Skip to content
2000
image of Nature's Pharmacy: Bioactive Components and their Role in Alleviating Rheumatoid Arthritis

Abstract

An essential pathogenic aspect of rheumatoid arthritis (RA) is the loss of bones, which ultimately causes RA patients' quality of life to diminish seriously. The main reason for bone loss in RA is an imbalance in bone metabolism, marked by the breakdown of bone through osteoclast activity and inadequate bone formation by osteoblasts. Contemporary medications somewhat diminish the process of bone deterioration, but there are still several drawbacks. Natural medicines have several benefits, including a wide spectrum of biological actions and few side effects, making them a valuable source of new therapeutic compounds. They have developed into a hub for countless researchers to examine various diseases and provide healing medications. Natural medicine research for the treatment of RA has made impressive advancements in recent years. These natural bioactive compounds primarily contain terpenes, alkaloids, glycosides, flavonoids, and polyphenols. Most therapeutic natural bioactive compounds for the treatment of RA comprise the following: sinomenine, ginsenoside, icariin, paeoniflorin, triptolide, resveratrol, and epigallocatechin-3-gallate. A quick summary of the mechanisms of action of naturally occurring bioactive chemicals that may be used as RA treatments is provided.

Loading

Article metrics loading...

/content/journals/cff/10.2174/0126668629305790240830111841
2024-10-08
2024-11-26
Loading full text...

Full text loading...

References

  1. Ren R. Jiang J. Li X. Zhang G. Research progress of autoimmune diseases based on induced pluripotent stem cells. Front. Immunol. 2024 15 1349138 10.3389/fimmu.2024.1349138 38720903
    [Google Scholar]
  2. Carvalheiras G. Faria R. Braga J. Vasconcelos C. Fetal outcome in autoimmune diseases. Autoimmun. Rev. 2012 11 6-7 A520 A530 10.1016/j.autrev.2011.12.002 22198431
    [Google Scholar]
  3. Østensen M. Andreoli L. Brucato A. Cetin I. Chambers C. Clowse M.E.B. Costedoat-Chalumeau N. Cutolo M. Dolhain R. Fenstad M.H. Förger F. Wahren-Herlenius M. Ruiz-Irastorza G. Koksvik H. Nelson-Piercy C. Shoenfeld Y. Tincani A. Villiger P.M. Wallenius M. von Wolff M. State of the art: Reproduction and pregnancy in rheumatic diseases. Autoimmun. Rev. 2015 14 5 376 386 10.1016/j.autrev.2014.12.011 25555818
    [Google Scholar]
  4. Clowse M.E.B. Chakravarty E. Costenbader K.H. Chambers C. Michaud K. Effects of infertility, pregnancy loss, and patient concerns on family size of women with rheumatoid arthritis and systemic lupus erythematosus. Arthritis Care Res. (Hoboken) 2012 64 5 668 674 10.1002/acr.21593 22344961
    [Google Scholar]
  5. McGrogan A. Snowball J. de Vries C.S. Pregnancy losses in women with Type 1 or Type 2 diabetes in the UK : an investigation using primary care records. Diabet. Med. 2014 31 3 357 365 10.1111/dme.12332 24111989
    [Google Scholar]
  6. Cooper G.S. Bynum M.L.K. Somers E.C. Recent insights in the epidemiology of autoimmune diseases: Improved prevalence estimates and understanding of clustering of diseases. J. Autoimmun. 2009 33 3-4 197 207 10.1016/j.jaut.2009.09.008 19819109
    [Google Scholar]
  7. Okin D. Medzhitov R. Evolution of inflammatory diseases. Curr. Biol. 2012 22 17 R733 R740 10.1016/j.cub.2012.07.029 22975004
    [Google Scholar]
  8. Jeong M. Park J.H. Nanomedicine for the Treatment of Rheumatoid Arthritis. Mol. Pharm. 2021 18 2 539 549 10.1021/acs.molpharmaceut.0c00295 32502346
    [Google Scholar]
  9. Qindeel M. Ullah M.H. Fakhar-ud-Din Ahmed N. Rehman A. Recent trends, challenges and future outlook of transdermal drug delivery systems for rheumatoid arthritis therapy. J. Control. Release 2020 327 595 615 10.1016/j.jconrel.2020.09.016 32920080
    [Google Scholar]
  10. Qindeel M. Khan D. Ahmed N. Khan S. Surfactant-Free, Self-Assembled Nanomicelles-Based Transdermal Hydrogel for Safe and Targeted Delivery of Methotrexate against Rheumatoid Arthritis. ACS Nano 2020 14 4 4662 4681 10.1021/acsnano.0c00364 32207921
    [Google Scholar]
  11. Madav Y. Barve K. Prabhakar B. Current trends in theranostics for rheumatoid arthritis. Eur. J. Pharm. Sci. 2020 145 105240 10.1016/j.ejps.2020.105240 31987984
    [Google Scholar]
