Skip to content
2000
Volume 3, Issue 3
  • ISSN: 2666-8629
  • E-ISSN: 2666-8637

Abstract

Aims

The present study aims to investigate the neuroprotective properties of flaxseed oil (FSO) in reducing cadmium-induced neurotoxicity. The neuroprotective properties of FSO were observed in rats by examining the expression of caspase-3 and Bcl-2 to determine the antiapoptotic capabilities of FSO.

Methods

Rats were given cadmium orally at a dosage of 5 mg/kg/day for 30 days, along with flaxseed oil (FSO) at doses of 2 ml/kg/day and 3 ml/kg/day for the same duration. The Morris watermaze test (MWM) and the Novel object recognition test (NOR) were performed to evaluate learning and memory abilities. We quantified the amounts of glutathione (GSH), malondialdehyde (MDA), nitric oxide (NO), and acetylcholinesterase inhibitory activity (AChE) in the entire brain homogenate. Additionally, apoptosis and histopathology studies were conducted on rat brain tissues.

Results

Intoxication with cadmium was associated with significant impairment of learning and memory in Morris watermaze (MWM) and novel object recognition (NOR) tests. The group that consumed Cd showed elevated levels of MDA, NO, and AChE in the brain homogenate, higher levels of caspase-3 and Bcl-2, and decreased levels of GSH compared to the control group. Animals treated with FSO exhibited improved learning and memory function, along with balanced levels of oxidative and cholinergic activity in brain tissue. Additionally, levels of caspase-3 and Bcl-2 were reduced in a similar way to the control group.

Conclusion

The study demonstrates that flaxseed oil has positive effects by raising GSH and anti-apoptotic potential levels while reducing MDA, NO, and AChE levels in the brain. This contributes to neuroprotection and decreases neuronal death, as supported by histopathological findings.

Loading

Article metrics loading...

/content/journals/cff/10.2174/0126668629319735241017090402
2024-11-15
2025-09-01
Loading full text...

Full text loading...

