Das G. Shin H.S. Patra J.K. Dioscorea spp. (a wild edible tuber): A study on its ethnopharmacological potential and traditional use by the local people of Similipal Biosphere Reserve, India. Front. Pharmacol. 2017 8 52 10.3389/fphar.2017.00052 28261094
    [Google Scholar]
  30. Shajeela P.S. Mohan V.R. Louis Jesudas L. Nutritional and antinutritional evaluation of wild yam (Dioscorea spp.). Trop. Subtrop. Agroecosystems 2011 14 2 723 730
    [Google Scholar]
  31. Chaudhary S. Chaudhary P.S. Chikara S.K. Sharma M.C. Iriti M. Review on fenugreek (Trigonella foenum-graecum L.) and its important secondary metabolite diosgenin. Not. Bot. Horti Agrobot. Cluj-Napoca 2018 46 1 22 31 10.15835/nbha46110996
    [Google Scholar]
  32. Obidiegwu J.E. Lyons J.B. Chilaka C.A. The Dioscorea Genus (Yam)-An appraisal of nutritional and therapeutic potentials. Foods 2020 9 9 1304 10.3390/foods9091304 32947880
    [Google Scholar]
  33. Cederberg D. Siesjö P. What has inflammation to do with traumatic brain injury? Childs Nerv. Syst. 2010 26 2 221 226 10.1007/s00381‑009‑1029‑x 19940996
    [Google Scholar]
  34. Liu T. Zhang L. Joo D. Sun S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017 2 1 17023 10.1038/sigtrans.2017.23 29158945
    [Google Scholar]
  35. Cai B. Seong K.J. Bae S.W. Kook M.S. Chun C. Lee J.H. Choi W.S. Jung J.Y. Kim W.J. Water-soluble arginyl–diosgenin analog attenuates hippocampal neurogenesis impairment through blocking microglial activation underlying NF-κB and JNK MAPK signaling in adult mice challenged by LPS. Mol. Neurobiol. 2019 56 9 6218 6238 10.1007/s12035‑019‑1496‑3 30740619
    [Google Scholar]
  36. Mahmoudi N. Kiasalari Z. Rahmani T. Sanaierad A. Afshin-Majd S. Naderi G. Baluchnejadmojarad T. Roghani M. Diosgenin attenuates cognitive impairment in streptozotocin-induced diabetic rats: Underlying mechanisms. Neuropsychobiology 2021 80 1 25 35 10.1159/000507398 32526752
    [Google Scholar]
  37. Shishodia S. Koul D. Aggarwal B.B. Cyclooxygenase (COX)-2 inhibitor celecoxib abrogates TNF-induced NF-κ B activation through inhibition of activation of I κ B α kinase and Akt in human non-small cell lung carcinoma: correlation with suppression of COX-2 synthesis. J. Immunol. 2004 173 3 2011 2022 10.4049/jimmunol.173.3.2011 15265936
    [Google Scholar]
  38. Shishodia S. Aggarwal B.B. Diosgenin inhibits osteoclastogenesis, invasion, and proliferation through the downregulation of Akt, IκB kinase activation and NF-κB-regulated gene expression. Oncogene 2006 25 10 1463 1473 10.1038/sj.onc.1209194 16331273
    [Google Scholar]
  39. Pujols L. Mullol J. Picado C. Glucocorticoid receptor in human respiratory epithelial cells. Neuroimmunomodulation 2009 16 5 290 299 10.1159/000216187 19571590
    [Google Scholar]
  40. Clark A.R. Belvisi M.G. Maps and legends: The quest for dissociated ligands of the glucocorticoid receptor. Pharmacol. Ther. 2012 134 1 54 67 10.1016/j.pharmthera.2011.12.004 22212616
    [Google Scholar]
  41. Bruscoli S. Donato V. Velardi E. Di Sante M. Migliorati G. Donato R. Riccardi C. Glucocorticoid-induced leucine zipper (GILZ) and long GILZ inhibit myogenic differentiation and mediate anti-myogenic effects of glucocorticoids. J. Biol. Chem. 2010 285 14 10385 10396 10.1074/jbc.M109.070136 20124407
    [Google Scholar]
  42. Quante T. Ng Y.C. Ramsay E.E. Henness S. Allen J.C. Parmentier J. Ge Q. Ammit A.J. Corticosteroids reduce IL-6 in ASM cells via up-regulation of MKP-1. Am. J. Respir. Cell Mol. Biol. 2008 39 2 208 217 10.1165/rcmb.2007‑0014OC 18314542
    [Google Scholar]
  43. Imanifooladi A. Yazdani S. Nourani M. The role of nuclear factor-kappaB in inflammatory lung disease. Inflamm. Allergy Drug Targets 2010 9 3 197 205 10.2174/187152810792231904 20687892
    [Google Scholar]
