Skip to content
2000
Volume 3, Issue 2
  • ISSN: 2666-8629
  • E-ISSN: 2666-8637

Abstract

Bread is consumed by almost every household worldwide as a dietary staple. Most commercial bread products are made with refined wheat flour and have an incomplete nutritional profile. Refined wheat bread is comparatively lower in protein with an unbalanced amino acid profile and is low in fibre, vitamins, minerals, and phytochemicals. The enrichment of bread to increase nutritional quality and functionality while preserving sensory properties has been a point of interest for decades. Legumes and pulses are nutrient-dense plant ingredients capable of increasing and balancing the nutritional value of bread, especially the protein quality. The review aims to explore possible legumes and pulses for bread enrichment and recent developments in the study area, balancing the amino acid profile of bread, the behaviour of legume anti-nutritional factors in bread making, enhancing protein metabolism, associated challenges, and future directions. The Enrichment of bread with legumes and pulses will ensure a high protein intake, a balanced amino acid profile, and additional vitamin, mineral, and phytochemical content compared to refined wheat bread. The development and commercialization of enriched functional bread products will benefit a vast population, especially in developing countries.

Loading

Article metrics loading...

/content/journals/cff/10.2174/0126668629315995240805053755
2024-09-12
2025-04-25
Loading full text...

Full text loading...

References

  1. CarochoM. MoralesP. Ciudad-MuleroM. Comparison of different bread types: Chemical and physical parameters.Food Chem.202031012595410.1016/j.foodchem.2019.125954 31841942
    [Google Scholar]
  2. MirS.A. FarooqS. ShahM.A. Recent advancements in the development of multigrain bread.Cereal Chem.20231001728210.1002/cche.10578
    [Google Scholar]
  3. LockyerS. SpiroA. The role of bread in the UK diet: An update.Nutr. Bull.202045213316410.1111/nbu.12435
    [Google Scholar]
  4. GómezM. GutkoskiL.C. Bravo-NúñezÁ. Understanding whole‐wheat flour and its effect in breads: A review.Compr. Rev. Food Sci. Food Saf.20201963241326510.1111/1541‑4337.12625 33337058
    [Google Scholar]
  5. SkendiA. PapageorgiouM. VarzakasT. High protein substitutes for gluten in gluten‐free bread.Foods2021109199710.3390/foods10091997 34574106
    [Google Scholar]
  6. Prieto-Vázquez del MercadoP. MojicaL. Morales-HernándezN. Protein ingredients in bread: Technological, textural and health implications.Foods20221116239910.3390/foods11162399 36010405
    [Google Scholar]
  7. HoehnelA. AxelC. BezJ. ArendtE.K. ZanniniE. Comparative analysis of plant-based high-protein ingredients and their impact on quality of high-protein bread.J. Cereal Sci.201989August10281610.1016/j.jcs.2019.102816
    [Google Scholar]
  8. HoehnelA. BezJ. PetersenI.L. Enhancing the nutritional profile of regular wheat bread while maintaining technological quality and adequate sensory attributes.Food Funct.20201154732475110.1039/D0FO00671H 32417873
    [Google Scholar]
  9. MeliniF. MeliniV. LuziatelliF. RuzziM. Current and forward‐looking approaches to technological and nutritional improvements of gluten‐free bread with legume flours: A critical review.Compr. Rev. Food Sci. Food Saf.20171651101112210.1111/1541‑4337.12279 33371611
    [Google Scholar]
