Skip to content
2000
Volume 3, Issue 2
  • ISSN: 2666-8629
  • E-ISSN: 2666-8637

Abstract

With the increasing demand for sustainable agricultural practices, the efficacy and sustainability of natural pesticides in plant protection, providing a critical assessment of their potential as alternatives to synthetic chemical pesticides is the basic demand of the future. This study aimes to examine the diverse categories of natural pesticides, including plant-based, microbial, and mineral-based options, and evaluate their effectiveness against a broad range of pests and diseases. We examine the environmental impact of natural pesticides on non-target organisms, their persistence and degradation, and the potential for bioaccumulation, focusing on their reduced chemical residues and ecological compatibility. Typically, natural pesticides target specific areas of the insect, like its nervous system, leading to the insect's downfall, loss of coordination, paralysis, and eventual death. The majority of botanical pesticides affect the target organism by poisoning its stomach, lungs, or other bodily systems. Sincebotanical pesticides are typically fairly biodegradable and may be quickly broken down by the stomach acids of mammals, their toxicity to humans and animals is typically quite low, and they are environmentally beneficial. Natural pesticides offer significant environmental, health, economic, and social benefits, making them an essential component of modern sustainable agriculture. Their use supports ecological balance, human safety, and long-term agricultural productivity. Overall, it highlights the promising efficacy and sustainability of natural pesticides, underscoring their potential for enhancing plant protection while minimizing environmental risks.

Loading

Article metrics loading...

/content/journals/cff/10.2174/0126668629301079240816072818
2024-09-11
2025-08-03
Loading full text...

Full text loading...