  44. Prabhala P. Ammit A.J. Tristetraprolin and its role in regulation of airway inflammation. Mol. Pharmacol. 2015 87 4 629 638 10.1124/mol.114.095984 25429052
    [Google Scholar]
  45. Junchao Y. Zhen W. Yuan W. Liying X. Libin J. Yuanhong Z. Wei Z. Ruilin C. Lu Z. Anti- trachea inflammatory effects of diosgenin from Dioscorea nipponica through interactions with glucocorticoid receptor α. J. Int. Med. Res. 2017 45 1 101 113 10.1177/0300060516676724 27913746
    [Google Scholar]
  46. Tsukayama I. Mega T. Hojo N. Toda K. Kawakami Y. Takahashi Y. Suzuki-Yamamoto T. Diosgenin suppresses COX-2 and mPGES-1 via GR and improves LPS-induced liver injury in mouse. Prostaglandins Other Lipid Mediat. 2021 156 106580 10.1016/j.prostaglandins.2021.106580 34252545
    [Google Scholar]
  47. Cai B. Seong K.J. Bae S.W. Chun C. Kim W.J. Jung J.Y. A synthetic diosgenin primary amine derivative attenuates LPS-stimulated inflammation via inhibition of NF-κB and JNK MAPK signaling in microglial BV2 cells. Int. Immunopharmacol. 2018 61 204 214 10.1016/j.intimp.2018.05.021 29890414
    [Google Scholar]
  48. Gao M. Chen L. Yu H. Sun Q. Kou J. Yu B. Diosgenin down-regulates NF-κB p65/p50 and p38MAPK pathways and attenuates acute lung injury induced by lipopolysaccharide in mice. Int. Immunopharmacol. 2013 15 2 240 245 10.1016/j.intimp.2012.11.019 23246979
    [Google Scholar]
  49. Jung D.H. Park H.J. Byun H.E. Park Y.M. Kim T.W. Kim B.O. Um S.H. Pyo S. Diosgenin inhibits macrophage-derived inflammatory mediators through downregulation of CK2, JNK, NF-κB and AP-1 activation. Int. Immunopharmacol. 2010 10 9 1047 1054 10.1016/j.intimp.2010.06.004 20601188
    [Google Scholar]
  50. Libby P. Li H. Vascular cell adhesion molecule-1 and smooth muscle cell activation during atherogenesis. J. Clin. Invest. 1993 92 2 538 539 10.1172/JCI116620 7688759
    [Google Scholar]
  51. Jang Y. Lincoff A.M. Plow E.F. Topol E.J. Cell adhesion molecules in coronary artery disease. J. Am. Coll. Cardiol. 1994 24 7 1591 1601 10.1016/0735‑1097(94)90162‑7 7963103
    [Google Scholar]
  52. Ho A. Wong C. Lam C. Tumor necrosis factor-α up-regulates the expression of CCL2 and adhesion molecules of human proximal tubular epithelial cells through MAPK signaling pathways. Immunobiology 2008 213 7 533 544 10.1016/j.imbio.2008.01.003 18656701
    [Google Scholar]
  53. Kang J.S. Yoon Y.D. Han M.H. Han S.B. Lee K. Lee K.H. Park S.K. Kim H.M. Glabridin suppresses intercellular adhesion molecule-1 expression in tumor necrosis factor-α-stimulated human umbilical vein endothelial cells by blocking sphingosine kinase pathway: implications of Akt, extracellular signal-regulated kinase, and nuclear factor-kappaB/Rel signaling pathways. Mol. Pharmacol. 2006 69 3 941 949 10.1124/mol.105.017442 16354764
    [Google Scholar]
  54. Sprague A.H. Khalil R.A. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem. Pharmacol. 2009 78 6 539 552 10.1016/j.bcp.2009.04.029 19413999
    [Google Scholar]
  55. Kim H.S. Loughran P.A. Rao J. Billiar T.R. Zuckerbraun B.S. Carbon monoxide activates NF-κB via ROS generation and Akt pathways to protect against cell death of hepatocytes. Am. J. Physiol. Gastrointest. Liver Physiol. 2008 295 1 G146 G152 10.1152/ajpgi.00105.2007 18497334
    [Google Scholar]
  56. Choi K.W. Park H.J. Jung D.H. Kim T.W. Park Y.M. Kim B.O. Sohn E.H. Moon E.Y. Um S.H. Rhee D.K. Pyo S. Inhibition of TNF-α-induced adhesion molecule expression by diosgenin in mouse vascular smooth muscle cells via downregulation of the MAPK, Akt and NF-κB signaling pathways. Vascul. Pharmacol. 2010 53 5-6 273 280 10.1016/j.vph.2010.09.007 20932938
    [Google Scholar]
  57. Fujita A. Kurachi Y. Molecular aspects of ATP-sensitive K+ channels in the cardiovascular system and K+ channel openers. Pharmacol. Ther. 2000 85 1 39 53 10.1016/S0163‑7258(99)00050‑9 10674713
