Skip to content
2000
image of High Protein Functional Breads for Sustainable Nutrition: A Futuristic Review

Abstract

Bread is consumed by almost every household worldwide as a dietary staple. Most commercial bread products are made with refined wheat flour and have an incomplete nutritional profile. Refined wheat bread is comparatively lower in protein with an unbalanced amino acid profile and is low in fibre, vitamins, minerals, and phytochemicals. The enrichment of bread to increase nutritional quality and functionality while preserving sensory properties has been a point of interest for decades. Legumes and pulses are nutrient-dense plant ingredients capable of increasing and balancing the nutritional value of bread, especially the protein quality. The review aims to explore possible legumes and pulses for bread enrichment and recent developments in the study area, balancing the amino acid profile of bread, the behaviour of legume anti-nutritional factors in bread making, enhancing protein metabolism, associated challenges, and future directions. The Enrichment of bread with legumes and pulses will ensure a high protein intake, a balanced amino acid profile, and additional vitamin, mineral, and phytochemical content compared to refined wheat bread. The development and commercialization of enriched functional bread products will benefit a vast population, especially in developing countries.

Loading

Article metrics loading...

/content/journals/cff/10.2174/0126668629315995240805053755
2024-09-12
2024-11-26
Loading full text...

Full text loading...

References

  1. Carocho M. Morales P. Ciudad-Mulero M. Comparison of different bread types: Chemical and physical parameters. Food Chem. 2020 310 125954 10.1016/j.foodchem.2019.125954 31841942
    [Google Scholar]
  2. Mir S.A. Farooq S. Shah M.A. Recent advancements in the development of multigrain bread. Cereal Chem. 2023 100 1 72 82 10.1002/cche.10578
    [Google Scholar]
  3. Lockyer S. Spiro A. The role of bread in the UK diet: An update. Nutr. Bull. 2020 45 2 133 164 10.1111/nbu.12435
    [Google Scholar]
  4. Gómez M. Gutkoski L.C. Bravo-Núñez Á. Understanding whole‐wheat flour and its effect in breads: A review. Compr. Rev. Food Sci. Food Saf. 2020 19 6 3241 3265 10.1111/1541‑4337.12625 33337058
    [Google Scholar]
  5. Skendi A. Papageorgiou M. Varzakas T. High protein substitutes for gluten in gluten‐free bread. Foods 2021 10 9 1997 10.3390/foods10091997 34574106
    [Google Scholar]
  6. Prieto-Vázquez del Mercado P. Mojica L. Morales-Hernández N. Protein ingredients in bread: Technological, textural and health implications. Foods 2022 11 16 2399 10.3390/foods11162399 36010405
    [Google Scholar]
  7. Hoehnel A. Axel C. Bez J. Arendt E.K. Zannini E. Comparative analysis of plant-based high-protein ingredients and their impact on quality of high-protein bread. J. Cereal Sci. 2019 89 August 102816 10.1016/j.jcs.2019.102816
    [Google Scholar]
  8. Hoehnel A. Bez J. Petersen I.L. Enhancing the nutritional profile of regular wheat bread while maintaining technological quality and adequate sensory attributes. Food Funct. 2020 11 5 4732 4751 10.1039/D0FO00671H 32417873
    [Google Scholar]
  9. Melini F. Melini V. Luziatelli F. Ruzzi M. Current and for-ward‐looking approaches to technological and nutritional im-provements of gluten‐free bread with legume flours: A critical re-view. Compr. Rev. Food Sci. Food Saf. 2017 16 5 1101 1122 10.1111/1541‑4337.12279 33371611
    [Google Scholar]
  10. Zain M.Z.M. Shori A.B. Baba A.S. Potential functional food ingredi-ents in bread and their health benefits. Biointerface Res. Appl. Chem. 2022 12 5 6533 6542
