Skip to content
2000
image of Physicochemical Characteristics and Antioxidant Activity of Murici Pulps (Byrsonima spp., Malpighiaceae) Sold in the Municipality of Santarém-PA, Brazil

Abstract

Introduction

Murici is valued by the local population for its healing, anti-inflammatory, and antioxidant properties, which are attributed to its phenolic compounds and carotenoids, although its quality and properties are not well-known.

Objective

This research aimed to evaluate the quality of murici pulp ( spp.) commercialized in some places of Santarém, Pará, Brazil.

Methods

Murici pulp samples were collected in Santarém and Curuá, PA, between October 2022 and January 2023. The samples were packed in plastic containers and stored in a refrigerated laboratory. Physicochemical analyses included pH, titratable acidity, total soluble solids, ash content, moisture, phenolic compounds, proteins, and sugars, following standard methods. Antioxidant activity was measured using DPPH, ABTS, and FRAP assays.

Results

Murici pulp pH ranged from 3.2 to 3.6, all within legal limits, indicating higher acidity suitable for consumption. Titratable acidity ranged from 15.89 to 63.57 meq kg−1, meeting regulatory standards. Ash content varied from 0.15% to 0.86%, moisture from 75.11% to 83.58%, and phenolic compounds from 2.73 to 3.64 mg GA g−1. Significant statistical differences were observed in all analyses, highlighting the nutritional and antioxidant potential of the pulp.

Conclusion

Murici pulp samples showed low sugar and starch concentrations but high total acidity and antioxidant capacity (DPPH, ABTS, and FRAP). pH levels met legal standards, with significant variations due to ripeness and environmental factors. The study underscores murici's health benefits and quality variations influenced by environmental conditions and processing factors.

Loading

Article metrics loading...

/content/journals/cff/10.2174/0126668629319879240918103950
2024-11-04
2025-01-24
Loading full text...

Full text loading...