    [Google Scholar]
  58. Schulz R. Kelm M. Heusch G. Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc. Res. 2004 61 3 402 413 10.1016/j.cardiores.2003.09.019 14962472
    [Google Scholar]
  59. Badalzadeh R. Yousefi B. Tajaddini A. Ahmadian N. Diosgenin-induced protection against myocardial ischaemia-reperfusion injury is mediated by mitochondrial K ATP channels in a rat model. Perfusion 2015 30 7 565 571 10.1177/0267659114566064 25552273
    [Google Scholar]
  60. Badalzadeh R. Yousefi B. Majidinia M. Ebrahimi H. Anti-arrhythmic effect of diosgenin in reperfusion-induced myocardial injury in a rat model: Activation of nitric oxide system and mitochondrial KATP channel. J. Physiol. Sci. 2014 64 6 393 400 10.1007/s12576‑014‑0333‑8 25150984
    [Google Scholar]
  61. Oruqaj G. Karnati S. Vijayan V. Kotarkonda L.K. Boateng E. Zhang W. Ruppert C. Günther A. Shi W. Baumgart-Vogt E. Compromised peroxisomes in idiopathic pulmonary fibrosis, a vicious cycle inducing a higher fibrotic response via TGF-β signaling. Proc. Natl. Acad. Sci. USA 2015 112 16 E2048 E2057 10.1073/pnas.1415111112 25848047
    [Google Scholar]
  62. Lichtman M.K. Otero-Vinas M. Falanga V. Transforming growth factor beta (TGF‐β) isoforms in wound healing and fibrosis. Wound Repair Regen. 2016 24 2 215 222 10.1111/wrr.12398 26704519
    [Google Scholar]
  63. Zhou J.P. Tang W. Feng Y. Li N. Gu C.J. Li Q.Y. Wan H.Y. Angiotensin-(1–7) decreases the expression of collagen I via TGF-β1/Smad2/3 and subsequently inhibits fibroblast–myofibroblast transition. Clin. Sci. (Lond.) 2016 130 21 1983 1991 10.1042/CS20160193 27543459
    [Google Scholar]
  64. Huang H. Nie C. Qin X. Zhou J. Zhang L. Diosgenin inhibits the epithelial‑mesenchymal transition initiation in osteosarcoma cells via the p38MAPK signaling pathway. Oncol. Lett. 2019 18 4 4278 4287 10.3892/ol.2019.10780 31579425
    [Google Scholar]
  65. Babu V.D. Kumar A.S. Sudhandiran G. Diosgenin inhibits TGF-β1/Smad signaling and regulates epithelial mesenchymal transition in experimental pulmonary fibrosis. Drug Chem. Toxicol. 2020 32924642
    [Google Scholar]
  66. Gump J.M. Thorburn A. Autophagy and apoptosis: What is the connection? Trends Cell Biol. 2011 21 7 387 392 10.1016/j.tcb.2011.03.007 21561772
    [Google Scholar]
  67. Saxton R.A. Sabatini D.M. mTOR signaling in growth, metabolism, and disease. Cell 2017 168 6 960 976 10.1016/j.cell.2017.02.004 28283069
    [Google Scholar]
  68. Havasi A. Dong Z. Autophagy and tubular cell death in the kidney. Semin. Nephrol. 2016 36 3 174 188 10.1016/j.semnephrol.2016.03.005 27339383
    [Google Scholar]
  69. Kaushal G.P. Shah S.V. Autophagy in acute kidney injury. Kidney Int. 2016 89 4 779 791 10.1016/j.kint.2015.11.021 26924060
    [Google Scholar]
  70. Garcia D. Shaw R.J. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol. Cell 2017 66 6 789 800 10.1016/j.molcel.2017.05.032 28622524
    [Google Scholar]
  71. Sciarretta S. Volpe M. Sadoshima J. Mammalian target of rapamycin signaling in cardiac physiology and disease. Circ. Res. 2014 114 3 549 564 10.1161/CIRCRESAHA.114.302022 24481845
    [Google Scholar]
  72. Jin C. Miao X. Zhong Y. Han J. Liu Q. Zhu J. Xia X. Peng X. The renoprotective effect of diosgenin on aristolochic acid I-induced renal injury in rats: Impact on apoptosis, mitochondrial dynamics and autophagy. Food Funct. 2020 11 9 7456 7467 10.1039/D0FO00401D 32789347
    [Google Scholar]
  73. Begriche K. Igoudjil A. Pessayre D. Fromenty B. Mitochondrial dysfunction in NASH: Causes, consequences and possible means to prevent it. Mitochondrion 2006 6 1 1 28 10.1016/j.mito.2005.10.004 16406828
    [Google Scholar]
  74. Ronnett G.V. Kleman A.M. Kim E.K. Landree L.E. Tu Y. Fatty acid metabolism, the central nervous system, and feeding. Obesity 2006 14 S8 Suppl. 5 201S 207S 10.1038/oby.2006.309 17021367