    [Google Scholar]
  11. Singh N. Pulses: An overview. J. Food Sci. Technol. 2017 54 4 853 857 10.1007/s13197‑017‑2537‑4 28303036
    [Google Scholar]
  12. Bresciani A. Marti A. Using pulses in baked products: Lights, shadows, and potential solutions. Foods 2019 8 10 451 10.3390/foods8100451 31581614
    [Google Scholar]
  13. Stoin D. Petrovich L.I. Velciov A.B. Trasca T. Rivis A. Jianu C. Red kidney bean and rice flours: Potential ingredients in the pro-duction of gluten-free bread with functional quality. J Agroaliment Process Technol 2019 25 3 147 152
    [Google Scholar]
  14. Ojeda L.G.I. Genevois C.E. Busch V.M. Novel flours from legumi-nosae (Neltuma ruscifolia) pods for technological improvement and nutritional enrichment of wheat bread. Heliyon 2023 9 7 e17774 10.1016/j.heliyon.2023.e17774 37455995
    [Google Scholar]
  15. Miñarro B. Albanell E. Aguilar N. Guamis B. Capellas M. Effect of legume flours on baking characteristics of gluten-free bread. J. Cereal Sci. 2012 56 2 476 481 10.1016/j.jcs.2012.04.012
    [Google Scholar]
  16. Kumar S. Bamboriya S.D. Rani K. Meena R.S. Sheoran S. Loyal A. Grain legumes: A diversified diet for sustainable livelihood, food, and nutritional security.Advances in Legumes for Sustainable In-tensification. Amsterdam Elsevier Inc. 2022 157 178 10.1016/B978‑0‑323‑85797‑0.00007‑0
    [Google Scholar]
  17. Rosell C.M. Vitamin and mineral fortification of bread.Technology of Functional Cereal Products. Cambridgeshire, United Kingdom Woodhead Publishing 2007 10.1533/9781845693886.2.336
    [Google Scholar]
  18. Agrahar-Murugkar D. Food to food fortification of breads and biscuits with herbs, spices, millets and oilseeds on bio-accessibility of calcium, iron and zinc and impact of proteins, fat and phenolics. Lebensm. Wiss. Technol. 2020 130 May 109703 10.1016/j.lwt.2020.109703
    [Google Scholar]
  19. Stevenson L. Phillips F. O’sullivan K. Walton J. Wheat bran: Its composition and benefits to health, a European perspective. Int. J. Food Sci. Nutr. 2012 63 8 1001 1013 10.3109/09637486.2012.687366 22716911
    [Google Scholar]
  20. Benítez V. Esteban R.M. Moniz E. Casado N. Aguilera Y. Mollá E. Breads fortified with wholegrain cereals and seeds as source of an-tioxidant dietary fibre and other bioactive compounds. J. Cereal Sci. 2018 82 113 120 10.1016/j.jcs.2018.06.001
    [Google Scholar]
  21. Hall C. Hillen C. Garden Robinson J. Composition, nutritional value, and health benefits of pulses. Cereal Chem. 2017 94 1 11 31 10.1094/CCHEM‑03‑16‑0069‑FI
    [Google Scholar]
  22. Boukid F. Zannini E. Carini E. Vittadini E. Pulses for bread fortification: A necessity or a choice? Trends Food Sci. Technol. 2019 88 April 416 428 10.1016/j.tifs.2019.04.007
    [Google Scholar]
  23. Dodevska M.S. Djordjevic B.I. Sobajic S.S. Miletic I.D. Djordjevic P.B. Dimitrijevic-Sreckovic V.S. Characterisation of dietary fibre components in cereals and legumes used in Serbian diet. Food Chem. 2013 141 3 1624 1629 10.1016/j.foodchem.2013.05.078 23870869
    [Google Scholar]
  24. Liu T. Zhen X. Lei H. Investigating the physicochemical characteristics and importance of insoluble dietary fiber extracted from legumes: An in-depth study on its biological functions. Food Chem. X 2024 22 101424 10.1016/j.fochx.2024.101424 38840726
    [Google Scholar]
  25. Dhinda F. A JL, Prakash J, Dasappa I. Effect of Ingredients on Rheological, Nutritional and Quality Characteristics of High Pro-tein, High Fibre and Low Carbohydrate Bread. Food Bioprocess Technol. 2012 5 8 2998 3006 10.1007/s11947‑011‑0752‑y