References

  1. Pereira J.O.P. Freitas B.M. Study of biology and polination requirements of Byrsonima crassifolia L. Rev. Cienc. Agron. 2002 33 2 5 12
    [Google Scholar]
  2. Souza V.C. Lorenzi H. Botânica sistemática: Guia ilustrado para identificação das famílias de Fanerógamas nativas e exóticas no Brasil, baseado em APG IV. 2019 Available From: https://repositorio.usp.br/item/003104900
  3. Belisário C.M. Soares A.G. Coneglian R.C.C. Plácido G.R. Castro C.F.S. Rodrigues L.A.N. Carotenoids, sugars, ascorbic acid, total phenolics, and antioxidant activity of murici from Brazilian Cerrado during refrigerated storage. Cienc. Rural 2020 50 4 e20180620 10.1590/0103‑8478cr20180620
    [Google Scholar]
  4. Flora e Funga do Brasil (FFB). Jardim Botânico do Rio de Janeiro. 2024 Available From: http://floradobrasil.jbrj.gov.br
  5. Centro de Referência em Informação Ambiental (CRIA) Species Link. 2024 Available From: http://splink.cria.org.br
  6. Amorim A.M. Vasconcelos L.V. Silva Júnior V.S. Flora das cangas da Serra dos Carajás, Pará, Brasil: Malpighiaceae. Rodriguésia 2018 69 3 1221 1235 10.1590/2175‑7860201869324
    [Google Scholar]
  7. Silva T.E. Silva T.E. Study of Mozzarella cheese behavior during refrigerated storage. Rev. Inst. Laticínios Cândido Tostes 2019 74 135 148 10.14295/2238‑6416.v74i2.754
    [Google Scholar]
  8. Morzelle M.C. Bachiega P. De Souza E.C. Vilas Boas E.V.D.B. Lamounier M.L. Chemical and physical characterization of fruits from Cerrado: Curriola, gabiroba and murici. Rev. Bras. Frutic. 2015 37 96 103 10.1590/0100‑2945‑036/14
    [Google Scholar]
  9. de Araújo R.R. dos Santos E.D. Farias D.B. dos S. de Lemos E.E.P. Alves R.E. Byrsonima crassifolia e B. verbascifolia: Muruci. Espécies nativas da flora brasileira de valor econômico atual ou potencial: Plantas para o futuro: Região Nordeste. Coradin L. Camillo J. Pareyn F.G.C. Brasília, DF MMA 2018 137 146
    [Google Scholar]
  10. Siguemoto É.S. Nutritional composition and functional properties of nance fruit (Byrsonima crassifolia) and drumstick (Moringa oleifera). [MSc. Dissertation]. São Paulo: School of Public Health. São Paulo University 2013 10.11606/D.6.2013.tde‑25092013‑083726
    [Google Scholar]
  11. de Souza V.R. Aniceto A. Abreu J.P. Montenegro J. Boquimpani B. de Jesuz V.A. Elias Campos M.B. Marcellini P.S. Freitas-Silva O. Cadena R. Teodoro A.J. Fruit‐based drink sensory, physicochemical, and antioxidant properties in the Amazon region: Murici ( Byrsonima crassifolia (L.) Kunth and verbascifolia (L.) DC) and tapereba ( Spondia mombin ). Food Sci. Nutr. 2020 8 5 2341 2347 10.1002/fsn3.1520
    [Google Scholar]
  12. de Marins A.R. de Oliveira A.M. Gomes R.L. Feihrmann A.C. Gomes R.G. Compostos Bioativos em Frutas Brasileiras: Uma revisão. Dalla Nora, F.M. Compostos Bioativos e Suas Aplicações. Canoas Mérida Publishers 2021 321 360 10.4322/mp.978‑65‑994457‑7‑4.c15
    [Google Scholar]
  13. Nazareno L.S.Q. da Costa Cardoso E.R. Acevedo A.K.D.O.S. Soares A.G.A. Chemical characterization of fruit pulpes marketed in Southwest of Piauí State. Sci. Agrár. Parana. 2019 18 2 185 189
    [Google Scholar]
  14. Silva C.E.F. Abud A.K.S. Tropical fruit pulps: Processing, product standardization and main control parameters for quality assurance. Braz. Arch. Biol. Technol. 2017 60 0 1 19 10.1590/1678‑4324‑2017160209
    [Google Scholar]
  15. Santana M.G. Martinez R.M. Teodoro A.J. Biological Effectsof Muri (Byrsonima spp.). Plant Specialized Metabolites: Phytochemistry, Ecology and Biotechnology. Switzerland. Mérillon J.M. Ramawat K.G. Cham Springer Nature 2023 1 31 10.1007/978‑3‑031‑30037‑0_20‑1
    [Google Scholar]