    [Google Scholar]
  75. Ke R. Xu Q. Li C. Luo L. Huang D. Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism. Cell Biol. Int. 2018 42 4 384 392 10.1002/cbin.10915 29205673
    [Google Scholar]
  76. Deng X. Dong Q. Bridges D. Raghow R. Park E.A. Elam M.B. Docosahexaenoic acid inhibits proteolytic processing of sterol regulatory element-binding protein-1c (SREBP-1c) via activation of AMP-activated kinase. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2015 1851 12 1521 1529 10.1016/j.bbalip.2015.08.007 26327595
    [Google Scholar]
  77. Fang K. Wu F. Chen G. Dong H. Li J. Zhao Y. Xu L. Zou X. Lu F. Diosgenin ameliorates palmitic acid-induced lipid accumulation via AMPK/ACC/CPT-1A and SREBP-1c/FAS signaling pathways in LO2 cells. BMC Complement. Altern. Med. 2019 19 1 255 10.1186/s12906‑019‑2671‑9 31519174
    [Google Scholar]
  78. Hua S. Li Y. Su L. Liu X. Diosgenin ameliorates gestational diabetes through inhibition of sterol regulatory element-binding protein-1. Biomed 2016 84 1460 1465 27810341
    [Google Scholar]
  79. Uemura T. Goto T. Kang M.S. Mizoguchi N. Hirai S. Lee J.Y. Nakano Y. Shono J. Hoshino S. Taketani K. Tsuge N. Narukami T. Makishima M. Takahashi N. Kawada T. Diosgenin, the main aglycon of fenugreek, inhibits LXRα activity in HepG2 cells and decreases plasma and hepatic triglycerides in obese diabetic mice. J. Nutr. 2011 141 1 17 23 10.3945/jn.110.125591 21106928
    [Google Scholar]
  80. Kornblit B. Munthe-Fog L. Madsen H.O. Strøm J. Vindeløv L. Garred P. Association of HMGB1 polymorphisms with outcome in patients with systemic inflammatory response syndrome. Crit. Care 2008 12 3 R83 10.1186/cc6935 18577209
    [Google Scholar]
  81. Lei C. Jiao Y. He B. Wang G. Wang Q. Wang J. RIP140 down-regulation alleviates acute lung injury via the inhibition of LPS-induced PPARγ promoter methylation. Pulm. Pharmacol. Ther. 2016 37 57 64 10.1016/j.pupt.2016.02.001 26921464
    [Google Scholar]
  82. Chen L. Tian G. Tang W. Luo W. Liu P. Ma Z. Protective effect of luteolin on streptozotocin-induced diabetic renal damage in mice via the regulation of RIP140/NF-кB pathway and insulin signalling pathway. J. Funct. Foods 2016 22 93 100 10.1016/j.jff.2016.01.023
    [Google Scholar]
  83. Wu Y. Ye F. Lu Y. Yong H. Yin R. Chen B. Yong Y. Diosgenin glucoside protects against myocardial injury in diabetic mice by inhibiting RIP140 signaling. Am. J. Transl. Res. 2018 10 11 3742 3749 30662624
    [Google Scholar]
  84. Reza naghdi M. Ahadi R. Motamed Nezhad A. Sadat Ahmadi Tabatabaei F. Soleimani M. Hajisoltani R. The neuroprotective effect of Diosgenin in the rat Valproic acid model of autism. Brain Res. 2024 1838 148963 10.1016/j.brainres.2024.148963
    [Google Scholar]
  85. Ben-Azu B. Adebayo O.G. Fokoua A.R. Oritsemuelebi B. Chidebe E.O. Nwogueze C.B. Kumanwee L. Uyere G.E. Emuakpeje M.T. Antipsychotic effect of diosgenin in ketamine-induced murine model of schizophrenia: Involvement of oxidative stress and cholinergic transmission. IBRO Neuroscience Reports 2024 16 86 97 10.1016/j.ibneur.2023.12.008 38282757
    [Google Scholar]
  86. Ben-Azu B. Adebayo O.G. Fokoua A.R. Onuelu J.E. Asiwe J.N. Moke E.G. Omogbiya I.A. Okpara O.L. Okoro J.E. Oghenevwerutevwe O.M. Uruaka C.I. Containment of neuroimmune challenge by diosgenin confers amelioration of neurochemical and neurotrophic dysfunctions in ketamine-induced schizophrenia in mice. Brain Disorders 2024 13 100122 10.1016/j.dscb.2024.100122
    [Google Scholar]
  87. Ben-Azu B. Adebayo O.G. Adebesin A. Oparaji K.C. Ojiokor V.O. Pender G.C. Odeghe B.O. Omeiza N.A. Abdulrahim H.A. Ezieshi V. Ighosotu G. Omo-Odudu E. Monye E.I. (). Diosgenin reverses posttraumatic stress disorder in mice by augmenting neurochemical release and inhibiting HPA axis dysfunction, oxidative stress, and neuroinflammaion. J. Affect. Disord. 2024 17 100814
