Skip to content
2000
image of Flaxseed Oil: Safeguarding Neurological Health through Apoptosis and 
Oxidative Damage Defense

Abstract

The present study aims to investigate the neuroprotective properties of flaxseed oil (FSO) in reducing cadmium-induced neurotoxicity. The neuroprotective properties of FSO were observed in rats by examining the expression of caspase-3 and Bcl-2 to determine the antiapoptotic capabilities of FSO.

Methods

Rats were given cadmium orally at a dosage of 5 mg/kg/day for 30 days, along with flaxseed oil (FSO) at doses of 2ml/kg/day and 3ml/kg/day for the same duration. The Morris watermaze test (MWM) and the Novel object recognition test (NOR) were performed to evaluate learning and memory abilities. We quantified the amounts of glutathione (GSH), malondialdehyde (MDA), nitric oxide (NO), and acetylcholinesterase inhibitory activity (AChE) in the entire brain homogenate. Additionally, apoptosis and histopathology studies were conducted on rat brain tissues.

Results

Intoxication with cadmium was associated with significant impairment of learning and memory in Morris watermaze (MWM) and novel object recognition (NOR) tests. The group that consumed Cd showed elevated levels of MDA, NO, and AChE in the brain homogenate, higher levels of caspase-3 and Bcl-2, and decreased levels of GSH compared to the control group. Animals treated with FSO exhibited improved learning and memory function, along with balanced levels of oxidative and cholinergic activity in brain tissue. Additionally, levels of caspase-3 and Bcl-2 were reduced in a similar way to the control group.

Conclusions

The study demonstrates that flaxseed oil has positive effects by raising GSH and anti-apoptotic potential levels while reducing MDA, NO, and AChE levels in the brain. This contributes to neuroprotection and decreases neuronal death, as supported by histopathological findings.

Loading

Article metrics loading...

/content/journals/cff/10.2174/0126668629319735241017090402
2024-11-15
2025-01-24
Loading full text...

Full text loading...