References

  1. PaciniA. BrancaJ.J.V. MorucciG. Cadmium-induced neurotoxicity: Still much ado.Neural Regen. Res.201813111879188210.4103/1673‑5374.239434 30233056
    [Google Scholar]
  2. FribergL. CadmiumAnnu. Rev. Public Health19834136737310.1146/annurev.pu.04.050183.002055 6860444
    [Google Scholar]
  3. GiordanoG. CostaL.G. Developmental neurotoxicity: Some old and new issues.ISRN Toxicol.2012201211210.5402/2012/814795 23724296
    [Google Scholar]
  4. GilaniS.R. ZaidiS.R. BatoolM. BhattiA.A. DurraniA.I. MahmoodZ. Report: Central nervous system (CNS) toxicity caused by metal poisoning: Brain as a target organ.Pak. J. Pharm. Sci.201528414171423 26142507
    [Google Scholar]
  5. GuptaV.K. SinghS. AgrawalA. SiddiqiN.J. SharmaB. Phytochemicals mediated remediation of neurotoxicity induced by heavy metals.Biochem. Res. Int.201520151910.1155/2015/534769 26618004
    [Google Scholar]
  6. SatarugS. BakerJ.R. UrbenjapolS. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population.Toxicol. Lett.20031371-2658310.1016/S0378‑4274(02)00381‑8 12505433
    [Google Scholar]
  7. BertinG. AverbeckD. Cadmium: Cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review).Biochimie200688111549155910.1016/j.biochi.2006.10.001 17070979
    [Google Scholar]
  8. ThévenodF. Cadmium and cellular signaling cascades: To be or not to be?Toxicol. Appl. Pharmacol.2009238322123910.1016/j.taap.2009.01.013 19371614
    [Google Scholar]
  9. JärupL. BerglundM. ElinderC.G. NordbergG. VahterM. Health effects of cadmium exposure - A review of the literature and a risk estimate.Scand. J. Work Environ. Health199824Suppl. 1151 9569444
    [Google Scholar]
  10. NawrotT.S. Van HeckeE. ThijsL. Cadmium-related mortality and long-term secular trends in the cadmium body burden of an environmentally exposed population.Environ. Health Perspect.2008116121620162810.1289/ehp.11667 19079711
    [Google Scholar]
  11. JärupL. ÅkessonA. Current status of cadmium as an environmental health problem.Toxicol. Appl. Pharmacol.2009238320120810.1016/j.taap.2009.04.020 19409405
    [Google Scholar]
  12. CuypersA. PlusquinM. RemansT. Cadmium stress: An oxidative challenge.Biometals201023592794010.1007/s10534‑010‑9329‑x 20361350
    [Google Scholar]
  13. WaalkesM. Cadmium carcinogenesis.Mutat. Res.20035331-210712010.1016/j.mrfmmm.2003.07.011 14643415
    [Google Scholar]
  14. ValkoM. MorrisH. CroninM. Metals, toxicity and oxidative stress.Curr. Med. Chem.200512101161120810.2174/0929867053764635 15892631
    [Google Scholar]
  15. WhittakerM.H. WangG. ChenX.Q. Exposure to Pb, Cd, and As mixtures potentiates the production of oxidative stress precursors: 30-day, 90-day, and 180-day drinking water studies in rats.Toxicol. Appl. Pharmacol.2011254215416610.1016/j.taap.2010.10.025 21034764
    [Google Scholar]
  16. GoyalA. SharmaV. UpadhyayN. GillS. SihagM. Flax and flaxseed oil: An ancient medicine & modern functional food.J. Food Sci. Technol.20145191633165310.1007/s13197‑013‑1247‑9 25190822
    [Google Scholar]
  17. BuranovA.U. RossK.A. MazzaG. Isolation and characterization of lignins extracted from flax shives using pressurized aqueous ethanol.Bioresour. Technol.2010101197446745510.1016/j.biortech.2010.04.086 20537893
    [Google Scholar]
  18. PrasadK. Regression of hypercholesterolemic atherosclerosis in rabbits by secoisolariciresinol diglucoside isolated from flaxseed.Atherosclerosis20081971344210.1016/j.atherosclerosis.2007.07.043 17904562
    [Google Scholar]
  19. BernacchiaR. PretiR. VinciG. Chemical composition and health benefits of flaxseed.Austin J. Nutr. Food Sci.20142819
    [Google Scholar]
  20. DzuvorC.K.O. TaylorJ.T. AcquahC. PanS. AgyeiD. Bioprocessing of functional ingredients from flaxseed.Molecules20182310244410.3390/molecules23102444 30250012