  16. da Silva C.J. Silva Sousa K.N. Ikeda-Castrillon S.K. Lopes C.R.A.S. da Silva Nunes J.R. Carniello M.A. Mariotti P.R. Lazaro W.L. Morini A. Zago B.W. Façanha C.L. Albernaz-Silveira R. Loureiro E. Viana I.G. Oliveira R.F. Alves da Cruz W.J. de Arruda J.C. Sander N.L. de Freitas Junior D.S. Pinto V.R. de Lima A.C. Jongman R.H.G. Biodiversity and its drivers and pressures of change in the wetlands of the Upper Paraguay–Guaporé Ecotone, Mato Grosso (Brazil). Land Use Policy 2015 47 163 178 10.1016/j.landusepol.2015.04.004
    [Google Scholar]
  17. Almeida C.O.R.P. Martinez R.M. Souza V.R. Lima T.P.B. Nascimento B.A. Noblat G.A. Abreu G.M. Pereira A.D.A. Figueiredo M.S. Teodoro A.J. Effects of Supplementation of Murici ( Byrsonima crassifolia ) and Taperebá ( Spondias mombin ) Pulp Extracts on Food Intake, Body Parameters, and Oxidative Stress Markers in Healthy Rats. J. Med. Food 2024 27 1 47 59 10.1089/jmf.2022.0158
    [Google Scholar]
  18. Didonet A.A. Ferraz I.D.K. Fruit trade of tucuma (Astrocaryum aculeatum G. Mey - Arecaceae) at local market-places in Manaus (Amazonas, Brazil). Rev. Bras. Frutic. 2014 36 353 362 10.1590/0100‑2945‑108/13
    [Google Scholar]
  19. Dantas R.D.L. Rocha A.P.T. dos Santos Araújo A. Rodrigues M.D.S.A. Maranhão T.K.L. Profile of the quality of fruit pulp sold in Campina Grande city, Paraiba state, Brazil. Rev. Verde Agroecol. Desenvolv. Sustent. 2010 5 5 61 66
    [Google Scholar]
  20. Castro T.M.N. Zamboni P.V. Dovadoni S. Cunha Neto A. Rodrigues L.J. Parameters of quality of frozen fruit. Rev. Inst. Adolfo Lutz 2015 74 4 426 436 10.53393/rial.2015.v74.33496
    [Google Scholar]
  21. Carvalho A.V. do Nascimento W.M.O. Physicochemical and Chemical Characterization of Muruci Fruit Pulp. Belém, PA Embrapa Amazônia Oriental 2016
    [Google Scholar]
  22. Dambros J.I. Storch T.T. Pegoraro C. Crizel G.R. Gonçalves B.X. Quecini V. Fialho F.B. Rombaldi C.V. Girardi C.L. Physicochemical properties and transcriptional changes underlying the quality of ‘Gala’ apples ( Malus × domestica Borkh.) under atmosphere manipulation in long‐term storage. J. Sci. Food Agric. 2023 103 2 576 589 10.1002/jsfa.12169
    [Google Scholar]
  23. Canuto G.A.B. Xavier A.A.O. Neves L.C. Benassi M. de T. Physical and chemical characterization of fruit pulps from Amazonia and their correlation to free radical scavenger activity. Rev. Bras. Frutic. 2010 32 1196 1205 10.1590/S0100‑29452010005000122
    [Google Scholar]
  24. Zenebon O. Pascuet N.S. Tiglea P. Métodos físico-químicos para análises de alimentos. 4th ed São Paulo Instituto Adolfo Lutz 2008
    [Google Scholar]
  25. Cavalcanti A.L. de Oliveira K.F. Paiva P.S. Dias M.V.R. da Costa S.K.P. Vieira F.F. Determination of total soluble solids contentes (ºBrix) and pH in milk drink and industrialized fruit juices. Pesqui. Bras. Odontopediatria Clin. Integr. 2006 6 57 64
    [Google Scholar]
  26. Thiex N. Novotny L. Crawford A. Determination of ash in animal feed: AOAC official method 942.05 revisited. J. AOAC Int. 2012 95 5 1392 1397 10.5740/jaoacint.12‑129
    [Google Scholar]
  27. Sant’Ana L.D.O. Sousa J.P.L.M. Salgueiro F.B. Lorenzon M.C.A. Castro R.N. Characterization of Monofloral Honeys with Multivariate Analysis of Their Chemical Profile and Antioxidant Activity. J. Food Sci. 2012 77 1 C135 C140 10.1111/j.1750‑3841.2011.02490.x
    [Google Scholar]
  28. Singleton V.L. Orthofer R. Lamuela-Raventós R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999 299 152 178 10.1016/S0076‑6879(99)99017‑1
    [Google Scholar]
  29. Kim H.K. Verpoorte R. Sample preparation for plant metabolomics. Phytochem. Anal. 2010 21 1 4 13 10.1002/pca.1188
    [Google Scholar]
  30. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976 72 1-2 248 254 10.1016/0003‑2697(76)90527‑3
    [Google Scholar]
  31. Yemm E.W. Willis A.J. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 1954 57 3 508 514 10.1042/bj0570508
    [Google Scholar]