References

  1. Pacini A. Branca J.J.V. Morucci G. Cadmium-induced neurotoxicity: Still much ado. Neural Regen. Res. 2018 13 11 1879 1882 10.4103/1673‑5374.239434 30233056
    [Google Scholar]
  2. Friberg L. Cadmium. Annu. Rev. Public Health 1983 4 1 367 373 10.1146/annurev.pu.04.050183.002055 6860444
    [Google Scholar]
  3. Giordano G. Costa L.G. Developmental neurotoxicity: Some old and new issues. ISRN Toxicol. 2012 2012 1 12 10.5402/2012/814795 23724296
    [Google Scholar]
  4. Gilani S.R. Zaidi S.R. Batool M. Bhatti A.A. Durrani A.I. Mahmood Z. Report: Central nervous system (CNS) toxicity caused by metal poisoning: Brain as a target organ. Pak. J. Pharm. Sci. 2015 28 4 1417 1423 26142507
    [Google Scholar]
  5. Gupta V.K. Singh S. Agrawal A. Siddiqi N.J. Sharma B. Phytochemicals mediated remediation of neurotoxicity induced by heavy metals. Biochem. Res. Int. 2015 2015 1 9 10.1155/2015/534769 26618004
    [Google Scholar]
  6. Satarug S. Baker J.R. Urbenjapol S. Haswell-Elkins M. Reilly P.E.B. Williams D.J. Moore M.R. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol. Lett. 2003 137 1-2 65 83 10.1016/S0378‑4274(02)00381‑8 12505433
    [Google Scholar]
  7. Bertin G. Averbeck D. Cadmium: Cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 2006 88 11 1549 1559 10.1016/j.biochi.2006.10.001 17070979
    [Google Scholar]
  8. Thévenod F. Cadmium and cellular signaling cascades: To be or not to be? Toxicol. Appl. Pharmacol. 2009 238 3 221 239 10.1016/j.taap.2009.01.013 19371614
    [Google Scholar]
  9. Järup L. Berglund M. Elinder C.G. Nordberg G. Vahter M. Health effects of cadmium exposure - A review of the literature and a risk estimate. Scand. J. Work Environ. Health 1998 24 Suppl. 1 1 51 9569444
    [Google Scholar]
  10. Nawrot T.S. Van Hecke E. Thijs L. Richart T. Kuznetsova T. Jin Y. Vangronsveld J. Roels H.A. Staessen J.A. Cadmium-related mortality and long-term secular trends in the cadmium body burden of an environmentally exposed population. Environ. Health Perspect. 2008 116 12 1620 1628 10.1289/ehp.11667 19079711
    [Google Scholar]
  11. Järup L. Åkesson A. Current status of cadmium as an environmental health problem. Toxicol. Appl. Pharmacol. 2009 238 3 201 208 10.1016/j.taap.2009.04.020 19409405
    [Google Scholar]
  12. Cuypers A. Plusquin M. Remans T. Jozefczak M. Keunen E. Gielen H. Opdenakker K. Nair A.R. Munters E. Artois T.J. Nawrot T. Vangronsveld J. Smeets K. Cadmium stress: An oxidative challenge. Biometals 2010 23 5 927 940 10.1007/s10534‑010‑9329‑x 20361350
    [Google Scholar]
  13. Waalkes M. Cadmium carcinogenesis. Mutat. Res. 2003 533 1-2 107 120 10.1016/j.mrfmmm.2003.07.011 14643415
    [Google Scholar]
  14. Valko M. Morris H. Cronin M. Metals, toxicity and oxidative stress. Curr. Med. Chem. 2005 12 10 1161 1208 10.2174/0929867053764635 15892631
    [Google Scholar]
  15. Whittaker M.H. Wang G. Chen X.Q. Lipsky M. Smith D. Gwiazda R. Fowler B.A. Exposure to Pb, Cd, and As mixtures potentiates the production of oxidative stress precursors: 30-day, 90-day, and 180-day drinking water studies in rats. Toxicol. Appl. Pharmacol. 2011 254 2 154 166 10.1016/j.taap.2010.10.025 21034764
    [Google Scholar]
  16. Goyal A. Sharma V. Upadhyay N. Gill S. Sihag M. Flax and flaxseed oil: An ancient medicine & modern functional food. J. Food Sci. Technol. 2014 51 9 1633 1653 10.1007/s13197‑013‑1247‑9 25190822
    [Google Scholar]
  17. Buranov A.U. Ross K.A. Mazza G. Isolation and characterization of lignins extracted from flax shives using pressurized aqueous ethanol. Bioresour. Technol. 2010 101 19 7446 7455 10.1016/j.biortech.2010.04.086 20537893
    [Google Scholar]
  18. Prasad K. Regression of hypercholesterolemic atherosclerosis in rabbits by secoisolariciresinol diglucoside isolated from flaxseed. Atherosclerosis 2008 197 1 34 42 10.1016/j.atherosclerosis.2007.07.043 17904562
    [Google Scholar]
  19. Bernacchia R. Preti R. Vinci G. Chemical composition and health benefits of flaxseed. Austin J. Nutr. Food Sci. 2014 2 8 1 9
    [Google Scholar]