  10. ZainM.Z.M. ShoriA.B. BabaA.S. Potential functional food ingredients in bread and their health benefits.Biointerface Res. Appl. Chem.202212565336542
    [Google Scholar]
  11. SinghN. Pulses: An overview.J. Food Sci. Technol.201754485385710.1007/s13197‑017‑2537‑4 28303036
    [Google Scholar]
  12. BrescianiA. MartiA. Using pulses in baked products: Lights, shadows, and potential solutions.Foods201981045110.3390/foods8100451 31581614
    [Google Scholar]
  13. StoinD. PetrovichL.I. VelciovA.B. TrascaT. RivisA. JianuC. Red kidney bean and rice flours : Potential ingredients in the production of gluten-free bread with functional quality.J Agroaliment Process Technol2019253147152
    [Google Scholar]
  14. OjedaL.G.I. GenevoisC.E. BuschV.M. Novel flours from leguminosae (Neltuma ruscifolia) pods for technological improvement and nutritional enrichment of wheat bread.Heliyon202397e1777410.1016/j.heliyon.2023.e17774 37455995
    [Google Scholar]
  15. MiñarroB. AlbanellE. AguilarN. GuamisB. CapellasM. Effect of legume flours on baking characteristics of gluten-free bread.J. Cereal Sci.201256247648110.1016/j.jcs.2012.04.012
    [Google Scholar]
  16. KumarS. BamboriyaS.D. RaniK. MeenaR.S. SheoranS. LoyalA. Grain legumes: A diversified diet for sustainable livelihood, food, and nutritional security.Advances in Legumes for Sustainable Intensification.AmsterdamElsevier Inc.202215717810.1016/B978‑0‑323‑85797‑0.00007‑0
    [Google Scholar]
  17. RosellC.M. Vitamin and mineral fortification of bread.Technology of Functional Cereal Products.Cambridgeshire, United KingdomWoodhead Publishing200710.1533/9781845693886.2.336
    [Google Scholar]
  18. Agrahar-MurugkarD. Food to food fortification of breads and biscuits with herbs, spices, millets and oilseeds on bio-accessibility of calcium, iron and zinc and impact of proteins, fat and phenolics.Lebensm. Wiss. Technol.2020130May10970310.1016/j.lwt.2020.109703
    [Google Scholar]
  19. StevensonL. PhillipsF. O’sullivanK. WaltonJ. Wheat bran: Its composition and benefits to health, a European perspective.Int. J. Food Sci. Nutr.20126381001101310.3109/09637486.2012.687366 22716911
    [Google Scholar]
  20. BenítezV. EstebanR.M. MonizE. CasadoN. AguileraY. MolláE. Breads fortified with wholegrain cereals and seeds as source of antioxidant dietary fibre and other bioactive compounds.J. Cereal Sci.20188211312010.1016/j.jcs.2018.06.001
    [Google Scholar]
  21. HallC. HillenC. Garden Robinson J. Composition, nutritional value, and health benefits of pulses.Cereal Chem.2017941113110.1094/CCHEM‑03‑16‑0069‑FI
    [Google Scholar]
  22. BoukidF. ZanniniE. CariniE. VittadiniE. Pulses for bread fortification: A necessity or a choice?Trends Food Sci. Technol.201988April41642810.1016/j.tifs.2019.04.007
    [Google Scholar]
  23. DodevskaM.S. DjordjevicB.I. SobajicS.S. MileticI.D. DjordjevicP.B. Dimitrijevic-SreckovicV.S. Characterisation of dietary fibre components in cereals and legumes used in Serbian diet.Food Chem.201314131624162910.1016/j.foodchem.2013.05.078 23870869
    [Google Scholar]
  24. LiuT. ZhenX. LeiH. Investigating the physicochemical characteristics and importance of insoluble dietary fiber extracted from legumes: An in-depth study on its biological functions.Food Chem. X20242210142410.1016/j.fochx.2024.101424 38840726
    [Google Scholar]
  25. DhindaF. A JL, Prakash J, Dasappa I. Effect of Ingredients on Rheological, Nutritional and Quality Characteristics of High Protein, High Fibre and Low Carbohydrate Bread.Food Bioprocess Technol.2012582998300610.1007/s11947‑011‑0752‑y