    [Google Scholar]
  26. Vaz Patto M.C. Amarowicz R. Aryee A.N.A. Achievements and challenges in improving the nutritional quality of food leg-umes. Crit. Rev. Plant Sci. 2015 34 1-3 105 143 10.1080/07352689.2014.897907
    [Google Scholar]
  27. Trinidad T.P. Mallillin A.C. Loyola A.S. Sagum R.S. Encabo R.R. The potential health benefits of legumes as a good source of die-tary fibre. Br. J. Nutr. 2010 103 4 569 574 10.1017/S0007114509992157 19825218
    [Google Scholar]
  28. de Almeida Costa G.E. da Silva Queiroz-Monici K. Pissini Macha-do Reis S.M. de Oliveira A.C. Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chem. 2006 94 3 327 330 10.1016/j.foodchem.2004.11.020
    [Google Scholar]
  29. Dziki D. Różyło R. Gawlik-Dziki U. Świeca M. Current trends in the enhancement of antioxidant activity of wheat bread by the ad-dition of plant materials rich in phenolic compounds. Trends Food Sci. Technol. 2014 40 1 48 61 10.1016/j.tifs.2014.07.010
    [Google Scholar]
  30. Yu Y.M. Fukagawa N.K. Protein and amino acids.Present Knowledge in Nutrition. Cambridge, Massachusetts, United States Academic Press 2020 10.1016/B978‑0‑323‑66162‑1.00002‑0
    [Google Scholar]
  31. Katsanos C.S. Kobayashi H. Sheffield-Moore M. Aarsland A. Wolfe R.R. A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am. J. Physiol. Endocrinol. Metab. 2006 291 2 E381 E387 10.1152/ajpendo.00488.2005 16507602
    [Google Scholar]
  32. Wu G. Amino acids: Metabolism, functions, and nutrition. Amino Acids 2009 37 1 1 17 10.1007/s00726‑009‑0269‑0 19301095
    [Google Scholar]
  33. Brestenský M. Nitrayová S. Patráš P. Nitray J. Dietary Require-ments for Proteins and Amino Acids in Human Nutrition. Curr. Nutr. Food Sci. 2019 15 7 638 645 10.2174/1573401314666180507123506
    [Google Scholar]
  34. Wu G. Functional amino acids in nutrition and health. Amino Acids 2013 45 3 407 411 10.1007/s00726‑013‑1500‑6 23595206
    [Google Scholar]
  35. Hoffer L.J. Human protein and amino acid requirements. JPEN J. Parenter. Enteral Nutr. 2016 40 4 460 474 10.1177/0148607115624084 26796095
    [Google Scholar]
  36. Liu K. Chemistry and Nutritional Value of Soybean Compo-nents.Soybeans. Cham Springer 1997 10.1007/978‑1‑4615‑1763‑4_2
    [Google Scholar]
  37. FAO Dietary protein quality evaluation in human nutrition. 2013 Available From: https://www.fao.org/ag/humannutrition/35978-02317b979a686a57aa4593304ffc17f06.pdf
    [Google Scholar]
  38. FAO FAO/INFOODS Food Composition Databases. Available From 2017 Avail-able From: https://www.fao.org/infoods/infoods/tables-and-databases/faoinfoods-databases/en/
    [Google Scholar]
  39. Banti M. Bajo W. Review on nutritional importance and anti-nutritional factors of legumes. Int J Nutr Food Sci 2020 9 6 138 10.11648/j.ijnfs.20200906.11
    [Google Scholar]
  40. Arbab Sakandar H. Chen Y. Peng C. Chen X. Imran M. Zhang H. Impact of fermentation on antinutritional factors and protein deg-radation of legume seeds: A review. Food Rev. Int. 2023 39 3 1227 1249 10.1080/87559129.2021.1931300
    [Google Scholar]
  41. Sá A.G.A. Moreno Y.M.F. Carciofi B.A.M. Food processing for the improvement of plant proteins digestibility. Crit. Rev. Food Sci. Nutr. 2020 60 20 3367 3386 10.1080/10408398.2019.1688249 31760758
    [Google Scholar]
  42. Sarwar Gilani G. Wu Xiao C. Cockell K.A. Impact of antinutri-tional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality. Br. J. Nutr. 2012 108 S2 S315 S332 10.1017/S0007114512002371 22136711
    [Google Scholar]
  43. Akande K. Doma U. Agu H. Adamu H. Major antinutrients found in plant protein sources: Their effect on nutrition. Pak. J. Bot. 2010 9 8 827 832