    [Google Scholar]
  88. Ben-Azu B. Chidebe E.O. Toloyai P.E.Y. Annafi O.S. Oritsemuelebi B. Asiwe J. Moke G.E. Ajayi A.M. Chukwuebuka N.B. Onuelu J.E. Utomi C.W. Iregbeyen U.F. Raheem D.O. Adaptogenic action of diosgenin againsts chronic unpredictable mild stress-induced neuroimmune dysfunction of HPA axis reverses psychiatric behavior in mice. Clinical Traditional Medicine and Pharmacology 2024 5 2 200148 10.1016/j.ctmp.2024.200148
    [Google Scholar]
  89. El-Far A.H. Elghaity M.M. Mohamed S.A. Noreldin A.E. Elewa Y.H.A. Al Jaouni S.K. Alsenosy A.A. Diosgenin alleviates D-galactose-induced oxidative stress in rats’ brain and liver targeting aging and apoptotic marker genes. Front. Mol. Biosci. 2024 11 1303379 10.3389/fmolb.2024.1303379
    [Google Scholar]
  90. Ben-Azu B. Moke E.G. Chris-Ozoko L.E. Jaiyeoba-Ojigho E.J. Adebayo O.G. Ajayi A.M. Oyovwi M.O. Odjugo G. Omozojie V.I. Ejomafuwe G. Onike N. Eneni A.E.O. Ichipi-Ifukor C.P. Achuba I.F. Diosgenin alleviates alcohol-mediated escalation of social defeat stress and the neurobiological sequalae. Psychopharmacology 2024 241 4 785 803 10.1007/s00213‑023‑06509‑1 38311692
    [Google Scholar]
  91. Tohda C. Pharmacological intervention for chronic phase of spinal cord injury. Neural Regen. Res. 2025 20 5 1377 1389 10.4103/NRR.NRR‑D‑24‑00176 38934397
    [Google Scholar]
  92. Tohda C. Urano T. Umezaki M. Nemere I. Kuboyama T. Diosgenin is an exogenous activator of 1,25D3-MARRS/Pdia3/ERp57 and improves Alzheimer’s disease pathologies in 5XFAD mice. Sci. Rep. 2012 2 1 535 10.1038/srep00535 22837815
    [Google Scholar]
  93. Yang X. Tohda C. Diosgenin restores memory function via SPARC-driven axonal growth from the hippocampus to the PFC in Alzheimer’s disease model mice. Mol. Psychiatry 2023 a 28 6 2398 2411 10.1038/s41380‑023‑02052‑9 37085711
    [Google Scholar]
  94. Yang X. Tohda C. Axonal regeneration mediated by a novel axonal guidance pair, Galectin-1 and Secernin-1. Mol. Neurobiol. 2023 b 60 3 1250 1266 10.1007/s12035‑022‑03125‑6 36437381
    [Google Scholar]
  95. Yang X. Tohda C. Diosgenin restores Aβ-induced axonal degeneration by reducing the expression of heat shock cognate 70 (HSC70). Sci. Rep. 2018 8 1 11707 10.1038/s41598‑018‑30102‑8 30076345
    [Google Scholar]
  96. Nakano A. Yang X. Kuboyama T. Inada Y. Tohda C. Intrathecal Infusion of diosgenin during the chronic phase of spinal cord injury ameliorates motor function and axonal density. Neurochem. J. 2021 15 4 454 461 10.1134/S1819712421040085
    [Google Scholar]
  97. Wang F. Liang L. Yu M. Wang W. Badar I.H. Bao Y. Zhu K. Li Y. Shafi S. Li D. Diao Y. Efferth T. Xue Z. Hua X. Advances in antitumor activity and mechanism of natural steroidal saponins: A review of advances, challenges, and future prospects. Phytomedicine 2024 128 155432 10.1016/j.phymed.2024.155432 38518645
    [Google Scholar]
  98. Chen P.S. Shih Y.W. Huang H.C. Cheng H.W. Diosgenin, a steroidal saponin, inhibits migration and invasion of human prostate cancer PC-3 cells by reducing matrix metalloproteinases expression. PLoS One 2011 6 5 e20164 10.1371/journal.pone.0020164 21629786
    [Google Scholar]
  99. Yousef E.H. El-Mesery M.E. Habeeb M.R. Eissa L.A. Diosgenin potentiates the anticancer effect of doxorubicin and volasertib via regulating polo-like kinase 1 and triggering apoptosis in hepatocellular carcinoma cells. Naunyn Schmiedebergs Arch. Pharmacol. 2024 397 7 4883 4894 10.1007/s00210‑023‑02894‑8 38165424
    [Google Scholar]
  100. Ruan S. Gu L. Wang Y. Huang X. Cao H. Diosgenin glucoside inhibits the progression of osteosarcoma MG-63 by regulating the PI3K/AKT/mTOR pathway. Anticancer. Agents Med. Chem. 2023 23 14 1670 1677 10.2174/1871520623666230420081738 37078348