    [Google Scholar]
  26. Vaz PattoM.C. AmarowiczR. AryeeA.N.A. Achievements and challenges in improving the nutritional quality of food legumes.Crit. Rev. Plant Sci.2015341-310514310.1080/07352689.2014.897907
    [Google Scholar]
  27. TrinidadT.P. MallillinA.C. LoyolaA.S. SagumR.S. EncaboR.R. The potential health benefits of legumes as a good source of dietary fibre.Br. J. Nutr.2010103456957410.1017/S0007114509992157 19825218
    [Google Scholar]
  28. de Almeida CostaG.E. da Silva Queiroz-MoniciK. Pissini Machado ReisS.M. de OliveiraA.C. Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes.Food Chem.200694332733010.1016/j.foodchem.2004.11.020
    [Google Scholar]
  29. DzikiD. RóżyłoR. Gawlik-DzikiU. ŚwiecaM. Current trends in the enhancement of antioxidant activity of wheat bread by the addition of plant materials rich in phenolic compounds.Trends Food Sci. Technol.2014401486110.1016/j.tifs.2014.07.010
    [Google Scholar]
  30. YuY.M. FukagawaN.K. Protein and amino acids.Present Knowledge in Nutrition.Cambridge, Massachusetts, United StatesAcademic Press202010.1016/B978‑0‑323‑66162‑1.00002‑0
    [Google Scholar]
  31. KatsanosC.S. KobayashiH. Sheffield-MooreM. AarslandA. WolfeR.R. A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly.Am. J. Physiol. Endocrinol. Metab.20062912E381E38710.1152/ajpendo.00488.2005 16507602
    [Google Scholar]
  32. WuG. Amino acids: Metabolism, functions, and nutrition.Amino Acids200937111710.1007/s00726‑009‑0269‑0 19301095
    [Google Scholar]
  33. BrestenskýM. NitrayováS. PatrášP. NitrayJ. Dietary Requirements for Proteins and Amino Acids in Human Nutrition.Curr. Nutr. Food Sci.201915763864510.2174/1573401314666180507123506
    [Google Scholar]
  34. WuG. Functional amino acids in nutrition and health.Amino Acids201345340741110.1007/s00726‑013‑1500‑6 23595206
    [Google Scholar]
  35. HofferL.J. Human protein and amino acid requirements.JPEN J. Parenter. Enteral Nutr.201640446047410.1177/0148607115624084 26796095
    [Google Scholar]
  36. LiuK. Chemistry and Nutritional Value of Soybean Components.Soybeans.ChamSpringer199710.1007/978‑1‑4615‑1763‑4_2
    [Google Scholar]
  37. FAODietary protein quality evaluation in human nutrition.2013Available From: https://www.fao.org/ag/humannutrition/35978-02317b979a686a57aa4593304ffc17f06.pdf
  38. FAOFAO/INFOODS Food Composition Databases.2017Available From: https://www.fao.org/infoods/infoods/tables-and-databases/faoinfoods-databases/en/
  39. BantiM. BajoW. Review on nutritional importance and anti-nutritional factors of legumes.Int J Nutr Food Sci20209613810.11648/j.ijnfs.20200906.11
    [Google Scholar]
  40. Arbab SakandarH. ChenY. PengC. ChenX. ImranM. ZhangH. Impact of fermentation on antinutritional factors and protein degradation of legume seeds: A review.Food Rev. Int.20233931227124910.1080/87559129.2021.1931300
    [Google Scholar]
  41. SáA.G.A. MorenoY.M.F. CarciofiB.A.M. Food processing for the improvement of plant proteins digestibility.Crit. Rev. Food Sci. Nutr.202060203367338610.1080/10408398.2019.1688249 31760758
    [Google Scholar]
  42. Sarwar GilaniG. Wu XiaoC. CockellK.A. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality.Br. J. Nutr.2012108S2S315S33210.1017/S0007114512002371 22136711
    [Google Scholar]
  43. AkandeK. DomaU. AguH. AdamuH. Major antinutrients found in plant protein sources: Their effect on nutrition.Pak. J. Bot.201098827832