References

  1. PimentelD. Environmental and economic costs of the application of pesticides primarily in the united states.Environ. Dev. Sustain.20057222925210.1007/s10668‑005‑7314‑2
    [Google Scholar]
  2. PrettyJ. Intensification for redesigned and sustainable agricultural systems.Science (80) 2018; 362.(6417)10.1126/science.aav0294
    [Google Scholar]
  3. ShrewsburyP.M. LeatherS.R. Using Biodiversity for Pest Suppression in Urban Landscapes.Biodivers. Insect Pests Key Issues Sustain. Manag201229330810.1002/9781118231838.ch18
    [Google Scholar]
  4. LundgrenJ.G. FaustiS.W. Trading biodiversity for pest problems.Sci. Adv.201516e150055810.1126/sciadv.1500558 26601223
    [Google Scholar]
  5. BengtssonJ. AhnströmJ. WeibullA.C. The effects of organic agriculture on biodiversity and abundance: A meta‐analysis.J. Appl. Ecol.200542226126910.1111/j.1365‑2664.2005.01005.x
    [Google Scholar]
  6. TscharntkeT. CloughY. WangerT.C. Global food security, biodiversity conservation and the future of agricultural intensification.Biol. Conserv.20121511535910.1016/j.biocon.2012.01.068
    [Google Scholar]
  7. RizzoG. TestaR. SchifaniG. MiglioreG. The value of organic plus. Analysing consumers’ preference for additional ethical attributes of organic food products.Soc. Indic. Res.202310.1007/s11205‑023‑03123‑8
    [Google Scholar]
  8. BuO.B. GoA.S. Perceived trustworthiness of online shops.J. Consum. Behav.2008503550
    [Google Scholar]
  9. SubramaniamS SubramaniamR RajapandianS UthrapathiS GnanamanickamVR DubeyGP Anti-atherogenic activity of ethanolic fraction of terminalia arjuna bark on hypercholesterolemic rabbits.eCAM2011201148791610.1093/ecam/neq003
    [Google Scholar]
  10. Regnault-RogerC. VincentC. ArnasonJ.T. Essential oils in insect control: Low-risk products in a high-stakes world.Annu. Rev. Entomol.201257140542410.1146/annurev‑ento‑120710‑100554 21942843
    [Google Scholar]
  11. BakkaliF. AverbeckS. AverbeckD. IdaomarM. Biological effects of essential oils – A review.Food Chem. Toxicol.200846244647510.1016/j.fct.2007.09.106 17996351
    [Google Scholar]
  12. IsmanM.B. Botanical insecticides in the twenty-first century-fulfilling their promise?Annu. Rev. Entomol.202065123324910.1146/annurev‑ento‑011019‑025010 31594414
    [Google Scholar]
  13. PhukerdU. SoonweraM. Repellency of essential oils extracted from Thai native plants against Aedes aegypti (Linn.) and Culex quinquefasciatus (Say).Parasitol. Res.201411393333334010.1007/s00436‑014‑3996‑4 25088471
    [Google Scholar]
  14. PavelaR. Essential oils for the development of eco-friendly mosquito larvicides: A review.Ind. Crops Prod.20157617418710.1016/j.indcrop.2015.06.050
    [Google Scholar]
  15. IsmanM.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world.Annu. Rev. Entomol.2006511456610.1146/annurev.ento.51.110104.151146 16332203
    [Google Scholar]
  16. Ben-DovE. Bacillus thuringiensis subsp. Israelensis and its dipteran-specific toxins.Toxins2014641222124310.3390/toxins6041222 24686769
    [Google Scholar]
  17. MarshallS.D.G. MooreA. VaqaloM. NobleA. JacksonT.A. A new haplotype of the coconut rhinoceros beetle, oryctes rhinoceros, has escaped biological control by oryctes rhinoceros nudivirus and is invading pacific islands.J. Invertebr. Pathol.201714912713410.1016/j.jip.2017.07.006 28743668
    [Google Scholar]
  18. RuleN.F. HoffmannJ. The performance of dactylopius opuntiae as a biological control agent on two invasive opuntia cactus species in south africa.Biol. Control20181191271110.1016/j.biocontrol.2018.01.001
    [Google Scholar]
  19. LaceyL.A. GrzywaczD. Shapiro-IlanD.I. FrutosR. BrownbridgeM. GoettelM.S. Insect pathogens as biological control agents: Back to the future.J. Invertebr. Pathol.201513214110.1016/j.jip.2015.07.009 26225455
    [Google Scholar]
  20. CapaldiF.R. GratãoP.L. ReisA.R. The versatile roles of sulfur-containing.Curr. Opin. Biotechnol.2020593–4815
    [Google Scholar]
  21. Vielba-FernándezA. PolonioÁ. Ruiz-JiménezL. de VicenteA. Pérez-GarcíaA. Fernández-OrtuñoD. Fungicide resistance in powdery mildew fungi.Microorganisms202089143110.3390/microorganisms8091431 32957583
    [Google Scholar]
  22. KeinathA.P. DuBoseV.B. Controlling powdery mildew on cucurbit rootstock seedlings in the greenhouse with fungicides and biofungicides.Crop Prot.20124233834410.1016/j.cropro.2012.06.009
    [Google Scholar]
  23. LamichhaneJ.R. OsdaghiE. BehlauF. KöhlJ. JonesJ.B. AubertotJ.N. Thirteen decades of antimicrobial copper compounds applied in agriculture. A review.Agron. Sustain. Dev.20183832810.1007/s13593‑018‑0503‑9
    [Google Scholar]
  24. RotondiA. BertazzaG. FacciniB. FerrettiG. MorroneL. Effect of different foliar particle films (Kaolin and Zeolitite) on chemical and sensory properties of olive oil.Agronomy20221212308810.3390/agronomy12123088
    [Google Scholar]
  25. TripathiA. PandeyP. TripathiS.N. KalraA. Perspectives and potential applications of endophytic microorganisms in cultivation of medicinal and aromatic plants.Front Plant Sci202213September98542910.3389/fpls.2022.985429 36247631
    [Google Scholar]