  12. Khan D. Qindeel M. Ahmed N. Khan A.U. Khan S. Rehman A. Development of novel pH-sensitive nanoparticle-based transdermal patch for management of rheumatoid arthritis. Nanomedicine (Lond.) 2020 15 6 603 624 10.2217/nnm‑2019‑0385 32098563
    [Google Scholar]
  13. Croia C. Bursi R. Sutera D. Petrelli F. Alunno A. Puxeddu I. One year in review 2019: pathogenesis of rheumatoid arthritis. Clin. Exp. Rheumatol. 2019 37 3 347 357 31111823
    [Google Scholar]
  14. Guo Q. Zheng K. Fan D. Zhao Y. Li L. Bian Y. Qiu X. Liu X. Zhang G. Ma C. He X. Lu A. Wu-Tou Decoction in Rheumatoid Arthritis: Integrating Network Pharmacology and In Vivo Pharmacological Evaluation. Front. Pharmacol. 2017 8 230 10.3389/fphar.2017.00230 28515692
    [Google Scholar]
  15. Smolen J.S. Steiner G. Therapeutic strategies for rheumatoid arthritis. Nat. Rev. Drug Discov. 2003 2 6 473 488 10.1038/nrd1109 12776222
    [Google Scholar]
  16. McInnes I.B. Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 2007 7 6 429 442 10.1038/nri2094 17525752
    [Google Scholar]
  17. Firestein G.S. Evolving concepts of rheumatoid arthritis. Nature 2003 423 6937 356 361 10.1038/nature01661 12748655
    [Google Scholar]
  18. Plenge R.M. Rheumatoid arthritis genetics: 2009 update. Curr. Rheumatol. Rep. 2009 11 5 351 356 10.1007/s11926‑009‑0050‑0 19772830
    [Google Scholar]
  19. Panichi V. Migliori M. De Pietro S. Taccola D. Andreini B. Metelli M.R. Giovannini L. Palla R. The link of biocompatibility to cytokine production. Kidney Int. 2000 58 S96 S103 10.1046/j.1523‑1755.2000.07612.x 10936805
    [Google Scholar]
  20. Sattar N. McCarey D.W. Capell H. McInnes I.B. Explaining how “high-grade” systemic inflammation accelerates vascular risk in rheumatoid arthritis. Circulation 2003 108 24 2957 2963 10.1161/01.CIR.0000099844.31524.05 14676136
    [Google Scholar]
  21. Nishimura K. Sugiyama D. Kogata Y. Tsuji G. Nakazawa T. Kawano S. Saigo K. Morinobu A. Koshiba M. Kuntz K.M. Kamae I. Kumagai S. Meta-analysis: diagnostic accuracy of anti-cyclic citrullinated peptide antibody and rheumatoid factor for rheumatoid arthritis. Ann. Intern. Med. 2007 146 11 797 808 10.7326/0003‑4819‑146‑11‑200706050‑00008 17548411
    [Google Scholar]
  22. Bizzaro N. Bartoloni E. Morozzi G. Manganelli S. Riccieri V. Sabatini P. Filippini M. Tampoia M. Afeltra A. Sebastiani G. Alpini C. Bini V. Bistoni O. Alunno A. Gerli R. Anti-cyclic citrullinated peptide antibody titer predicts time to rheumatoid arthritis onset in patients with undifferentiated arthritis: results from a 2-year prospective study. Arthritis Res. Ther. 2013 15 1 R16 10.1186/ar4148 23339296
    [Google Scholar]
  23. Malmström V. Catrina A.I. Klareskog L. The immunopathogenesis of seropositive rheumatoid arthritis: from triggering to targeting. Nat. Rev. Immunol. 2017 17 1 60 75 10.1038/nri.2016.124 27916980
    [Google Scholar]
  24. Padyukov L. Seielstad M. Ong R.T.H. Ding B. Rönnelid J. Seddighzadeh M. Alfredsson L. Klareskog L. A genome-wide association study suggests contrasting associations in ACPA-positive versus ACPA-negative rheumatoid arthritis. Ann. Rheum. Dis. 2011 70 2 259 265 10.1136/ard.2009.126821 21156761
    [Google Scholar]
  25. van Dongen H. van Aken J. Lard L.R. Visser K. Ronday H.K. Hulsmans H.M.J. Speyer I. Westedt M.L. Peeters A.J. Allaart C.F. Toes R.E.M. Breedveld F.C. Huizinga T.W.J. Efficacy of methotrexate treatment in patients with probable rheumatoid arthritis: A double‐blind, randomized, placebo‐controlled trial. Arthritis Rheum. 2007 56 5 1424 1432 10.1002/art.22525 17469099
    [Google Scholar]
  26. Sellam J. Hendel-Chavez H. Rouanet S. Abbed K. Combe B. Le Loët X. Tebib J. Sibilia J. Taoufik Y. Dougados M. Mariette X. B cell activation biomarkers as predictive factors for the response to rituximab in rheumatoid arthritis: A six‐month, national, multicenter, open‐label study. Arthritis Rheum. 2011 63 4 933 938 10.1002/art.30233 21225699
    [Google Scholar]
  27. Seegobin S.D. Ma M.H.Y. Dahanayake C. Cope A.P. Scott D.L. Lewis C.M. Scott I.C. ACPA-positive and ACPA-negative rheumatoid arthritis differ in their requirements for combination DMARDs and corticosteroids: secondary analysis of a randomized controlled trial. Arthritis Res. Ther. 2014 16 1 R13 10.1186/ar4439 24433430
    [Google Scholar]