    [Google Scholar]
  44. Fekadu Gemede H. Ratta N. Antinutritional factors in plant foods: Potential health benefits and adverse effects. Int J Nutr Food Sci 2014 3 4 284 289 10.11648/j.ijnfs.20140304.18
    [Google Scholar]
  45. Abbas Y. Ahmad A. Impact of processing on nutritional and an-tinutritional factors of legumes: A review. Ann. Food Sci. Technol. (Valahia Univ. Târgoviste) 2018 19 2 199 215
    [Google Scholar]
  46. Avilés-Gaxiola S. Chuck-Hernández C. Serna Saldívar S.O. Inacti-vation methods of trypsin inhibitor in legumes: A review. J. Food Sci. 2018 83 1 17 29 10.1111/1750‑3841.13985 29210451
    [Google Scholar]
  47. Hassan E.G. Awad Alkareem A.M. Mustafa A.M.I. Effect of fermen-tation and particle size of wheat bran on the antinutritional factors and bread quality. Pak. J. Nutr. 2008 7 4 521 526 10.3923/pjn.2008.521.526
    [Google Scholar]
  48. Reddy N.R. Pierson M.D. Reduction in antinutritional and toxic components in plant foods by fermentation. Food Res. Int. 1994 27 3 281 290 10.1016/0963‑9969(94)90096‑5
    [Google Scholar]
  49. Pavalakumar D. Jayasinghe M. Edirisinghe M. Wijesekara I. Senadheera S. Cinnamomum zeylanicum and Curcuma longa in-corporated dairy yoghurts with hindered glycaemic properties for healthy people. Journal of Future Foods 2021 1 1 104 112 10.1016/j.jfutfo.2021.09.006
    [Google Scholar]
  50. Joye I. Protein digestibility of cereal products. Foods 2019 8 6 199 10.3390/foods8060199 31181787
    [Google Scholar]
  51. Al-fartusie F.S. Mohssan S.N. Essential trace elements and their vital roles in human body. Indian J Adv Chem Sci 2017 5 3 127 136
    [Google Scholar]
  52. Sousa C. Moutinho C. Vinha A.F. Matos C. Trace minerals in human health: Iron, Zinc, Copper, Manganese and Fluorine. Int. J. Soc. Res. Methodol. 2019 13 3 57 80
    [Google Scholar]
  53. Papet I. Meunier N. Béchereau F. Glomot F. Obled C. Coudray C. Effect of zinc supplementation on protein metabolism in late–middle-aged men: The Zenith study. Nutrition 2008 24 2 155 161 10.1016/j.nut.2007.10.016 18077134
    [Google Scholar]
  54. Benayad A. Aboussaleh Y. Mineral composition of lentils: Physio-logical functions. J. Food Qual. 2021 2021 3 1 9
    [Google Scholar]
  55. Mehri A. Trace elements in human nutrition (ii) – An update. Int. J. Prev. Med. 2020 11 1 2 10.4103/ijpvm.IJPVM_48_19 32042399
    [Google Scholar]
  56. Mozrzymas R. Trace elements in human health.Recent Advances in Trace Elements. Hoboken, New Jersey Wiley 2018 10.1002/9781119133780.ch18
    [Google Scholar]
  57. Jayasinghe M.A. Senadheera S.P.A.S. Wijesekara I. Ranaweera K.K.D.S. Determination of macronutrient compositions in selected, frequently consumed cereals, cereal based foods, legumes and pulses prepared according to common culinary methods in Sri Lanka. Vidyodaya J Sci 2019 22 2 1 6
    [Google Scholar]
  58. Fares C. Menga V. Chickpea (Cicer arietinum L.) fortification of cereal-based foods to increase fiber and phytochemical con-tent.Wheat and Rice in Disease Prevention and Health: Benefits, risks and mechanisms of whole grains in health promotion. Cam-bridge, Massachusetts Academic Press 2014 533 546 10.1016/B978‑0‑12‑401716‑0.00041‑6
    [Google Scholar]
  59. Boukid F. Chickpea ( Cicer arietinum L.) protein as a prospective plant‐based ingredient: A review. Int. J. Food Sci. Technol. 2021 56 11 5435 5444 10.1111/ijfs.15046
    [Google Scholar]
  60. Herrera A C. Gonzalez de Mejia E. Feasibility of commercial breadmaking using chickpea as an ingredient: Functional proper-ties and potential health benefits. J. Food Sci. 2021 86 6 2208 2224 10.1111/1750‑3841.15759 34028013