    [Google Scholar]
  21. TouréA. XuemingX. Flaxseed lignans: Source, biosynthesis, metabolism, antioxidant activity, bio-active components, and health benefits.Compr. Rev. Food Sci. Food Saf.20109326126910.1111/j.1541‑4337.2009.00105.x 33467817
    [Google Scholar]
  22. AlnahdiH.S. SharafI.A. Possible prophylactic effect of omega-3 fatty acids on cadmium-induced neurotoxicity in rats’ brains.Environ. Sci. Pollut. Res. Int.20192630312543126210.1007/s11356‑019‑06259‑8 31468353
    [Google Scholar]
  23. KaithwasG. MajumdarD.K. In vitro antioxidant and in vivo antidiabetic, antihyperlipidemic activity of linseed oil against streptozotocin-induced toxicity in albino rats.Eur. J. Lipid Sci. Technol.2012114111237124510.1002/ejlt.201100263
    [Google Scholar]
  24. CreeleyC.E. WozniakD.F. NardiA. FarberN.B. OlneyJ.W. Donepezil markedly potentiates memantine neurotoxicity in the adult rat brain.Neurobiol. Aging200829215316710.1016/j.neurobiolaging.2006.10.020 17112636
    [Google Scholar]
  25. ObohG. AdebayoA.A. AdemosunA.O. OlowokereO.G. Rutin alleviates cadmium-induced neurotoxicity in Wistar rats: involvement of modulation of nucleotide-degrading enzymes and monoamine oxidase.Metab. Brain Dis.20193441181119010.1007/s11011‑019‑00413‑4 30972687
    [Google Scholar]
  26. MorrisR.G.M. GarrudP. RawlinsJ.N.P. O’KeefeJ. Place navigation impaired in rats with hippocampal lesions.Nature1982297586868168310.1038/297681a0 7088155
    [Google Scholar]
  27. Win-ShweT.T. FujimakiH. FujitaniY. HiranoS. Novel object recognition ability in female mice following exposure to nanoparticle-rich diesel exhaust.Toxicol. Appl. Pharmacol.2012262335536210.1016/j.taap.2012.05.015 22659509
    [Google Scholar]
  28. EllmanG.L. CourtneyK.D. AndresV. FeatherstoneR.M. A new and rapid colorimetric determination of acetylcholinesterase activity.Biochem. Pharmacol.196172889510.1016/0006‑2952(61)90145‑9 13726518
    [Google Scholar]
  29. MaodaaS.N. AllamA.A. AjaremJ. Abdel-MaksoudM.A. Al-BasherG.I. WangZ.Y. Effect of parsley (Petroselinum crispum, Apiaceae) juice against cadmium neurotoxicity in albino mice (Mus musculus).Behav. Brain Funct.2016121610.1186/s12993‑016‑0090‑3 26846273
    [Google Scholar]
  30. ColadoM.I. O’SheaE. GranadosR. MisraA. MurrayT.K. GreenA.R. A study of the neurotoxic effect of MDMA (‘ecstasy’) on 5-HT neurones in the brains of mothers and neonates following administration of the drug during pregnancy.Br. J. Pharmacol.1997121482783310.1038/sj.bjp.0701201 9208155
    [Google Scholar]
  31. TarafderP.K. RathoreD.P.S. Spectrophotometric determination of nitrite in water.Analyst (Lond.)198811371073107610.1039/an9881301073 3223580
    [Google Scholar]
  32. BerkelsR Purol-SchnabelS RoesenR Measurement of nitric oxide by reconversion of nitrate/nitrite to NO.Methods Mol Biol2004279001810.1385/1‑59259‑807‑2:001 15199232
    [Google Scholar]
  33. LowryO. RosebroughN. FarrA.L. RandallR. Protein measurement with the Folin phenol reagent.J. Biol. Chem.1951193126527510.1016/S0021‑9258(19)52451‑6 14907713
    [Google Scholar]
  34. SwantonE. SavoryP. CosulichS. ClarkeP. WoodmanP. Bcl-2 regulates a caspase-3/caspase-2 apoptotic cascade in cytosolic extracts.Oncogene199918101781178710.1038/sj.onc.1202490 10086332
    [Google Scholar]
  35. FadeelB. HassanZ. Hellström-LindbergE. HenterJ-I. OrreniusS. ZhivotovskyB. Cleavage of Bcl-2 is an early event in chemotherapy-induced apoptosis of human myeloid leukemia cells.Leukemia199913571972810.1038/sj.leu.2401411 10374876
    [Google Scholar]
  36. LongoU.G. FranceschiF. RuzziniL. Characteristics at haematoxylin and eosin staining of ruptures of the long head of the biceps tendon.Br. J. Sports Med.200943860360710.1136/bjsm.2007.039016 18070808