  32. van Handel E. Direct microdetermination of sucrose. Anal. Biochem. 1968 22 2 280 283 10.1016/0003‑2697(68)90317‑5
    [Google Scholar]
  33. Miller G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959 31 3 426 428 10.1021/ac60147a030
    [Google Scholar]
  34. Alzahrani H.A. Boukraa L. Bellik Y. Abdellah F. Bakhotmah B.A. Kolayli S. Sahin H. Evaluation of the Antioxidant Activity of Three Varieties of Honey from Different Botanical and Geographical Origins. Glob. J. Health Sci. 2012 4 6 191 10.5539/gjhs.v4n6p191
    [Google Scholar]
  35. Zhang D. Hamauzu Y. Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking. Food Chem. 2004 88 4 503 509 10.1016/j.foodchem.2004.01.065
    [Google Scholar]
  36. Denardin C.C. Hirsch G.E. da Rocha R.F. Vizzotto M. Henriques A.T. Moreira J.C.F. Guma F.T.C.R. Emanuelli T. Antioxidant capacity and bioactive compounds of four Brazilian native fruits. J. Food Drug Anal. 2015 23 3 387 398 10.1016/j.jfda.2015.01.006
    [Google Scholar]
  37. LegisWeb Instrução Normativa SDA Nº 37 DE 01/10/2018. 2015 Available From: https://www.legisweb.com.br/legislacao/?id=368178
  38. dos Santos E.F. de Oliveira J.D.S. da Silva I.C. Gallo C.M. de Lemos E.E.P. Rezende L. de P. Physical and physicak-chemical characterization in murici fruit (Byrsonima crassifolia (L.) Rich.) occurrence in the coastal boards of Alagoas. Rev. Cienc. Agric. 2018 16 3 11 20 10.28998/rca.v16i3.5479
    [Google Scholar]
  39. Santos O.V. Cardoso J.L.S.B. Soares S.D. Martins M.G. Do Nascimento F. Influence of convective drying on bioactive compounds, morphological structures and spectroscopic profile of muruci pulp (Byrsonima crassifolia). Scientia Plena 2020 16 11 111502 10.14808/sci.plena.2020.111502
    [Google Scholar]
  40. Agredano-De la Garza C.S. Balois-Morales R. Berumen-Varela G. León-Fernández A.E. Bautista-Rosales P.U. López-Guzmán G.G. Pérez-Ramírez I.F. Physicochemical characterization and dietary fiber of 15 Nance (Byrsonima crassifolia L.) fruits selections from Nayarit. Sci. Hortic. (Amsterdam) 2021 289 110460 10.1016/j.scienta.2021.110460
    [Google Scholar]
  41. Lado J. Gambetta G. Zacarias L. Key determinants of citrus fruit quality: Metabolites and main changes during maturation. Sci. Hortic. (Amsterdam) 2018 233 238 248 10.1016/j.scienta.2018.01.055
    [Google Scholar]
  42. Gomes N.R. Pierre B.S. Morgado C.M.A. Campos A.J. Postharvest quality of fresh murici fruits as a function of storage and packing. Pesqui. Agropecu. Trop. 2021 51 e67185 10.1590/1983‑40632021v5167185
    [Google Scholar]
  43. Damiani C. Vilas Boas E.V.D.B. Pinto D.M. Rodrigues L.J. Influence of different temperatures in maintenance of quality of fresh-cut Pequi. Cienc. Agrotec. 2008 32 203 212 10.1590/S1413‑70542008000100030
    [Google Scholar]
  44. Alzahrani H.R. Kumakli H. Ampiah E. Mehari T. Thornton A.J. Babyak C.M. Fakayode S.O. Determination of macro, essential trace elements, toxic heavy metal concentrations, crude oil extracts and ash composition from Saudi Arabian fruits and vegetables having medicinal values. Arab. J. Chem. 2017 10 7 906 913 10.1016/j.arabjc.2016.09.012
    [Google Scholar]
  45. Abbasi H. Shah M.H. Mohiuddin M. Elshikh M.S. Hussain Z. Alkahtani J. Ullah W. Alwahibi M.S. Abbasi A.M. Quantification of heavy metals and health risk assessment in processed fruits’ products. Arab. J. Chem. 2020 13 12 8965 8978 10.1016/j.arabjc.2020.10.020
    [Google Scholar]
  46. Guimarães M.M. Silva M.S. Nutritional value and chemical and physical chacacteristics of dried murici fruits (Byrsonima verbascifolia). Food Sci. Technol. (Campinas) 2008 28 817 821 10.1590/S0101‑20612008000400009
    [Google Scholar]
  47. Silva M.R. Lacerda D.B.C.L. Santos G.G. Martins D.M.D.O. Chemical characterization of native species of fruits from savanna ecosystem. Cienc. Rural 2008 38 1790 1793 10.1590/S0103‑84782008000600051