    [Google Scholar]
  61. Kaur R. Prasad K. Technological, processing and nutritional as-pects of chickpea (Cicer arietinum) - A review. Trends Food Sci. Technol. 2021 109 January 448 463 10.1016/j.tifs.2021.01.044
    [Google Scholar]
  62. Utrilla-Coello R.G. Osorio-Díaz P. Bello-Pérez L.A. Alternative use of chickpea flour in breadmaking: Chemical composition and starch digestibility of bread. Food Sci. Technol. Int. 2007 13 4 323 327 10.1177/1082013207082537
    [Google Scholar]
  63. Mohammed I. Ahmed A.R. Senge B. Dough rheology and bread quality of wheat–chickpea flour blends. Ind. Crops Prod. 2012 36 1 196 202 10.1016/j.indcrop.2011.09.006
    [Google Scholar]
  64. Wallace T. Murray R. Zelman K. The nutritional value and health benefits of chickpeas and hummus. Nutrients 2016 8 12 766 10.3390/nu8120766 27916819
    [Google Scholar]
  65. Segev A. Badani H. Kapulnik Y. Shomer I. Oren-Shamir M. Galili S. Determination of polyphenols, flavonoids, and antioxidant ca-pacity in colored chickpea (Cicer arietinum L.). J. Food Sci. 2010 75 2 S115 S119 10.1111/j.1750‑3841.2009.01477.x 20492256
    [Google Scholar]
  66. Rachwa-Rosiak D. Nebesny E. Budryn G. Chickpeas—composition, nutritional value, health benefits, application to bread and snacks: A review. Crit. Rev. Food Sci. Nutr. 2015 55 8 1137 1145 10.1080/10408398.2012.687418 24915347
    [Google Scholar]
  67. Xiao Y. Huang L. Chen Y. Zhang S. Rui X. Dong M. Estudio comparativo de los efectos de la adición de harina de garbanzo fermentado y no fermentado en la calidad y las propiedades anti-oxidantes del pan de trigo. CYTA J. Food 2016 14 4 621 631 10.1080/19476337.2016.1188157
    [Google Scholar]
  68. Medic J. Atkinson C. Hurburgh C.R. Jr Current knowledge in soybean composition. J. Am. Oil Chem. Soc. 2014 91 3 363 384 10.1007/s11746‑013‑2407‑9
    [Google Scholar]
  69. Taghdir M. Mazloomi S.M. Honar N. Sepandi M. Ashourpour M. Salehi M. Effect of soy flour on nutritional, physicochemical, and sensory characteristics of gluten‐free bread. Food Sci. Nutr. 2017 5 3 439 445 10.1002/fsn3.411 28572928
    [Google Scholar]
  70. O’Keefe S.O. Bianchi L. Sharman J. Soybean Nutrition. SM J Nutr Metab 2015 1 2 1006
    [Google Scholar]
  71. Etiosa O. Chika N. Benedicta A. Mineral and proximate composi-tion of Soya Bean. Asian J. Phys. Chem. Sci. 2018 4 3 1 6 10.9734/AJOPACS/2017/38530
    [Google Scholar]
  72. Mashayekh M. Mahmoodi M.R. Entezari M.H. Effect of fortifica-tion of defatted soy flour on sensory and rheological properties of wheat bread. Int. J. Food Sci. Technol. 2008 43 9 1693 1698 10.1111/j.1365‑2621.2008.01755.x
    [Google Scholar]
  73. Ndife J. Abdulraheem L.O. Zakari U.M. Evaluation of the nutri-tional and sensory quality of functional breads produced from whole wheat and soya bean flour blends. Afr. J. Food Sci. 2011 5 8 466 472
    [Google Scholar]
  74. Dahiya P.K. Linnemann A.R. Nout M.J.R. van Boekel M.A.J.S. Grewal R.B. Nutrient composition of selected newly bred and estab-lished mung bean varieties. Lebensm. Wiss. Technol. 2013 54 1 249 256 10.1016/j.lwt.2013.05.017
    [Google Scholar]
  75. Sudhakaran S.M. A review on nutritional composition, antinutri-tional components and health benefits of green gram (Vigna radi-ata (L.) Wilczek). J. Food Biochem. 2021 45 6
    [Google Scholar]
  76. Hou D. Yousaf L. Xue Y. Mung bean (Vigna radiata L.): Bioactive polyphenols, polysaccharides, peptides, and health bene-fits. Nutrients 2019 11 6 1238 10.3390/nu11061238 31159173
    [Google Scholar]