    [Google Scholar]
  101. Sharma S. Natural compounds diosgenin and panaxadiol exhibit anti-cancer activities, potentially through targeting RORγ. Doctoral dissertation, UC Davis
    [Google Scholar]
  102. Peng Y. Tang R. Ding L. Zheng R. Liu Y. Yin L. Fu Y. Deng T. Li X. Diosgenin inhibits prostate cancer progression by inducing UHRF1 protein degradation. Eur. J. Pharmacol. 2023 942 175522 10.1016/j.ejphar.2023.175522 36681316
    [Google Scholar]
  103. da Silva M.F. de Lima L.V.A. de Oliveira L.M. Semprebon S.C. Silva N.O. de Aguiar A.P. Mantovani M.S. Regulation of cytokinesis and necroptosis pathways by diosgenin inhibits the proliferation of NCI-H460 lung cancer cells. Life Sci. 2023 330 122033 10.1016/j.lfs.2023.122033 37598976
    [Google Scholar]
  104. Amin A. Lone A. Farooq F. Wani U.M. Kawoosa F. Qadri R.A. Identification of novel inhibitors of tetranectin–plasminogen interaction to suppress breast cancer invasion: An integrated computational and cell-based investigation. J. Biomol. Struct. Dyn. 2023 41 24 15023 15032 10.1080/07391102.2023.2187228 36927470
    [Google Scholar]
  105. Kim S.Y. Kim M. Kim T.J. Regulation of σB-dependent biofilm formation in Staphylococcus aureus through strain-specific signaling induced by diosgenin. Microorganisms 2023 11 10 2376 10.3390/microorganisms11102376 37894034
    [Google Scholar]
  106. do Socorro Costa M. da Silva A.R.P. Araújo N.J.S. Filho J.M.B. Tavares J.F. de Freitas T.S. Pereira Junior F.N. de Sousa E.O. Maia F.P.A. de Vasconcelos J.E.L. Pinheiro J.C.A. Coutinho H.D.M. Evaluation of the antibacterial and inhibitory activity of NorA and MepA efflux pumps from Staphylococcus aureus by diosgenin. Life Sci. 2022 308 120978 10.1016/j.lfs.2022.120978 36122765
    [Google Scholar]
  107. Cong S. Peng Q. Cao L. Yi Q. Liu Y. Li L. Tong Q. Liang D. Diosgenin prevents periodontitis by inhibiting inflammation and promoting osteogenic differentiation. Oral Dis. 2024 30 4 2497 2510 10.1111/odi.14708 37593795
    [Google Scholar]
  108. Rakshit S. More A. Gaikwad S. Seniya C. Gade A. Muley V.Y. Mukherjee A. Kamble K. Role of diosgenin extracted from Helicteres isora L in suppression of HIV-1 replication: An in vitro preclinical study. Heliyon 2024 10 2 e24350 10.1016/j.heliyon.2024.e24350 38288021
    [Google Scholar]
  109. do Socorro Costa M. da Silva A.R.P. Santos Araújo J. dos Santos A.T.L. Fonseca V.J.A. Gonçalves Alencar G. Moura T.F. Gonçalves S.A. Filho J.M.B. Morais-Braga M.F.B. Andrade-Pinheiro J.C. Coutinho H.D.M. In vitro evaluation of fungal susceptibility and inhibition of virulence by diosgenin. Chem. Biodivers. 2024 21 7 e202400444 10.1002/cbdv.202400444 38670923
    [Google Scholar]
  110. Hajizadeh M.R. Parvaz N. Barani M. Khoshdel A. Fahmidehkar M.A. Mahmoodi M. Torkzadeh-Mahani M. Diosgenin-loaded niosome as an effective phytochemical nanocarrier: Physicochemical characterization, loading efficiency, and cytotoxicity assay. Daru 2019 27 1 329 339 10.1007/s40199‑019‑00277‑0 31134490
    [Google Scholar]
  111. Xu X. Ho W. Zhang X. Bertrand N. Farokhzad O. Cancer nanomedicine: From targeted delivery to combination therapy. Trends Mol. Med. 2015 21 4 223 232 10.1016/j.molmed.2015.01.001 25656384
    [Google Scholar]
  112. Gad A. Kydd J. Piel B. Rai P. Targeting cancer using polymeric nanoparticle mediated combination chemotherapy. Int. J. Nanomed. Nanosurg. 2016 2 3 2 28042613
    [Google Scholar]
  113. Bazylińska U. Lewińska A. Lamch Ł. Wilk K.A. Polymeric nanocapsules and nanospheres for encapsulation and long sustained release of hydrophobic cyanine-type photosensitizer. Colloids Surf. A Physicochem. Eng. Asp. 2014 442 42 49 10.1016/j.colsurfa.2013.02.023
    [Google Scholar]