  20. Dzuvor C.K.O. Taylor J.T. Acquah C. Pan S. Agyei D. Bioprocessing of functional ingredients from flaxseed. Molecules 2018 23 10 2444 10.3390/molecules23102444 30250012
    [Google Scholar]
  21. Touré A. Xueming X. Flaxseed lignans: Source, biosynthesis, metabolism, antioxidant activity, bio‐active components, and health benefits. Compr. Rev. Food Sci. Food Saf. 2010 9 3 261 269 10.1111/j.1541‑4337.2009.00105.x 33467817
    [Google Scholar]
  22. Alnahdi H.S. Sharaf I.A. Possible prophylactic effect of omega-3 fatty acids on cadmium-induced neurotoxicity in rats’ brains. Environ. Sci. Pollut. Res. Int. 2019 26 30 31254 31262 10.1007/s11356‑019‑06259‑8 31468353
    [Google Scholar]
  23. Kaithwas G. Majumdar D.K. In vitro antioxidant and in vivo antidiabetic, antihyperlipidemic activity of linseed oil against streptozotocin‐induced toxicity in albino rats. Eur. J. Lipid Sci. Technol. 2012 114 11 1237 1245 10.1002/ejlt.201100263
    [Google Scholar]
  24. Creeley C.E. Wozniak D.F. Nardi A. Farber N.B. Olney J.W. Donepezil markedly potentiates memantine neurotoxicity in the adult rat brain. Neurobiol. Aging 2008 29 2 153 167 10.1016/j.neurobiolaging.2006.10.020 17112636
    [Google Scholar]
  25. Oboh G. Adebayo A.A. Ademosun A.O. Olowokere O.G. Rutin alleviates cadmium-induced neurotoxicity in Wistar rats: involvement of modulation of nucleotide-degrading enzymes and monoamine oxidase. Metab. Brain Dis. 2019 34 4 1181 1190 10.1007/s11011‑019‑00413‑4 30972687
    [Google Scholar]
  26. Morris R.G.M. Garrud P. Rawlins J.N.P. O’Keefe J. Place navigation impaired in rats with hippocampal lesions. Nature 1982 297 5868 681 683 10.1038/297681a0 7088155
    [Google Scholar]
  27. Win-Shwe T.T. Fujimaki H. Fujitani Y. Hirano S. Novel object recognition ability in female mice following exposure to nanoparticle-rich diesel exhaust. Toxicol. Appl. Pharmacol. 2012 262 3 355 362 10.1016/j.taap.2012.05.015 22659509
    [Google Scholar]
  28. Ellman G.L. Courtney K.D. Andres V. Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961 7 2 88 95 10.1016/0006‑2952(61)90145‑9 13726518
    [Google Scholar]
  29. Maodaa S.N. Allam A.A. Ajarem J. Abdel-Maksoud M.A. Al-Basher G.I. Wang Z.Y. Effect of parsley (Petroselinum crispum, Apiaceae) juice against cadmium neurotoxicity in albino mice (Mus musculus). Behav. Brain Funct. 2016 12 1 6 10.1186/s12993‑016‑0090‑3 26846273
    [Google Scholar]
  30. Colado M.I. O’Shea E. Granados R. Misra A. Murray T.K. Green A.R. A study of the neurotoxic effect of MDMA (‘ecstasy’) on 5‐HT neurones in the brains of mothers and neonates following administration of the drug during pregnancy. Br. J. Pharmacol. 1997 121 4 827 833 10.1038/sj.bjp.0701201 9208155
    [Google Scholar]
  31. Tarafder P.K. Rathore D.P.S. Spectrophotometric determination of nitrite in water. Analyst (Lond.) 1988 113 7 1073 1076 10.1039/an9881301073 3223580
    [Google Scholar]
  32. Berkels R. Purol-Schnabel S. Roesen R. Measurement of nitric oxide by reconversion of nitrate/nitrite to NO. Methods Mol. Biol. 2004 279 001 008 10.1385/1‑59259‑807‑2:001 15199232
    [Google Scholar]
  33. Lowry O. Rosebrough N. Farr A.L. Randall R. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951 193 1 265 275 10.1016/S0021‑9258(19)52451‑6 14907713
    [Google Scholar]
  34. Swanton E. Savory P. Cosulich S. Clarke P. Woodman P. Bcl-2 regulates a caspase-3/caspase-2 apoptotic cascade in cytosolic extracts. Oncogene 1999 18 10 1781 1787 10.1038/sj.onc.1202490 10086332
    [Google Scholar]
  35. Fadeel B. Hassan Z. Hellström-Lindberg E. Henter J-I. Orrenius S. Zhivotovsky B. Cleavage of Bcl-2 is an early event in chemotherapy-induced apoptosis of human myeloid leukemia cells. Leukemia 1999 13 5 719 728 10.1038/sj.leu.2401411 10374876
    [Google Scholar]
  36. Longo U.G. Franceschi F. Ruzzini L. Rabitti C. Morini S. Maffulli N. Denaro V. Characteristics at haematoxylin and eosin staining of ruptures of the long head of the biceps tendon. Br. J. Sports Med. 2009 43 8 603 607 10.1136/bjsm.2007.039016 18070808