  77. Paul T. Proximate compositions, mineral contents and determina-tion of protease activity from green gram (Vigna radiata L. Wilczek). Bangladesh Res Publ J 2011 5 3 207 213
    [Google Scholar]
  78. Thompson L.U. Hung L. Wang N. Rasper V.F. Gade H. Preparation of mung bean flour and its application in bread making. Can. Inst. Food Sci. Technol. J. 1976 9 1 1 5 10.1016/S0315‑5463(76)73583‑1
    [Google Scholar]
  79. Indrani D. Milind, Sakhare SD, Inamdar AA, Venkateswara Rao G. Development of protein and fiber enriched breads by supple-mentation of roller milled fractions of green gram. J. Food Sci. Technol. 2015 52 1 415 422 10.1007/s13197‑013‑1033‑8
    [Google Scholar]
  80. Meng Y. Guan X. Liu X. Zhang H. The rheology and microstruc-ture of composite wheat dough enriched with extruded mung bean flour. Lebensm. Wiss. Technol. 2019 109 April 378 386 10.1016/j.lwt.2019.03.095
    [Google Scholar]
  81. Anosike F.C. Chinwendu O.R. Nnaemeka N.A. Evaluation of baking qualities, functional and physicochemical properties of wheat supplemented with cassava and mung bean flour blends for bread making. Food Bioeng. 2023 2 3 264 272 10.1002/fbe2.12060
    [Google Scholar]
  82. Dabels N. Igbabul B. Shar F. Iorliam B. Abu J. Nutritional compo-sition, physical and sensory properties of cookies from wheat, acha and mung bean composite flours. Food Sci Qual Manag 2016 56 21 26
    [Google Scholar]
  83. Faris M.A.I.E. Takruri H.R. Issa A.Y. Role of lentils (Lens culinaris L.) in human health and nutrition: A review. Med. J. Nutrition Metab. 2013 6 1 3 16 10.1007/s12349‑012‑0109‑8
    [Google Scholar]
  84. Romano A. Gallo V. Ferranti P. Masi P. Lentil flour: Nutritional and technological properties, in vitro digestibility and perspectives for use in the food industry. Curr. Opin. Food Sci. 2021 40 157 167 10.1016/j.cofs.2021.04.003
    [Google Scholar]
  85. Portman D. Blanchard C. Maharjan P. Blending studies using wheat and lentil cotyledon flour—Effects on rheology and bread quality. Cereal Chem. 2018 95 6 849 860 10.1002/cche.10103
    [Google Scholar]
  86. Turfani V. Narducci V. Durazzo A. Galli V. Carcea M. Technological, nutritional and functional properties of wheat bread en-riched with lentil or carob flours. Lebensm. Wiss. Technol. 2017 78 361 366 10.1016/j.lwt.2016.12.030
    [Google Scholar]
  87. Previtali M.A. Mastromatteo M. De Vita P. Ficco D.B.M. Conte A. Del Nobile M.A. Effect of the lentil flour and hydrocolloids on baking characteristics of wholemeal durum wheat bread. Int. J. Food Sci. Technol. 2014 49 11 2382 2390 10.1111/ijfs.12559
    [Google Scholar]
  88. Marchini M. Carini E. Cataldi N. The use of red lentil flour in bakery products: How do particle size and substitution level af-fect rheological properties of wheat bread dough? Lebensm. Wiss. Technol. 2021 136 110299 10.1016/j.lwt.2020.110299
    [Google Scholar]
  89. Santos F.G. Fratelli C. Muniz D.G. Capriles V.D. Mixture design applied to the development of chickpea‐based gluten‐free bread with attractive technological, sensory, and nutritional quality. J. Food Sci. 2018 83 1 188 197 10.1111/1750‑3841.14009 29210449
    [Google Scholar]
  90. Kahraman G. Harsa S. Lucisano M. Cappa C. Physicochemical and rheological properties of rice-based gluten-free blends con-taining differently treated chickpea flours. Lebensm. Wiss. Technol. 2018 98 276 282 10.1016/j.lwt.2018.08.040
    [Google Scholar]
  91. Otegbayo B.O. Adebiyi O.M. Bolaji O.A. Olunlade B.A. Effect of soy enrichment on bread quality. Int. Food Res. J. 2018 25 3 1120 1125
    [Google Scholar]