    [Google Scholar]
  44. Fekadu GemedeH. RattaN. Antinutritional factors in plant foods: Potential health benefits and adverse effects.Int J Nutr Food Sci20143428428910.11648/j.ijnfs.20140304.18
    [Google Scholar]
  45. AbbasY. AhmadA. Impact of processing on nutritional and antinutritional factors of legumes: A review.Ann. Food Sci. Technol. (Valahia Univ. Târgoviste)2018192199215
    [Google Scholar]
  46. Avilés-GaxiolaS. Chuck-HernándezC. Serna SaldívarS.O. Inactivation methods of trypsin inhibitor in legumes: A review.J. Food Sci.2018831172910.1111/1750‑3841.13985 29210451
    [Google Scholar]
  47. HassanE.G. Awad AlkareemA.M. MustafaA.M.I. Effect of fermentation and particle size of wheat bran on the antinutritional factors and bread quality.Pak. J. Nutr.20087452152610.3923/pjn.2008.521.526
    [Google Scholar]
  48. ReddyN.R. PiersonM.D. Reduction in antinutritional and toxic components in plant foods by fermentation.Food Res. Int.199427328129010.1016/0963‑9969(94)90096‑5
    [Google Scholar]
  49. PavalakumarD. JayasingheM. EdirisingheM. WijesekaraI. SenadheeraS. Cinnamomum zeylanicum and Curcuma longa incorporated dairy yoghurts with hindered glycaemic properties for healthy people.Journal of Future Foods20211110411210.1016/j.jfutfo.2021.09.006
    [Google Scholar]
  50. JoyeI. Protein digestibility of cereal products.Foods20198619910.3390/foods8060199 31181787
    [Google Scholar]
  51. Al-fartusieF.S. MohssanS.N. Essential trace elements and their vital roles in human body.Indian J Adv Chem Sci201753127136
    [Google Scholar]
  52. SousaC. MoutinhoC. VinhaA.F. MatosC. Trace minerals in human health : Iron, Zinc, Copper, Manganese and Fluorine.Int. J. Soc. Res. Methodol.20191335780
    [Google Scholar]
  53. PapetI. MeunierN. BéchereauF. GlomotF. ObledC. CoudrayC. Effect of zinc supplementation on protein metabolism in late–middle-aged men: The Zenith study.Nutrition200824215516110.1016/j.nut.2007.10.016 18077134
    [Google Scholar]
  54. BenayadA. AboussalehY. Mineral composition of lentils: Physiological functions.J. Food Qual.20212021319
    [Google Scholar]
  55. MehriA. Trace elements in human nutrition (ii) – An update.Int. J. Prev. Med.2020111210.4103/ijpvm.IJPVM_48_19 32042399
    [Google Scholar]
  56. MozrzymasR. Trace elements in human health.Recent Advances in Trace Elements.Hoboken, New JerseyWiley201810.1002/9781119133780.ch18
    [Google Scholar]
  57. JayasingheM.A. SenadheeraS.P.A.S. WijesekaraI. RanaweeraK.K.D.S. Determination of macronutrient compositions in selected, frequently consumed cereals, cereal based foods, legumes and pulses prepared according to common culinary methods in Sri Lanka.Vidyodaya J Sci201922216
    [Google Scholar]
  58. FaresC. MengaV. Chickpea (Cicer arietinum L.) fortification of cereal-based foods to increase fiber and phytochemical content.Wheat and Rice in Disease Prevention and Health: Benefits, risks and mechanisms of whole grains in health promotion.Cambridge, MassachusettsAcademic Press201453354610.1016/B978‑0‑12‑401716‑0.00041‑6
    [Google Scholar]
  59. BoukidF. Chickpea (Cicer arietinum L.) protein as a prospective plant‐based ingredient: A review.Int. J. Food Sci. Technol.202156115435544410.1111/ijfs.15046
    [Google Scholar]
  60. HerreraA.C. Gonzalez de MejiaE. Feasibility of commercial breadmaking using chickpea as an ingredient: Functional properties and potential health benefits.J. Food Sci.20218662208222410.1111/1750‑3841.15759 34028013