  114. Ulbrich K. Holá K. Šubr V. Bakandritsos A. Tuček J. Zbořil R. Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev. 2016 116 9 5338 5431 10.1021/acs.chemrev.5b00589 27109701
    [Google Scholar]
  115. Quiñones J.P. Brüggemann O. Covas C.P. Ossipov D.A. Self-assembled hyaluronic acid nanoparticles for controlled release of agrochemicals and diosgenin. Carbohydr. Polym. 2017 173 157 169 10.1016/j.carbpol.2017.05.048 28732854
    [Google Scholar]
  116. Ilkar Erdagi S. Yildiz U. Diosgenin-conjugated PCL–MPEG polymeric nanoparticles for the co-delivery of anticancer drugs: Design, optimization, in vitro drug release and evaluation of anticancer activity. New J. Chem. 2019 43 17 6622 6635 10.1039/C9NJ00659A
    [Google Scholar]
  117. Sharma N. Singhal M. Kumari R.M. Gupta N. Manchanda R. Syed A. Bahkali A.H. Nimesh S. Diosgenin loaded polymeric nanoparticles with potential anticancer efficacy. Biomolecules 2020 10 12 1679 10.3390/biom10121679 33339083
    [Google Scholar]
  118. Rabha B. Bharadwaj K.K. Baishya D. Sarkar T. Edinur H.A. Pati S. Synthesis and characterization of diosgenin encapsulated poly-ε-caprolactone-pluronic nanoparticles and its effect on brain cancer cells. Polymers 2021 13 8 1322 10.3390/polym13081322 33919483
    [Google Scholar]
  119. Issac P.K. Santhi J.J. Janarthanam V.A. Velumani K. Diosgenin-conjugated zinc oxide nanoparticles: A sustainable approach to counter antibiotic-induced oxidative stress in the aquatic environment using the in vivo zebrafish larvae model (Danio rerio). Bionanoscience 2024 14 2 903 918 10.1007/s12668‑024‑01383‑3
    [Google Scholar]
  120. Chiang L.H. Chen S.H. Yeh A.I. Preparation of nano/submicrometer yam and its benefits on collagen secretion from skin fibroblast cells. J. Agric. Food Chem. 2012 60 50 12332 12340 10.1021/jf304036c 23205552
    [Google Scholar]
  121. Eismann P. Dalcin A.J. Leiria R.G. Mortari S.R. Gomes P. Stability study of nanoemulsions of diosgenin. Discip. Sci Nat Tec 2020 21 3 119 137
    [Google Scholar]
  122. Uner M. Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): Their benefits as colloidal drug carrier systems. Pharmazie 2006 61 5 375 386 16724531
    [Google Scholar]
  123. Lacatusu I. Badea N. Udeanu D. Coc L. Pop A. Cioates Negut C. Tanase C. Stan R. Meghea A. Improved anti-obesity effect of herbal active and endogenous lipids co-loaded lipid nanocarriers: Preparation, in vitro and in vivo evaluation. Mater. Sci. Eng. C 2019 99 12 24 10.1016/j.msec.2019.01.071 30889655
    [Google Scholar]
  124. Khan H. Nazir S. Farooq R.K. Khan I.N. Javed A. Fabrication and assessment of diosgenin encapsulated stearic acid solid lipid nanoparticles for its anticancer and antidepressant effects using in vitro and in vivo models. Front. Neurosci. 2022 15 806713 10.3389/fnins.2021.806713 35221890
    [Google Scholar]
  125. Pop A.L. Crișan S. Henteș P. Pali A. Lăcătușu I. Badea N. Comparative dissolution study of a solid pharmaceutical form containing nanostructured lipid carrier (Nlc) incorporating diosgenin–conventional versus biorelevant dissolution media. Farmacia 2023 71 1 116 129 10.31925/farmacia.2023.1.15
    [Google Scholar]
  126. Moghassemi S. Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: An illustrated review. J. Control. Release 2014 185 22 36 10.1016/j.jconrel.2014.04.015 24747765
    [Google Scholar]
  127. Paul W. Sharma C.P. Chitosan, a drug carrier for the 21st century: A review. STP Pharma Sci 2000 10 5 22
    [Google Scholar]
  128. Pathak S.R. Bioavailability enhancement of poorly water-soluble nano diosgenin by encapsulation using chitosan/bovine serum albumin bilayers. Asian J. Pharm. 2018 12
    [Google Scholar]
  129. Petrov L. Stoilova O. Pramatarov G. Kanzova H. Tsvetanova E. Andreeva M. Georgieva A. Atanasova D. Philipov S. Alexandrova A. Effect of chitosan-diosgenin combination on wound healing. Int. J. Mol. Sci. 2023 24 5 5049 10.3390/ijms24055049 36902475