  92. Bouhlal O. Taghouti M. Benbrahim N. Benali A. Visioni A. Benba J. Wheat-lentil fortified flours: Health benefits, phsicochemical, nutritional and technological properties. J. Mater. Environ. Sci. 2019 10 11 1098 1106
    [Google Scholar]
  93. Bandara P.P.G.S.P. Arampath P.C. Development of french bread using flour formulations with wheat, rice and locally available legumes, and evaluation of its sensory and nutritional properties. Tropic Agri Res 2020 31 3 25 36 10.4038/tar.v31i3.8394
    [Google Scholar]
  94. Filipini G. Passos A.P. Fernandes S.S. Salas-Mellado M.M. Nutri-tional value, technological and sensory evaluation of gluten-free bread enriched with soybean flour and coconut oil. J. Food Meas. Charact. 2021 15 4 3853 3861 10.1007/s11694‑021‑00971‑1
    [Google Scholar]
  95. Perri G. Coda R. Rizzello C.G. Sourdough fermentation of whole and sprouted lentil flours: In situ formation of dextran and effects on the nutritional, texture and sensory characteristics of white bread. Food Chem. 2021 355 March 129638 10.1016/j.foodchem.2021.129638 33799242
    [Google Scholar]
  96. Kahraman G. Harsa S. Casiraghi M.C. Lucisano M. Cappa C. Impact of raw, roasted and dehulled chickpea flours on technolog-ical and nutritional characteristics of gluten-free bread. Foods 2022 11 2 199 10.3390/foods11020199 35053930
    [Google Scholar]
  97. Okakpu K.G. Offia-Olua B.I. Okakpu C.J. Okpara C.M. Quality Characteristics of Bread Made from Flour Blends of Wheat, Cook-ing Banana and Mungbean. J Advances Food Sci Technol 2023 10 1 9 15 10.56557/jafsat/2023/v10i18063
    [Google Scholar]
  98. Papagianni E. Kotsiou K. Biliaderis C.G. Lazaridou A. Flaxseed and sprouted lentil seeds as functional ingredients in the develop-ment of nutritionally fortified “clean-label” gluten-free breads. Food Hydrocolloids Health 2023 4 September 100165 10.1016/j.fhfh.2023.100165
    [Google Scholar]
  99. Benayad A. Taghouti M. Benali A. Aboussaleh Y. Benbrahim N. Nutritional and technological assessment of durum wheat-faba bean enriched flours, and sensory quality of developed composite bread. Saudi J. Biol. Sci. 2021 28 1 635 642 10.1016/j.sjbs.2020.10.053 33424350
    [Google Scholar]
  100. Coda R. Varis J. Verni M. Rizzello C.G. Katina K. Improvement of the protein quality of wheat bread through faba bean sourdough addition. Lebensm. Wiss. Technol. 2017 82 296 302 10.1016/j.lwt.2017.04.062
    [Google Scholar]
  101. Forwoukeh V.H. Amove J. Yusufu M.I. Characteristics of whole wheat, red kidney bean and defatted coconut flour blends and its application in bread production. Asian Food Sci J 2023 22 9 23 39 10.9734/afsj/2023/v22i9655
    [Google Scholar]
  102. Manonmani D. Bhol S. Bosco S.J.D. Effect of red kidney bean (<i>Phaseolus vulgaris</i> L.) flour on bread quality. OAlib 2014 1 1 1 6 10.4236/oalib.1100366
    [Google Scholar]
  103. Belc N. Duta D.E. Culetu A. Stamatie G.D. Type and amount of legume protein concentrate influencing the technological, nutritional, and sensorial properties of wheat bread. Appl. Sci. (Basel) 2021 11 1 436 10.3390/app11010436
    [Google Scholar]
  104. Bansal R. Kapoor K. Physiochemical Analysis of Bread Fortified with different Levels of Soyaflour Blends. Int J Pure Appl Biosci 2015 3 3 52 64
    [Google Scholar]
/content/journals/cff/10.2174/0126668629315995240805053755
Loading
/content/journals/cff/10.2174/0126668629315995240805053755
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: legumes ; plant proteins ; nutrition ; amino acid balance ; Bread ; protein enrichment ; pulses
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test