    [Google Scholar]
  61. KaurR. PrasadK. Technological, processing and nutritional aspects of chickpea (Cicer arietinum) - A review.Trends Food Sci. Technol.2021109January44846310.1016/j.tifs.2021.01.044
    [Google Scholar]
  62. Utrilla-CoelloR.G. Osorio-DíazP. Bello-PérezL.A. Alternative use of chickpea flour in breadmaking: Chemical composition and starch digestibility of bread.Food Sci. Technol. Int.200713432332710.1177/1082013207082537
    [Google Scholar]
  63. MohammedI. AhmedA.R. SengeB. Dough rheology and bread quality of wheat–chickpea flour blends.Ind. Crops Prod.201236119620210.1016/j.indcrop.2011.09.006
    [Google Scholar]
  64. WallaceT. MurrayR. ZelmanK. The nutritional value and health benefits of chickpeas and hummus.Nutrients201681276610.3390/nu8120766 27916819
    [Google Scholar]
  65. SegevA. BadaniH. KapulnikY. ShomerI. Oren-ShamirM. GaliliS. Determination of polyphenols, flavonoids, and antioxidant capacity in colored chickpea (Cicer arietinum L.).J. Food Sci.2010752S115S11910.1111/j.1750‑3841.2009.01477.x 20492256
    [Google Scholar]
  66. Rachwa-RosiakD. NebesnyE. BudrynG. Chickpeas—composition, nutritional value, health benefits, application to bread and snacks: A review.Crit. Rev. Food Sci. Nutr.20155581137114510.1080/10408398.2012.687418 24915347
    [Google Scholar]
  67. XiaoY. HuangL. ChenY. ZhangS. RuiX. DongM. Estudio comparativo de los efectos de la adición de harina de garbanzo fermentado y no fermentado en la calidad y las propiedades antioxidantes del pan de trigo.CYTA J. Food201614462163110.1080/19476337.2016.1188157
    [Google Scholar]
  68. MedicJ. AtkinsonC. HurburghC.R.Jr Current knowledge in soybean composition.J. Am. Oil Chem. Soc.201491336338410.1007/s11746‑013‑2407‑9
    [Google Scholar]
  69. TaghdirM. MazloomiS.M. HonarN. SepandiM. AshourpourM. SalehiM. Effect of soy flour on nutritional, physicochemical, and sensory characteristics of gluten‐free bread.Food Sci. Nutr.20175343944510.1002/fsn3.411 28572928
    [Google Scholar]
  70. O’KeefeS.O. BianchiL. SharmanJ. Soybean Nutrition.SM J Nutr Metab2015121006
    [Google Scholar]
  71. EtiosaO. ChikaN. BenedictaA. Mineral and proximate composition of Soya Bean.Asian J. Phys. Chem. Sci.2018431610.9734/AJOPACS/2017/38530
    [Google Scholar]
  72. MashayekhM. MahmoodiM.R. EntezariM.H. Effect of fortification of defatted soy flour on sensory and rheological properties of wheat bread.Int. J. Food Sci. Technol.20084391693169810.1111/j.1365‑2621.2008.01755.x
    [Google Scholar]
  73. NdifeJ. AbdulraheemL.O. ZakariU.M. Evaluation of the nutritional and sensory quality of functional breads produced from whole wheat and soya bean flour blends.Afr. J. Food Sci.201158466472
    [Google Scholar]
  74. DahiyaP.K. LinnemannA.R. NoutM.J.R. van BoekelM.A.J.S. GrewalR.B. Nutrient composition of selected newly bred and established mung bean varieties.Lebensm. Wiss. Technol.201354124925610.1016/j.lwt.2013.05.017
    [Google Scholar]
  75. SudhakaranS.M. A review on nutritional composition, antinutritional components and health benefits of green gram (Vigna radiata (L.) Wilczek).J. Food Biochem.2021456
    [Google Scholar]
  76. HouD. YousafL. XueY. Mung bean (Vigna radiata L.): Bioactive polyphenols, polysaccharides, peptides, and health benefits.Nutrients2019116123810.3390/nu11061238 31159173
    [Google Scholar]