  28. Medich J.R. Uses and compositions for treatment of rheumatoid arthritis. Patent US20080131374A1, 2008.
  29. Teodoro A.J. Bioactive Compounds of Food: Their Role in the Prevention and Treatment of Diseases. Oxid. Med. Cell. Longev. 2019 2019 1 4 10.1155/2019/3765986 30984334
    [Google Scholar]
  30. Oliveira A. Monteiro V. Navegantes-Lima K. Reis J. Gomes R. Rodrigues D. Gaspar S. Monteiro M. Resveratrol Role in Autoimmune Disease—A Mini-Review. Nutrients 2017 9 12 1306 10.3390/nu9121306 29194364
    [Google Scholar]
  31. Khojah H.M. Ahmed S. Abdel-Rahman M.S. Elhakeim E.H. Resveratrol as an effective adjuvant therapy in the management of rheumatoid arthritis: a clinical study. Clin. Rheumatol. 2018 37 8 2035 2042 10.1007/s10067‑018‑4080‑8 29611086
    [Google Scholar]
  32. Fernández-Rodríguez J.A. Almonte-Becerril M. Ramil-Gómez O. Hermida-Carballo L. Viñas-Diz S. Vela-Anero Á. Concha Á. Camacho-Encina M. Blanco F.J. López-Armada M.J. Autophagy Activation by Resveratrol Reduces Severity of Experimental Rheumatoid Arthritis. Mol. Nutr. Food Res. 2021 65 2 2000377 10.1002/mnfr.202000377 33184983
    [Google Scholar]
  33. Li G. Xia Z. Liu Y. Meng F. Wu X. Fang Y. Zhang C. Liu D. SIRT1 inhibits rheumatoid arthritis fibroblast-like synoviocyte aggressiveness and inflammatory response via suppressing NF-κB pathway. Biosci. Rep. 2018 38 3 BSR20180541 10.1042/BSR20180541 29784872
    [Google Scholar]
  34. Hao L. Wan Y. Xiao J. Tang Q. Deng H. Chen L. A study of Sirt1 regulation and the effect of resveratrol on synoviocyte invasion and associated joint destruction in rheumatoid arthritis. Mol. Med. Rep. 2017 16 4 5099 5106 10.3892/mmr.2017.7299 28849139
    [Google Scholar]
  35. Lu J. Zheng Y. Yang J. Zhang J. Cao W. Chen X. Fang S. Resveratrol alleviates inflammatory injury and enhances the apoptosis of fibroblast‑like synoviocytes via mitochondrial dysfunction and ER stress in rats with adjuvant arthritis. Mol. Med. Rep. 2019 20 1 463 472 10.3892/mmr.2019.10273 31180523
    [Google Scholar]
  36. Wang G. Xie X. Yuan Qiu J. Duan W. Xu B. Chen X. Resveratrol ameliorates rheumatoid arthritis via activation of SIRT1‐Nrf2 signaling pathway. Biofactors 2020 46 3 441 453 10.1002/biof.1599 31883358
    [Google Scholar]
  37. Yamagata K. Protective Effect of Epigallocatechin Gallate on Endothelial Disorders in Atherosclerosis. J. Cardiovasc. Pharmacol. 2020 75 4 292 298 10.1097/FJC.0000000000000792 31895874
    [Google Scholar]
  38. Ahmed S. Pakozdi A. Koch A.E. Regulation of interleukin‐1β–induced chemokine production and matrix metalloproteinase 2 activation by epigallocatechin‐3‐gallate in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum. 2006 54 8 2393 2401 10.1002/art.22023 16869002
    [Google Scholar]
  39. Fechtner S. Singh A. Chourasia M. Ahmed S. Molecular insights into the differences in anti-inflammatory activities of green tea catechins on IL-1β signaling in rheumatoid arthritis synovial fibroblasts. Toxicol. Appl. Pharmacol. 2017 329 112 120 10.1016/j.taap.2017.05.016 28532672
    [Google Scholar]
  40. Payne A. Nahashon S. Taka E. Adinew G.M. Soliman K.F.A. Epigallocatechin-3-Gallate (EGCG): New Therapeutic Perspectives for Neuroprotection, Aging, and Neuroinflammation for the Modern Age. Biomolecules 2022 12 3 371 10.3390/biom12030371 35327563
    [Google Scholar]
  41. Liu M. Liu S. Zhang Q. Fang Y. Yu Y. Zhu L. Liu Y. Gong W. Zhao L. Qin L. Zhang Q. Curculigoside attenuates oxidative stress and osteoclastogenesis via modulating Nrf2/NF-κB signaling pathway in RAW264.7 cells. J. Ethnopharmacol. 2021 275 114129 10.1016/j.jep.2021.114129 33878416
    [Google Scholar]