    [Google Scholar]
  48. Carvalho A.V. Pinto N.E.N. Mattietto R.D.A. Do Nascimento W.M.O. Gomes R.A. Junior De Resende M.D.V. Nutritional Evaluation of Fruit Pulp From Murici Clones. 2020 Available From: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/219236/1/BPD144.pdf
  49. Pereira A.C. Filho M. Vinícius M. Ventura A. Fernandes Batista-Ventura H.R. Frederico De Souza Castro C. Teixeira M.B. Antônio F. Soares L. Evaluation of different solvents for extraction of total phenolic compounds in flour of Byrsonima coccolobifolia Kunth. Fruit. Brazilian J. Sci. 2022 1 3 115 10.14295/bjs.v1i3.115
    [Google Scholar]
  50. Henz K. Fraga S. Dobler G.H. Silva R.G. Platt G. Moura N.F. Influence of pretratment of juçaras’ fruit (Euterpe edulis Martius) on the evaluation of bioactives compounds. Rev. Univ. Vale Rio Verde 2022 21 1 1 11
    [Google Scholar]
  51. Montenegro J. Aniceto A. Pimentel De Abreu J. Teodoro A.J. Características físico-químicas e atividade antioxidante de frutas da região amazônica. 2017 Available From: http://www.sbpcnet.org.br/livro/69ra/resumos/resumos/1835_14e4a9130af4b18104dd7098c4880cbc5.pdf
  52. Sanchez-Moreno C. Review: Methods Used to Evaluate the Free Radical Scavenging Activity in Foods and Biological Systems. Food Sci. Technol. Int. 2002 8 3 121 137 10.1177/1082013202008003770
    [Google Scholar]
  53. Prates M.F.O. Campos R.P. Silva M.M.B. Macedo M.L.R. Hiane P.A. Ramos Filho M.M. Nutritional and antioxidant potential of canjiqueira fruits affected by maturity stage and thermal processing. Cienc. Rural 2015 45 3 399 404 10.1590/0103‑8478cr20131272
    [Google Scholar]
  54. Rufino M.S.M. Alves R.E. de Brito E.S. Pérez-Jiménez J. Saura-Calixto F. Mancini-Filho J. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem. 2010 121 4 996 1002 10.1016/j.foodchem.2010.01.037
    [Google Scholar]
  55. Abadio Finco F.D.B. Kammerer D.R. Carle R. Tseng W.H. Böser S. Graeve L. Antioxidant Activity and Characterization of Phenolic Compounds from Bacaba (Oenocarpus bacaba Mart.) Fruit by HPLC-DAD-MSn. J. Agric. Food Chem. 2012 60 31 7665 7673 10.1021/jf3007689
    [Google Scholar]
  56. Dos Santos M. Mamede R. Rufino M. De Brito E. Alves R. Amazonian Native Palm Fruits as Sources of Antioxidant Bioactive Compounds. Antioxidants 2015 4 3 591 602 10.3390/antiox4030591
    [Google Scholar]
  57. Vieira L.M. Sousa M.S.B. Mancini-Filho J. Lima A.D. Total phenolics and antioxidant capacity “in vitro” of tropical fruit pulps. Rev. Bras. Frutic. 2011 33 888 897 10.1590/S0100‑29452011005000099
    [Google Scholar]
  58. Carlos N. Loss R.A. Silva S. Guedes S. Carvalho J.W. Physical-chemistry evaluation and antimicrobial activity of peel, pulp and seed of murici (Byrsonima crassifolia). Encicl. Biosf. 2017 14 25 232 243 10.18677/EnciBio_2017A22
    [Google Scholar]
  59. Monteiro D.C.B. Pires C.R.F. Evaluation of the physical-chemical stability of murici jellies stored under different conditions of temperature and light. Desafios - Revista Interdisciplinar da Universidade Federal do Tocantins 2017 3 87 98 10.20873/uft.2359‑3652.2016v3nespp87
    [Google Scholar]
  60. Franklin B. Nascimento F. Plants for the future: Data compilation of nutritional composition of guava-boi, burity, cupuaçu, murici and peach palm. Brazilian J. Devel. 2020 6 3 10174 10189 10.34117/bjdv6n3‑046
    [Google Scholar]
  61. Maldonado-Celis M.E. Yahia E.M. Bedoya R. Landázuri P. Loango N. Aguillón J. Restrepo B. Guerrero Ospina J.C. Chemical composition of mango (Mangifera indica L.) fruit: Nutritional and phytochemical compounds. Front. Plant Sci. 2019 10 1073 10.3389/fpls.2019.01073
    [Google Scholar]
  62. Martínez C. Valenzuela J.L. Jamilena M. Genetic and pre-and postharvest factors influencing the content of antioxidants in cucurbit crops. Antioxidants 2021 10 6 894 10.3390/antiox10060894