  77. PaulT. Proximate compositions, mineral contents and determination of protease activity from green gram (Vigna radiata L. Wilczek).Bangladesh Res Publ J201153207213
    [Google Scholar]
  78. ThompsonL.U. HungL. WangN. RasperV.F. GadeH. Preparation of mung bean flour and its application in bread making.Can. Inst. Food Sci. Technol. J.1976911510.1016/S0315‑5463(76)73583‑1
    [Google Scholar]
  79. IndraniD. Milind, Sakhare SD, Inamdar AA, Venkateswara Rao G. Development of protein and fiber enriched breads by supplementation of roller milled fractions of green gram.J. Food Sci. Technol.201552141542210.1007/s13197‑013‑1033‑8
    [Google Scholar]
  80. MengY. GuanX. LiuX. ZhangH. The rheology and microstructure of composite wheat dough enriched with extruded mung bean flour.Lebensm. Wiss. Technol.2019109April37838610.1016/j.lwt.2019.03.095
    [Google Scholar]
  81. AnosikeF.C. ChinwenduO.R. NnaemekaN.A. Evaluation of baking qualities, functional and physicochemical properties of wheat supplemented with cassava and mung bean flour blends for bread making.Food Bioeng.20232326427210.1002/fbe2.12060
    [Google Scholar]
  82. DabelsN. IgbabulB. SharF. IorliamB. AbuJ. Nutritional composition, physical and sensory properties of cookies from wheat, acha and mung bean composite flours.Food Sci Qual Manag2016562126
    [Google Scholar]
  83. FarisM.A.I.E. TakruriH.R. IssaA.Y. Role of lentils (Lens culinaris L.) in human health and nutrition: A review.Med. J. Nutrition Metab.20136131610.1007/s12349‑012‑0109‑8
    [Google Scholar]
  84. RomanoA. GalloV. FerrantiP. MasiP. Lentil flour: Nutritional and technological properties, in vitro digestibility and perspectives for use in the food industry.Curr. Opin. Food Sci.20214015716710.1016/j.cofs.2021.04.003
    [Google Scholar]
  85. PortmanD. BlanchardC. MaharjanP. Blending studies using wheat and lentil cotyledon flour—Effects on rheology and bread quality.Cereal Chem.201895684986010.1002/cche.10103
    [Google Scholar]
  86. TurfaniV. NarducciV. DurazzoA. GalliV. CarceaM. Technological, nutritional and functional properties of wheat bread enriched with lentil or carob flours.Lebensm. Wiss. Technol.20177836136610.1016/j.lwt.2016.12.030
    [Google Scholar]
  87. PrevitaliM.A. MastromatteoM. De VitaP. FiccoD.B.M. ConteA. Del NobileM.A. Effect of the lentil flour and hydrocolloids on baking characteristics of wholemeal durum wheat bread.Int. J. Food Sci. Technol.201449112382239010.1111/ijfs.12559
    [Google Scholar]
  88. MarchiniM. CariniE. CataldiN. The use of red lentil flour in bakery products: How do particle size and substitution level affect rheological properties of wheat bread dough?Lebensm. Wiss. Technol.202113611029910.1016/j.lwt.2020.110299
    [Google Scholar]
  89. SantosF.G. FratelliC. MunizD.G. CaprilesV.D. Mixture design applied to the development of chickpea‐based gluten‐free bread with attractive technological, sensory, and nutritional quality.J. Food Sci.201883118819710.1111/1750‑3841.14009 29210449
    [Google Scholar]
  90. KahramanG. HarsaS. LucisanoM. CappaC. Physicochemical and rheological properties of rice-based gluten-free blends containing differently treated chickpea flours.Lebensm. Wiss. Technol.20189827628210.1016/j.lwt.2018.08.040
    [Google Scholar]
  91. OtegbayoB.O. AdebiyiO.M. BolajiO.A. OlunladeB.A. Effect of soy enrichment on bread quality.Int. Food Res. J.201825311201125
    [Google Scholar]