  42. Ding H. Gao G. Zhang L. Shen G. Sun W. Gu Z. Fan W. The protective effects of curculigoside A on adjuvant-induced arthritis by inhibiting NF-кB/NLRP3 activation in rats. Int. Immunopharmacol. 2016 30 43 49 10.1016/j.intimp.2015.11.026 26637957
    [Google Scholar]
  43. Tan S. Xu J. Lai A. Cui R. Bai R. Li S. Liang W. Zhang G. Jiang S. Liu S. Zheng M. Wang W. Curculigoside exerts significant anti‑arthritic effects in�vivo and in�vitro via regulation of the JAK/STAT/NF‑κB signaling pathway. Mol. Med. Rep. 2019 19 3 2057 2064 10.3892/mmr.2019.9854 30664158
    [Google Scholar]
  44. Han J. Wan M. Ma Z. Hu C. Yi H. Prediction of Targets of Curculigoside A in Osteoporosis and Rheumatoid Arthritis Using Network Pharmacology and Experimental Verification. Drug Des. Devel. Ther. 2020 14 5235 5250 10.2147/DDDT.S282112 33273808
    [Google Scholar]
  45. Liu X. Wang Z. Qian H. Tao W. Zhang Y. Hu C. Mao W. Guo Q. Natural medicines of targeted rheumatoid arthritis and its action mechanism. Front. Immunol. 2022 13 945129 10.3389/fimmu.2022.945129 35979373
    [Google Scholar]
  46. Shen R. Wang J.H. The effect of icariin on immunity and its potential application. Am. J. Clin. Exp. Immunol. 2018 7 3 50 56 30038846
    [Google Scholar]
  47. Sun P. Liu Y. Deng X. Yu C. Dai N. Yuan X. Chen L. Yu S. Si W. Wang X. Wu D. Liu S. Pang H. An inhibitor of cathepsin K, icariin suppresses cartilage and bone degradation in mice of collagen-induced arthritis. Phytomedicine 2013 20 11 975 979 10.1016/j.phymed.2013.04.019 23746958
    [Google Scholar]
  48. Chi L. Gao W. Shu X. Lu X. A natural flavonoid glucoside, icariin, regulates Th17 and alleviates rheumatoid arthritis in a murine model. Mediators Inflamm. 2014 2014 1 10 10.1155/2014/392062 25374443
    [Google Scholar]
  49. Kim T.W. Lee H.G. Apigenin Induces Autophagy and Cell Death by Targeting EZH2 under Hypoxia Conditions in Gastric Cancer Cells. Int. J. Mol. Sci. 2021 22 24 13455 10.3390/ijms222413455 34948250
    [Google Scholar]
  50. Zhang B. Wang J. Zhao G. Lin M. Lang Y. Zhang D. Feng D. Tu C. Apigenin protects human melanocytes against oxidative damage by activation of the Nrf2 pathway. Cell Stress Chaperones 2020 25 2 277 285 10.1007/s12192‑020‑01071‑7 31953635
    [Google Scholar]
  51. Zhang Q. Liu J. Zhang M. Wei S. Li R. Gao Y. Peng W. Wu C. Apoptosis Induction of Fibroblast-Like Synoviocytes Is an Important Molecular-Mechanism for Herbal Medicine along with its Active Components in Treating Rheumatoid Arthritis. Biomolecules 2019 9 12 795 10.3390/biom9120795 31795133
    [Google Scholar]
  52. Sun Q. Jiang S. Yang K. Zheng J. Zhang L. Xu W. Apigenin enhances the cytotoxic effects of tumor necrosis factor-related apoptosis-inducing ligand in human rheumatoid arthritis fibroblast-like synoviocytes. Mol. Biol. Rep. 2012 39 5 5529 5535 10.1007/s11033‑011‑1356‑3 22189539
    [Google Scholar]
  53. Chang X. He H. Zhu L. Gao J. Wei T. Ma Z. Yan T. Protective effect of apigenin on Freund’s complete adjuvant-induced arthritis in rats via inhibiting P2X7/NF-κB pathway. Chem. Biol. Interact. 2015 236 41 46 10.1016/j.cbi.2015.04.021 25935278
    [Google Scholar]
  54. Ji J.J. Lin Y. Huang S.S. Zhang H.L. Diao Y.P. Li K. Quercetin: a potential natural drug for adjuvant treatment of rheumatoid arthritis. Afr. J. Tradit. Complement. Altern. Med. 2013 10 3 418 421 24146468
    [Google Scholar]
  55. Javadi F. Ahmadzadeh A. Eghtesadi S. Aryaeian N. Zabihiyeganeh M. Rahimi Foroushani A. Jazayeri S. The Effect of Quercetin on Inflammatory Factors and Clinical Symptoms in Women with Rheumatoid Arthritis: A Double-Blind, Randomized Controlled Trial. J. Am. Coll. Nutr. 2017 36 1 9 15 10.1080/07315724.2016.1140093 27710596
    [Google Scholar]