    [Google Scholar]
  63. Nawaz R. Khan M.A. Hafiz I.A. Khan M.F. Khalid A. Climate variables effect on fruiting pattern of Kinnow mandarin (Citrus nobilis Lour × C. deliciosa Tenora) grown at different agro-climatic regions. Sci. Rep. 2021 11 1 18177 10.1038/s41598‑021‑97653‑1
    [Google Scholar]
  64. Neto H.N. Adequacy of methodology for determining the respiratory rate and characterizing the post-harvest physiology of Murici [Byrsonima verbascifolia (L.) Rich]. Master's Dissertation [Master degree in Agicultural Sciences] - Instituto Federal de Educação, Ciência e Tecnologia Goiano – Campus Rio Verde 2013
    [Google Scholar]
  65. da Silva R.J. Augusto de Souza P. Lopes da Costa B. Cesar Carneiro L. Fernandes de Araújo faustino, E., Fernanda de Araújo Faustino, C. Evaluation of biodegradable coatings during storage of pink magoes in the region of Currais Novos-RN. Revista Científica Multidisciplinar 2023 4 2 e422768 10.47820/recima21.v4i2.2768
    [Google Scholar]
  66. Hamacek F.R. Martino H.S. Pinheiro-Sant’Ana H.M. Murici, fruit from the Cerrado of Minas Gerais, Brazil: Physical and physicochemical characteristics, and occurrence and concentration of carotenoids and vitamins. Fruits 2014 69 6 459 472 10.1051/fruits/2014032
    [Google Scholar]
  67. Forney C.F. Kalt W. Jordan M.A. Vinqvist-Tymchuk M.R. Fillmore S.A.E. Blueberry and cranberry fruit composition during development. J. Berry Res. 2012 2 3 169 177 10.3233/JBR‑2012‑034
    [Google Scholar]
  68. Ghahremani A. Ganji Moghaddam E. Marjani A. Growth, yield, and biochemical behaviors of important stone fruits affected by plant genotype and environmental conditions. Sci. Hortic. (Amsterdam) 2023 321 112211 10.1016/j.scienta.2023.112211
    [Google Scholar]
  69. Santos H.C.A. Gemaque J.J. de S. de Carvalho J.E.U. Gurgel F. de L. do Nascimento W.M.O. Produção inicial de clones de murucizeiro no município de Igarapé-Açu - PA. 2019 Available From: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1113253
  70. Morais M.L. Silva A.C.R. Araújo C.R.R. Esteves E.A. Dessimoni-Pinto N.A.V. Determination of antioxidant potential in vitro of brazilian Cerrado fruits. Rev. Bras. Frutic. 2013 35 355 360 10.1590/S0100‑29452013000200004
    [Google Scholar]
  71. Siqueira E.M.A. Rosa F.R. Fustinoni A.M. de Sant’Ana L.P. Arruda S.F. Brazilian savanna fruits contain higher bioactive compounds content and higher antioxidant activity relative to the conventional red delicious apple. PLoS One 2013 8 8 e72826 10.1371/journal.pone.0072826
    [Google Scholar]
  72. Rodrigues L.A.N. Belisário C.M. Castro C.F. de S. Rodrigues T.G.C. Ferreira A.A.R. Total phenolics and antioxidant capacity of bark, leaf and fruit extracts from the muricizeiro. Cienc. Tecnol. Agropecu. 2018 12 5 47 52
    [Google Scholar]
  73. Muscolo A. Mariateresa O. Giulio T. Mariateresa R. Oxidative stress: The role of antioxidant phytochemicals in the prevention and treatment of diseases. Int. J. Mol. Sci. 2024 25 6 3264 10.3390/ijms25063264
    [Google Scholar]
  74. Pizzino G. Irrera N. Cucinotta M. Pallio G. Mannino F. Arcoraci V. Squadrito F. Altavilla D. Bitto A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. 2017 2017 1 8416763 10.1155/2017/8416763
    [Google Scholar]
  75. Sadiq I.Z. Free radicals and oxidative stress: Signaling mechanisms, redox basis for human diseases, and cell cycle regulation. Curr. Mol. Med. 2023 23 1 13 35 10.2174/1566524022666211222161637
    [Google Scholar]
/content/journals/cff/10.2174/0126668629319879240918103950
Loading
/content/journals/cff/10.2174/0126668629319879240918103950
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Phenolic compounds ; ABTS ; DPPH ; FRAP ; Muruci
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test