  92. BouhlalO. TaghoutiM. BenbrahimN. BenaliA. VisioniA. BenbaJ. Wheat-lentil fortified flours: Health benefits, phsicochemical, nutritional and technological properties.J. Mater. Environ. Sci.2019101110981106
    [Google Scholar]
  93. BandaraP.P.G.S.P. ArampathP.C. Development of french bread using flour formulations with wheat, rice and locally available legumes, and evaluation of its sensory and nutritional properties.Tropic Agri Res2020313253610.4038/tar.v31i3.8394
    [Google Scholar]
  94. FilipiniG. PassosA.P. FernandesS.S. Salas-MelladoM.M. Nutritional value, technological and sensory evaluation of gluten-free bread enriched with soybean flour and coconut oil.J. Food Meas. Charact.20211543853386110.1007/s11694‑021‑00971‑1
    [Google Scholar]
  95. PerriG. CodaR. RizzelloC.G. Sourdough fermentation of whole and sprouted lentil flours: In situ formation of dextran and effects on the nutritional, texture and sensory characteristics of white bread.Food Chem.2021355March12963810.1016/j.foodchem.2021.129638 33799242
    [Google Scholar]
  96. KahramanG. HarsaS. CasiraghiM.C. LucisanoM. CappaC. Impact of raw, roasted and dehulled chickpea flours on technological and nutritional characteristics of gluten-free bread.Foods202211219910.3390/foods11020199 35053930
    [Google Scholar]
  97. OkakpuK.G. Offia-OluaB.I. OkakpuC.J. OkparaC.M. Quality Characteristics of Bread Made from Flour Blends of Wheat, Cooking Banana and Mungbean.J Advances Food Sci Technol202310191510.56557/jafsat/2023/v10i18063
    [Google Scholar]
  98. PapagianniE. KotsiouK. BiliaderisC.G. LazaridouA. Flaxseed and sprouted lentil seeds as functional ingredients in the development of nutritionally fortified “clean-label” gluten-free breads.Food Hydrocolloids Health20234September10016510.1016/j.fhfh.2023.100165
    [Google Scholar]
  99. BenayadA. TaghoutiM. BenaliA. AboussalehY. BenbrahimN. Nutritional and technological assessment of durum wheat-faba bean enriched flours, and sensory quality of developed composite bread.Saudi J. Biol. Sci.202128163564210.1016/j.sjbs.2020.10.053 33424350
    [Google Scholar]
  100. CodaR. VarisJ. VerniM. RizzelloC.G. KatinaK. Improvement of the protein quality of wheat bread through faba bean sourdough addition.Lebensm. Wiss. Technol.20178229630210.1016/j.lwt.2017.04.062
    [Google Scholar]
  101. ForwoukehV.H. AmoveJ. YusufuM.I. Characteristics of whole wheat, red kidney bean and defatted coconut flour blends and its application in bread production.Asian Food Sci J2023229233910.9734/afsj/2023/v22i9655
    [Google Scholar]
  102. ManonmaniD. BholS. BoscoS.J.D. Effect of red kidney bean (Phaseolus vulgaris L.) flour on bread quality.OAlib2014111610.4236/oalib.1100366
    [Google Scholar]
  103. BelcN. DutaD.E. CuletuA. StamatieG.D. Type and amount of legume protein concentrate influencing the technological, nutritional, and sensorial properties of wheat bread.Appl. Sci. (Basel)202111143610.3390/app11010436
    [Google Scholar]
  104. BansalR. KapoorK. Physiochemical Analysis of Bread Fortified with different Levels of Soyaflour Blends.Int J Pure Appl Biosci2015335264
    [Google Scholar]
/content/journals/cff/10.2174/0126668629315995240805053755
Loading
/content/journals/cff/10.2174/0126668629315995240805053755
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): amino acid balance; Bread; legumes; nutrition; plant proteins; protein enrichment; pulses
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test