  56. Kim H.R. Kim B.M. Won J.Y. Lee K.A. Ko H.M. Kang Y.S. Lee S.H. Kim K.W. Quercetin, a Plant Polyphenol, Has Potential for the Prevention of Bone Destruction in Rheumatoid Arthritis. J. Med. Food 2019 22 2 152 161 10.1089/jmf.2018.4259 30596535
    [Google Scholar]
  57. Chen S. Yang Y. Feng H. Wang H. Zhao R. Liu H. Baicalein inhibits interleukin-1β-induced proliferation of human rheumatoid arthritis fibroblast-like synoviocytes. Inflammation 2014 37 1 163 169 10.1007/s10753‑013‑9725‑9 24005900
    [Google Scholar]
  58. Yang X. Yang J. Zou H. Baicalin inhibits IL-17-mediated joint inflammation in murine adjuvant-induced arthritis. Clin. Dev. Immunol. 2013 2013 1 8 10.1155/2013/268065 23840239
    [Google Scholar]
  59. Wang C. Song Y. Wang X. Mao R. Song L. Baicalin Ameliorates Collagen-Induced Arthritis Through the Suppression of Janus Kinase 1 (JAK1)/Signal Transducer and Activator of Transcription 3 (STAT3) Signaling in Mice. Med. Sci. Monit. 2018 24 9213 9222 10.12659/MSM.910347 30562763
    [Google Scholar]
  60. Bai L. Bai Y. Yang Y. Zhang W. Huang L. Ma R. Wang L. Duan H. Wan Q. Baicalin alleviates collagen‑induced arthritis and suppresses TLR2/MYD88/NF‑κB p65 signaling in rats and HFLS‑RAs. Mol. Med. Rep. 2020 22 4 2833 2841 10.3892/mmr.2020.11369 32945496
    [Google Scholar]
  61. Yuan M. Zhao B. Jia H. Zhang C. Zuo X. Sinomenine ameliorates cardiac hypertrophy by activating Nrf2/ARE signaling pathway. Bioengineered 2021 12 2 12778 12788 10.1080/21655979.2021.2000195 34895050
    [Google Scholar]
  62. Zheng X. Li W. Xu H. Liu J. Ren L. Yang Y. Li S. Wang J. Ji T. Du G. Sinomenine ester derivative inhibits glioblastoma by inducing mitochondria-dependent apoptosis and autophagy by PI3K/AKT/mTOR and AMPK/mTOR pathway. Acta Pharm. Sin. B 2021 11 11 3465 3480 10.1016/j.apsb.2021.05.027 34900530
    [Google Scholar]
  63. Geng P. Xu X. Gao Z. Sinomenine Suppress the Vitamin D3 and High Fat Induced Atherosclerosis in Rats via Suppress of Oxidative Stress and Inflammation. J. Oleo Sci. 2021 70 12 1815 1828 10.5650/jos.ess21255 34866111
    [Google Scholar]
  64. Huang R. Pan H. Wu J. Zhou H. Li Z. Qiu P. Zhou Y. Chen X. Xie Z. Xiao Y. Huang Q. Liu L. Comparison of combination therapy with methotrexate and sinomenine or leflunomide for active rheumatoid arthritis: A randomized controlled clinical trial. Phytomedicine 2019 57 403 410 10.1016/j.phymed.2018.12.030 30851515
    [Google Scholar]
  65. Weiwei L. Xian Q. Wei J. Yan L. Gang W. Yue W. Effects and safety of Sinomenine in treatment of rheumatoid arthritis contrast to methotrexate: a systematic review and Meta-analysis. J. Tradit. Chin. Med. 2016 36 5 564 577 10.1016/S0254‑6272(16)30075‑9 29932627
    [Google Scholar]
  66. Zhang H.C. Liu M.X. Wang E.P. Lin Z. Lv G.F. Chen X. Effect of sinomenine on the expression of rheumatoid arthritis fibroblast-like synoviocytes MyD88 and TRAF6. Genet. Mol. Res. 2015 14 4 18928 18935 10.4238/2015.December.28.41 26782542
    [Google Scholar]
  67. Zhou H. Liu J.X. Luo J.F. Cheng C.S. Leung E.L.H. Li Y. Su X.H. Liu Z.Q. Chen T.B. Duan F.G. Dong Y. Zuo Y.H. Li C. Lio C.K. Li T. Luo P. Xie Y. Yao X.J. Wang P.X. Liu L. Suppressing mPGES-1 expression by sinomenine ameliorates inflammation and arthritis. Biochem. Pharmacol. 2017 142 133 144 10.1016/j.bcp.2017.07.010 28711625
    [Google Scholar]
  68. Tong B. Yu J. Wang T. Dou Y. Wu X. Kong L. Dai Y. Xia Y. Sinomenine suppresses collagen-induced arthritis by reciprocal modulation of regulatory T cells and Th17 cells in gut-associated lymphoid tissues. Mol. Immunol. 2015 65 1 94 103 10.1016/j.molimm.2015.01.014 25656802
    [Google Scholar]