    [Google Scholar]
  37. KanterM. UnsalC. AktasC. ErbogaM. Neuroprotective effect of quercetin against oxidative damage and neuronal apoptosis caused by cadmium in hippocampus.Toxicol. Ind. Health201632354155010.1177/0748233713504810 24193051
    [Google Scholar]
  38. RigonA.P. CordovaF.M. OliveiraC.S. Neurotoxicity of cadmium on immature hippocampus and a neuroprotective role for p38MAPK.Neurotoxicology200829472773410.1016/j.neuro.2008.04.017 18541302
    [Google Scholar]
  39. AgnihotriS.K. AgrawalU. GhoshI. Brain most susceptible to cadmium induced oxidative stress in mice.J. Trace Elem. Med. Biol.20153018419310.1016/j.jtemb.2014.12.008 25617233
    [Google Scholar]
  40. WätjenW. BeyersmannD. Cadmium-induced apoptosis in C6 glioma cells: Influence of oxidative stress.Biometals2004171657810.1023/A:1024405119018 14977363
    [Google Scholar]
  41. ElkhadragyM.F. KassabR.B. MetwallyD. Protective effects of Fragaria ananassa methanolic extract in a rat model of cadmium chloride-induced neurotoxicity.Biosci. Rep.2018386BSR2018086110.1042/BSR20180861 30291211
    [Google Scholar]
  42. RenugadeviJ. PrabuS.M. Naringenin protects against cadmium-induced oxidative renal dysfunction in rats.Toxicology20092561-212813410.1016/j.tox.2008.11.012 19063931
    [Google Scholar]
  43. SomogyiA. RostaK. PusztaiP. TulassayZ. NagyG. Antioxidant measurements.Physiol. Meas.2007284R41R5510.1088/0967‑3334/28/4/R01 17395989
    [Google Scholar]
  44. NairA. DeGheselleO. SmeetsK. Van KerkhoveE. CuypersA. Cadmium-induced pathologies: Where is the oxidative balance lost (or not)?Int. J. Mol. Sci.20131436116614310.3390/ijms14036116 23507750
    [Google Scholar]
  45. JomovaK. ValkoM. Advances in metal-induced oxidative stress and human disease.Toxicology20112832-3658710.1016/j.tox.2011.03.001 21414382
    [Google Scholar]
  46. ChenL. XuB. LiuL. Cadmium induction of reactive oxygen species activates the mTOR pathway, leading to neuronal cell death.Free Radic. Biol. Med.201150562463210.1016/j.freeradbiomed.2010.12.032 21195169
    [Google Scholar]
  47. KaracaS. EraslanG. The effects of flaxseed oil on cadmium-induced oxidative stress in rats.Biol. Trace Elem. Res.2013155342343010.1007/s12011‑013‑9804‑7 24043467
    [Google Scholar]
  48. SuY. QinC. BegumN. AshrafM. ZhangL. Acetylcholine ameliorates the adverse effects of cadmium stress through mediating growth, photosynthetic activity and subcellular distribution of cadmium in tobacco (Nicotiana benthamiana).Ecotoxicol. Environ. Saf.202019811067110.1016/j.ecoenv.2020.110671 32344264
    [Google Scholar]
  49. RacchiM. MazzucchelliM. PorrelloE. LanniC. GovoniS. Acetylcholinesterase inhibitors: Novel activities of old molecules.Pharmacol. Res.200450444145110.1016/j.phrs.2003.12.027 15304241
    [Google Scholar]
  50. Ferreira-VieiraT.H. GuimaraesI.M. SilvaF.R. RibeiroF.M. Alzheimer’s disease: Targeting the cholinergic system.Curr. Neuropharmacol.201614110111510.2174/1570159X13666150716165726 26813123
    [Google Scholar]
  51. AmaraS. DoukiT. GarrelC. Effects of static magnetic field and cadmium on oxidative stress and DNA damage in rat cortex brain and hippocampus.Toxicol. Ind. Health20112729910610.1177/0748233710381887 20837562
    [Google Scholar]
  52. FidalM.W. MahmoudF.Y. El-HakimA.H.A. El Deen AmerA.S. Effect of exposure to cadmium on the hippocampus in adult albino rat and the possible role of L-carnitine.J Curr Med Res Pract20194324010.4103/JCMRP.JCMRP_60_18
    [Google Scholar]
/content/journals/cff/10.2174/0126668629319735241017090402
Loading
/content/journals/cff/10.2174/0126668629319735241017090402
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test