    [Google Scholar]
  130. Zaib S. Shah H.S. Khan I. Jawad Z. Sarfraz M. Riaz H. Asjad H.M.M. Ishtiaq M. Ogaly H.A. Othman G. Ahmed D.A.E.M. Fabrication and evaluation of anticancer potential of diosgenin incorporated chitosan-silver nanoparticles; In vitro, in silico and in vivo studies. Int. J. Biol. Macromol. 2024 254 Pt 3 127975 10.1016/j.ijbiomac.2023.127975 37944715
    [Google Scholar]
  131. Del Valle L. Díaz A. Puiggalí J. Hydrogels for biomedical applications: Cellulose, chitosan, and protein/peptide derivatives. Gels 2017 3 3 27 10.3390/gels3030027 30920524
    [Google Scholar]
  132. Ngwabebhoh F.A. Yildiz U. Nature‐derived fibrous nanomaterial toward biomedicine and environmental remediation: Today’s state and future prospects. J. Appl. Polym. Sci. 2019 136 35 47878 10.1002/app.47878
    [Google Scholar]
  133. Ilkar Erdagi S. Asabuwa Ngwabebhoh F. Yildiz U. Genipin crosslinked gelatin-diosgenin-nanocellulose hydrogels for potential wound dressing and healing applications. Int. J. Biol. Macromol. 2020 149 651 663 10.1016/j.ijbiomac.2020.01.279 32006574
    [Google Scholar]
  134. Yamada K. Yamashita J. Todo H. Miyamoto K. Hashimoto S. Tokudome Y. Hashimoto F. Sugibayashi K. Preparation and evaluation of liquid-crystal formulations with skin-permeation-enhancing abilities for entrapped drugs. J. Oleo Sci. 2011 60 1 31 40 10.5650/jos.60.31 21178315
    [Google Scholar]
  135. Lee K. Nguyen T. Hanley T. Boyd B. Nanostructure of liquid crystalline matrix determines in vitro sustained release and in vivo oral absorption kinetics for hydrophilic model drugs. Int. J. Pharm. 2009 365 1-2 190 199 10.1016/j.ijpharm.2008.08.022 18790030
    [Google Scholar]
  136. Okawara M. Hashimoto F. Todo H. Sugibayashi K. Tokudome Y. Effect of liquid crystals with cyclodextrin on the bioavailability of a poorly water-soluble compound, diosgenin, after its oral administration to rats. Int. J. Pharm. 2014 472 1-2 257 261 10.1016/j.ijpharm.2014.06.032 24954725
    [Google Scholar]
  137. Müller R.H. Jacobs C. Kayser O. Nanosuspensions as particulate drug formulations in therapy. Adv. Drug Deliv. Rev. 2001 47 1 3 19 10.1016/S0169‑409X(00)00118‑6 11251242
    [Google Scholar]
  138. Liu C. Chang J. Zhang L. Xue H. Liu X. Liu P. Fu Q. Preparation and evaluation of diosgenin nanocrystals to improve oral bioavailability. AAPS PharmSciTech 2017 18 6 2067 2076 10.1208/s12249‑016‑0684‑y 27995466
    [Google Scholar]
  139. Gong N. Yu H. Wang Y. Xing C. Hu K. Du G. Lu Y. Crystal structures, stability, and solubility evaluation of a 2: 1 diosgenin–piperazine cocrystal. Nat. Prod. Bioprospect. 2020 10 4 261 267 10.1007/s13659‑020‑00256‑y 32632767
    [Google Scholar]
  140. Mykhailiv O. Zubyk H. Plonska-Brzezinska M.E. Carbon nano-onions: Unique carbon nanostructures with fascinating properties and their potential applications. Inorg. Chim. Acta 2017 468 49 66 10.1016/j.ica.2017.07.021
    [Google Scholar]
  141. Abidi S.M. Shukla A.K. Randhawa S. Bathla M. Acharya A. Diosgenin loaded cellulose nanoonion impedes different stages of protein aggregation induced cell death via alleviating mitochondrial dysfunction and upregulation of autophagy. Int J Bio Macromol 2024 266
    [Google Scholar]
  142. AbouAitah K. Abdelaziz A.M. Higazy I.M. Swiderska-Sroda A. Hassan A.M.E. Shaker O.G. Szałaj U. Stobinski L. Malolepszy A. Lojkowski W. Functionalized carbon nanotubes for delivery of ferulic acid and diosgenin anticancer natural agents. ACS Appl. Bio Mater. 2024 7 2 791 811 10.1021/acsabm.3c00700 38253026
    [Google Scholar]
/content/journals/cff/10.2174/0126668629330184240914131424
Loading
/content/journals/cff/10.2174/0126668629330184240914131424
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test