  69. Luo Y. Liu M. Dai Y. Yao X. Xia Y. Chou G. Wang Z. Norisoboldine inhibits the production of pro-inflammatory cytokines in lipopolysaccharide-stimulated RAW 264.7 cells by down-regulating the activation of MAPKs but not NF-κB. Inflammation 2010 33 6 389 397 10.1007/s10753‑010‑9197‑0 20352482
    [Google Scholar]
  70. Luo Y. Liu M. Xia Y. Dai Y. Chou G. Wang Z. Therapeutic effect of norisoboldine, an alkaloid isolated from Radix Linderae, on collagen-induced arthritis in mice. Phytomedicine 2010 17 10 726 731 10.1016/j.phymed.2010.01.013 20363113
    [Google Scholar]
  71. Wei Z. Jiao X. Wang T. Lu Q. Xia Y. Wang Z. Guo Q. Chou G. Dai Y. Norisoboldine alleviates joint destruction in rats with adjuvant-induced arthritis by reducing RANKL, IL-6, PGE2, and MMP-13 expression. Acta Pharmacol. Sin. 2013 34 3 403 413 10.1038/aps.2012.187 23396374
    [Google Scholar]
  72. Wei Z. Lv Q. Xia Y. Yue M. Shi C. Xia Y. Chou G. Wang Z. Dai Y. Norisoboldine, an Anti-Arthritis Alkaloid Isolated from Radix Linderae, Attenuates Osteoclast Differentiation and Inflammatory Bone Erosion in an Aryl Hydrocarbon Receptor-Dependent Manner. Int. J. Biol. Sci. 2015 11 9 1113 1126 10.7150/ijbs.12152 26221077
    [Google Scholar]
  73. Tong B. Yuan X. Dou Y. Wu X. Chou G. Wang Z. Xia Y. Dai Y. Norisoboldine, an isoquinoline alkaloid, acts as an aryl hydrocarbon receptor ligand to induce intestinal Treg cells and thereby attenuate arthritis. Int. J. Biochem. Cell Biol. 2016 75 63 73 10.1016/j.biocel.2016.03.014 27032495
    [Google Scholar]
  74. Li S. Liu X. Chen X. Bi L. Research Progress on Anti-Inflammatory Effects and Mechanisms of Alkaloids from Chinese Medical Herbs. Evid. Based Complement. Alternat. Med. 2020 2020 1 10 10.1155/2020/1303524 32256634
    [Google Scholar]
  75. Li X. Wu Z. He B. Zhong W. Tetrandrine alleviates symptoms of rheumatoid arthritis in rats by regulating the expression of cyclooxygenase‑2 and inflammatory factors. Exp. Ther. Med. 2018 16 3 2670 2676 10.3892/etm.2018.6498 30186500
    [Google Scholar]
  76. Gao L.N. Feng Q.S. Zhang X.F. Wang Q.S. Cui Y.L. Tetrandrine suppresses articular inflammatory response by inhibiting pro‐inflammatory factors via NF‐κB inactivation. J. Orthop. Res. 2016 34 9 1557 1568 10.1002/jor.23155 26748661
    [Google Scholar]
  77. Lu Q. Jiang H. Zhu Q. Xu J. Cai Y. Huo G. Yuan K. Huang G. Xu A. Tetrandrine ameliorates rheumatoid arthritis in mice by alleviating neutrophil activities. Evidence-Based Complement. Alter. Med. eCAM 2022 2022 8589121 10.1155/2022/8589121
    [Google Scholar]
  78. Peña B. Adbel-Hafiz M. Cavasin M. Mestroni L. Sbaizero O. Atomic Force Microscopy (AFM) Applications in Arrhythmogenic Cardiomyopathy. Int. J. Mol. Sci. 2022 23 7 3700 10.3390/ijms23073700 35409059
    [Google Scholar]
  79. Li G. Liu D. Zhang Y. Qian Y. Zhang H. Guo S. Sunagawa M. Hisamitsu T. Liu Y. Celastrol inhibits lipopolysaccharide-stimulated rheumatoid fibroblast-like synoviocyte invasion through suppression of TLR4/NF-κB-mediated matrix metalloproteinase-9 expression. PLoS One 2013 8 7 e68905 10.1371/journal.pone.0068905 23861949
    [Google Scholar]
  80. Lin J. Tao K. Gao N. Zeng H. Wang D. Yang J. Weng J. Triptolide Inhibits Expression of Inflammatory Cytokines and Proliferation of Fibroblast-like Synoviocytes Induced by IL-6/sIL-6R-Mediated JAK2/STAT3 Signaling Pathway. Curr. Med. Sci. 2021 41 1 133 139 10.1007/s11596‑020‑2302‑1 33582917
    [Google Scholar]
  81. Zhang N. Liu Z. Luo H. Wu W. Nie K. Cai L. Tan S. Chen X. Huang Y. Liu J. Lv M. Zhang X. Fan Y. Lin Y. Ye S. Liu Y. Wu L. Xu J. FM0807 decelerates experimental arthritis progression by inhibiting inflammatory responses and joint destruction via modulating NF-κB and MAPK pathways. Biosci. Rep. 2019 39 9 BSR20182263 10.1042/BSR20182263 31431516