    [Google Scholar]
  37. Kanter M. Unsal C. Aktas C. Erboga M. Neuroprotective effect of quercetin against oxidative damage and neuronal apoptosis caused by cadmium in hippocampus. Toxicol. Ind. Health 2016 32 3 541 550 10.1177/0748233713504810 24193051
    [Google Scholar]
  38. Rigon A.P. Cordova F.M. Oliveira C.S. Posser T. Costa A.P. Silva I.G. Santos D.A. Rossi F.M. Rocha J.B.T. Leal R.B. Neurotoxicity of cadmium on immature hippocampus and a neuroprotective role for p38MAPK. Neurotoxicology 2008 29 4 727 734 10.1016/j.neuro.2008.04.017 18541302
    [Google Scholar]
  39. Agnihotri S.K. Agrawal U. Ghosh I. Brain most susceptible to cadmium induced oxidative stress in mice. J. Trace Elem. Med. Biol. 2015 30 184 193 10.1016/j.jtemb.2014.12.008 25617233
    [Google Scholar]
  40. Wätjen W. Beyersmann D. Cadmium-induced apoptosis in C6 glioma cells: Influence of oxidative stress. Biometals 2004 17 1 65 78 10.1023/A:1024405119018 14977363
    [Google Scholar]
  41. Elkhadragy M.F. Kassab R.B. Metwally D. Almeer R.S. Abdel-Gaber R. Al-Olayan E.M. Essawy E.A. Amin H.K. Abdel Moneim A.E. Protective effects of Fragaria ananassa methanolic extract in a rat model of cadmium chloride-induced neurotoxicity. Biosci. Rep. 2018 38 6 BSR20180861 10.1042/BSR20180861 30291211
    [Google Scholar]
  42. Renugadevi J. Prabu S.M. Naringenin protects against cadmium-induced oxidative renal dysfunction in rats. Toxicology 2009 256 1-2 128 134 10.1016/j.tox.2008.11.012 19063931
    [Google Scholar]
  43. Somogyi A. Rosta K. Pusztai P. Tulassay Z. Nagy G. Antioxidant measurements. Physiol. Meas. 2007 28 4 R41 R55 10.1088/0967‑3334/28/4/R01 17395989
    [Google Scholar]
  44. Nair A. DeGheselle O. Smeets K. Van Kerkhove E. Cuypers A. Cadmium-induced pathologies: Where is the oxidative balance lost (or not)? Int. J. Mol. Sci. 2013 14 3 6116 6143 10.3390/ijms14036116 23507750
    [Google Scholar]
  45. Jomova K. Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology 2011 283 2-3 65 87 10.1016/j.tox.2011.03.001 21414382
    [Google Scholar]
  46. Chen L. Xu B. Liu L. Luo Y. Zhou H. Chen W. Shen T. Han X. Kontos C.D. Huang S. Cadmium induction of reactive oxygen species activates the mTOR pathway, leading to neuronal cell death. Free Radic. Biol. Med. 2011 50 5 624 632 10.1016/j.freeradbiomed.2010.12.032 21195169
    [Google Scholar]
  47. Karaca S. Eraslan G. The effects of flaxseed oil on cadmium-induced oxidative stress in rats. Biol. Trace Elem. Res. 2013 155 3 423 430 10.1007/s12011‑013‑9804‑7 24043467
    [Google Scholar]
  48. Su Y. Qin C. Begum N. Ashraf M. Zhang L. Acetylcholine ameliorates the adverse effects of cadmium stress through mediating growth, photosynthetic activity and subcellular distribution of cadmium in tobacco (Nicotiana benthamiana). Ecotoxicol. Environ. Saf. 2020 198 110671 10.1016/j.ecoenv.2020.110671 32344264
    [Google Scholar]
  49. Racchi M. Mazzucchelli M. Porrello E. Lanni C. Govoni S. Acetylcholinesterase inhibitors: Novel activities of old molecules. Pharmacol. Res. 2004 50 4 441 451 10.1016/j.phrs.2003.12.027 15304241
    [Google Scholar]
  50. Ferreira-Vieira T.H. Guimaraes I.M. Silva F.R. Ribeiro F.M. Alzheimer’s disease: Targeting the cholinergic system. Curr. Neuropharmacol. 2016 14 1 101 115 10.2174/1570159X13666150716165726 26813123
    [Google Scholar]
  51. Amara S. Douki T. Garrel C. Favier A. Ben Rhouma K. Sakly M. Abdelmelek H. Effects of static magnetic field and cadmium on oxidative stress and DNA damage in rat cortex brain and hippocampus. Toxicol. Ind. Health 2011 27 2 99 106 10.1177/0748233710381887 20837562
    [Google Scholar]
  52. Fidal M.W. Mahmoud F.Y. El-Hakim A.H.A. El Deen Amer A.S. Effect of exposure to cadmium on the hippocampus in adult albino rat and the possible role of L-carnitine. J. Curr. Med. Res. Pract. 2019 4 3 240 10.4103/JCMRP.JCMRP_60_18
    [Google Scholar]
/content/journals/cff/10.2174/0126668629319735241017090402
Loading
/content/journals/cff/10.2174/0126668629319735241017090402
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test