    [Google Scholar]
  82. Wang R. Wu H. Chen J. Li S.P. Dai L. Zhang Z.R. Wang W.Y. Antiinflammation Effects and Mechanisms Study of Geniposide on Rats with Collagen-Induced Arthritis. Phytother. Res. 2017 31 4 631 637 10.1002/ptr.5775 28127805
    [Google Scholar]
  83. Wang Y. Wu H. Deng R. Dai X. Bu Y. Sun M. Zhang H. Wang M. Wang R. Geniposide downregulates the VEGF / SphK1 / S1P pathway and alleviates angiogenesis in rheumatoid arthritis in vivo and in vitro. Phytother. Res. 2021 35 8 4347 4362 10.1002/ptr.7130 34152633
    [Google Scholar]
  84. Bu Y. Wu H. Deng R. Wang Y. The anti-angiogenesis mechanism of Geniposide on rheumatoid arthritis is related to the regulation of PTEN. Inflammopharmacology 2022 30 3 1047 1062 10.1007/s10787‑022‑00975‑3 35389123
    [Google Scholar]
  85. Torequl Islam M. Quispe C. Herrera-Bravo J. Rahaman M.M. Hossain R. Sarkar C. Raihan M.A. Chowdhury M.M. Uddin S.J. Shilpi J.A. Marcelo de Castro E Activities and molecular mechanisms of diterpenes, diterpenoids, and their derivatives in rheumatoid arthritis. Evidence-Based Complement. Alter. Med. eCAM 2022 2022 4787643
    [Google Scholar]
  86. Luo S. Li H. Liu J. Xie X. Wan Z. Wang Y. Zhao Z. Wu X. Li X. Yang M. Li X. Andrographolide ameliorates oxidative stress, inflammation and histological outcome in complete Freund’s adjuvant-induced arthritis. Chem. Biol. Interact. 2020 319 108984 10.1016/j.cbi.2020.108984 32061742
    [Google Scholar]
  87. Li X. Yuan K. Zhu Q. Lu Q. Jiang H. Zhu M. Huang G. Xu A. Andrographolide Ameliorates Rheumatoid Arthritis by Regulating the Apoptosis–NETosis Balance of Neutrophils. Int. J. Mol. Sci. 2019 20 20 5035 10.3390/ijms20205035 31614480
    [Google Scholar]
  88. Hou L. Block K.E. Huang H. Artesunate abolishes germinal center B cells and inhibits autoimmune arthritis. PLoS One 2014 9 8 e104762 10.1371/journal.pone.0104762 25116436
    [Google Scholar]
  89. Zhu M. Lin D. Liu J. Mo H. Artesunate interfere in modulation of Foxp3 expression in synovial cells in collagen-induced arthritis rats. Chin. J. Integr. Med. 2016 Online ahead of print. 10.1007/s11655‑016‑2611‑1 27352179
    [Google Scholar]
  90. Li Y. Wang S. Wang Y. Zhou C. Chen G. Shen W. Li C. Lin W. Lin S. Huang H. Liu P. Shen X. Inhibitory effect of the antimalarial agent artesunate on collagen-induced arthritis in rats through nuclear factor kappa B and mitogen-activated protein kinase signaling pathway. Transl. Res. 2013 161 2 89 98 10.1016/j.trsl.2012.06.001 22749778
    [Google Scholar]
  91. Xu H. He Y. Yang X. Liang L. Zhan Z. Ye Y. Yang X. Lian F. Sun L. Anti-malarial agent artesunate inhibits TNF- -induced production of proinflammatory cytokines via inhibition of NF- B and PI3 kinase/Akt signal pathway in human rheumatoid arthritis fibroblast-like synoviocytes. Rheumatology 2007 46 6 920 926 10.1093/rheumatology/kem014 17314215
    [Google Scholar]
  92. Li J. Jiang M. Yu Z. Xiong C. Pan J. Cai Z. Xu N. Zhou X. Huang Y. Yang Z. Artemisinin relieves osteoarthritis by activating mitochondrial autophagy through reducing TNFSF11 expression and inhibiting PI3K/AKT/mTOR signaling in cartilage. Cell. Mol. Biol. Lett. 2022 27 1 62 10.1186/s11658‑022‑00365‑1 35902802
    [Google Scholar]
  93. Ma J.D. Jing J. Wang J.W. Yan T. Li Q.H. Mo Y.Q. Zheng D.H. Gao J.L. Nguyen K.A. Dai L. A novel function of artesunate on inhibiting migration and invasion of fibroblast-like synoviocytes from rheumatoid arthritis patients. Arthritis Res. Ther. 2019 21 1 153 10.1186/s13075‑019‑1935‑6 31234900
    [Google Scholar]
  94. Huang Q. Gao S. Zhao D. Li X. Review of ginsenosides targeting mitochondrial function to treat multiple disorders: Current status and perspectives. J. Ginseng Res. 2021 45 3 371 379 10.1016/j.jgr.2020.12.004 34025130
    [Google Scholar]
  95. Tang M. Xie X. Yang Y. Li F. Ginsenoside compound K- a potential drug for rheumatoid arthritis. Pharmacol. Res. 2021 166 105498 10.1016/j.phrs.2021.105498 33609698
    [Google Scholar]
  96. Zhang M. Ren H. Li K. Xie S. Zhang R. Zhang L. Xia J. Chen X. Li X. Wang J. Therapeutic effect of various ginsenosides on rheumatoid arthritis. BMC complem. med. therap. 2021 21 1 149 10.1186/s12906‑021‑03302‑5
    [Google Scholar]
  97. Chen J. Wu H. Wang Q. Chang Y. Liu K. Song S. Yuan P. Fu J. Sun W. Huang Q. Liu L. Wu Y. Zhang Y. Zhou A. Wei W. Ginsenoside metabolite compound k alleviates adjuvant-induced arthritis by suppressing T cell activation. Inflammation 2014 37 5 1608 1615 10.1007/s10753‑014‑9887‑0 24736881
    [Google Scholar]
  98. Chen J. Wu H. Wang Q. Chang Y. Liu K. Wei W. Ginsenoside metabolite compound K suppresses T-cell priming via modulation of dendritic cell trafficking and costimulatory signals, resulting in alleviation of collagen-induced arthritis. J. Pharmacol. Exp. Ther. 2015 353 1 71 79 10.1124/jpet.114.220665 25630466
    [Google Scholar]
  99. Zhou Y.X. Gong X.H. Zhang H. Peng C. A review on the pharmacokinetics of paeoniflorin and its anti-inflammatory and immunomodulatory effects. Biomed. pharmacoth. 2020 130 110505 10.1016/j.biopha.2020.110505
    [Google Scholar]
  100. Huang Y. Wang H. Chen Z. Wang Y. Qin K. Huang Y. Shen P. Ba X. Lin W. Tu S. Synergistic and hepatoprotective effect of total glucosides of paeony on ankylosing spondylitis: A systematic review and meta-analysis. Front. Pharmacol. 2019 10 231 10.3389/fphar.2019.00231 30941036
    [Google Scholar]
  101. Zhang L. Yu J. Wang C. Wei W. The effects of total glucosides of paeony (TGP) and paeoniflorin (Pae) on inflammatory-immune responses in rheumatoid arthritis (RA). Funct. Plant Biol. 2019 46 2 107 117 10.1071/FP18080 32172753
    [Google Scholar]
  102. Jia Z. He J. Paeoniflorin ameliorates rheumatoid arthritis in rat models through oxidative stress, inflammation and cyclooxygenase 2. Exp. Ther. Med. 2016 11 2 655 659 10.3892/etm.2015.2908 26893662
    [Google Scholar]
  103. Yang X. Wei W. CP-25, a compound derived from paeoniflorin: research advance on its pharmacological actions and mechanisms in the treatment of inflammation and immune diseases. Acta Pharmacol. Sin. 2020 41 11 1387 1394 10.1038/s41401‑020‑00510‑6 32884075
    [Google Scholar]
  104. Jia X. Chang Y. Wei F. Dai X. Wu Y. Sun X. Xu S. Wu H. Wang C. Yang X. Wei W. CP-25 reverses prostaglandin E4 receptor desensitization-induced fibroblast-like synoviocyte dysfunction via the G protein-coupled receptor kinase 2 in autoimmune arthritis. Acta Pharmacol. Sin. 2019 40 8 1029 1039 10.1038/s41401‑018‑0196‑2 30643209
    [Google Scholar]
  105. Shi Y. Shu H. Wang X. Zhao H. Lu C. Lu A. He X. Potential advantages of bioactive compounds extracted from traditional chinese medicine to inhibit bone destructions in rheumatoid arthritis. Front. Pharmacol. 2020 11 561962 10.3389/fphar.2020.561962 33117162
    [Google Scholar]
  106. Miao Y. Yang J. Yun Y. Sun J. Wang X. Synthesis and anti-rheumatoid arthritis activities of 3-(4-aminophenyl)-coumarin derivatives. J. Enzyme Inhib. Med. Chem. 2021 36 1 450 461 10.1080/14756366.2021.1873978 33557646
    [Google Scholar]
/content/journals/cff/10.2174/0126668629305790240830111841
Loading
/content/journals/cff/10.2174/0126668629305790240830111841
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: healing ; bioactive ; Rheumatoid arthritis ; osteoclast
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test