  26. PalmaL. MuñozD. BerryC. MurilloJ. CaballeroP. Bacillus thuringiensis toxins: An overview of their biocidal activity.Toxins20146123296332510.3390/toxins6123296 25514092
    [Google Scholar]
  27. CompantS. DuffyB. NowakJ. ClémentC. BarkaE.A. Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects.Appl. Environ. Microbiol.20057194951495910.1128/AEM.71.9.4951‑4959.2005 16151072
    [Google Scholar]
  28. KocacevikS. SevimA. ErogluM. DemirbagZ. DemirI. Molecular characterization, virulence and horizontal transmission ofB eauveria pseudobassiana fromD endroctonus micans (K ug.) (C oleoptera: C urculionidae).J. Appl. Entomol.2015139538138910.1111/jen.12181
    [Google Scholar]
  29. HarmanG.E. HowellC.R. ViterboA. ChetI. LoritoM. Trichoderma species opportunistic, avirulent plant symbionts.Nat. Rev. Microbiol.200421435610.1038/nrmicro797 15035008
    [Google Scholar]
  30. KoskeyG. MburuS.W. AwinoR. NjeruE.M. MaingiJ.M. Potential use of beneficial microorganisms for soil amelioration, phytopathogen biocontrol, and sustainable crop production in smallholder agroecosystems.Front. Sustain. Food Syst.20215April60630810.3389/fsufs.2021.606308
    [Google Scholar]
  31. GisiU. CohenY. Resistance to phenylamide fungicides: A case study with phytophthora infestans involving mating type and race structure.Annu. Rev. Phytopathol.199634154957210.1146/annurev.phyto.34.1.549 15012556
    [Google Scholar]
  32. HamzaM.A. IshtiaqM. MehmoodM.A. Management of vegetable leaf miner, Liriomyza Spp., (Diptera: Agromyzidae) in vegetable crops.Horticulturae20239225510.3390/horticulturae9020255
    [Google Scholar]
  33. MalingaL.N. LaingM.D. Efficacy of biopesticides in the management of the cotton bollworm, Helicoverpa armigera (Noctuidae), under field conditions.Insects202213867310.3390/insects13080673 35893028
    [Google Scholar]
  34. DesneuxN. DecourtyeA. DelpuechJ.M. The sublethal effects of pesticides on beneficial arthropods.Annu. Rev. Entomol.20075218110610.1146/annurev.ento.52.110405.091440 16842032
    [Google Scholar]
  35. PathakV.M. VermaV.K. RawatB.S. Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review.Front. Microbiol.20221396261910.3389/fmicb.2022.962619 36060785
    [Google Scholar]
  36. MerhiA. TalebR. ElaridiJ. HassanH.F. Analytical methods used to determine pesticide residues in tea: A systematic review.Applied Food Research20222110013110.1016/j.afres.2022.100131
    [Google Scholar]
  37. BampidisV. AzimontiG. BastosM de L. ChristensenH. DusemundB. Safety and efficacy of FSF10000 and FLF1000 (3-phytase) as a feed additive for turkeys for fattening or reared for breeding, pigs for fattening and minor porcine species.EFSA J.20201966615
    [Google Scholar]
  38. MittalD. KaurG. SinghP. YadavK. AliS.A. Nanoparticle-based sustainable agriculture and food science: Recent advances and future outlook.Frontiers in Nanotechnology2020257995410.3389/fnano.2020.579954
    [Google Scholar]
  39. DhanarajuM. ChenniappanP. RamalingamK. PazhanivelanS. KaliaperumalR. Smart farming: Internet of things (IoT)-based sustainable agriculture.Agric20221210126
    [Google Scholar]
  40. SierrasA. Wada-KatsumataA. SchalC. Effectiveness of boric acid by ingestion, but not by contact, against the common bed bug (Hemiptera: Cimicidae).J. Econ. Entomol.2018111624422481
    [Google Scholar]
  41. Szewczuk-KarpiszK. TomczykA. CelińskaM. SokołowskaZ. KuśmierzM. Carboxin and diuron adsorption mechanism on sunflower husks biochar and goethite in the single/mixed pesticide solutions.Materials20211610258410.3390/ma14102584
    [Google Scholar]
  42. SilverK.S. DuY. NomuraY. Voltage-gated sodium channels as insecticide targets.Adv. Insect Physiol.2014464638943310.1016/B978‑0‑12‑417010‑0.00005‑7 29928068
    [Google Scholar]
  43. SoutoA.L. SylvestreM. TölkeE.D. TavaresJ.F. Barbosa-FilhoJ.M. Cebrián-TorrejónG. Plant-derived pesticides as an alternative to pest management and sustainable agricultural production: Prospects, applications and challenges.Molecules20212616483510.3390/molecules26164835 34443421
    [Google Scholar]
  44. LeongL.E.X. KhanS. DavisC.K. DenmanS.E. McSweeneyC.S. Fluoroacetate in plants a review of its distribution, toxicity to livestock and microbial detoxification.J. Anim. Sci. Biotechnol.2017815510.1186/s40104‑017‑0180‑6 28674607
    [Google Scholar]
  45. HayesW.J. Jr LawsE.R. Jr Classes of Pesticides. Handbook of Pesticide Toxicology.New York, NY: Academic Press, Inc.19912604
    [Google Scholar]
  46. LewisR.J.Sr Sax’s Dangerous Properties of Industrial Materials.11th edHoboken, NJWiley-Interscience, Wiley & Sons, Inc.2004263610.1002/0471701343
    [Google Scholar]
  47. KriegerR. Handbook of Pesticide Toxicology.2nd edSan Diego, CaliforniaAcademic Press2001Vol. 1119
    [Google Scholar]
  48. NaamalaJ. SmithD.L. Microbial derived compounds, a step toward enhancing microbial inoculants technology for sustainable agriculture.Front. Microbiol.20211210.3389/fmicb.2021.634807
    [Google Scholar]
  49. EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). Scientific Opinion on the re‐evaluation of boric acid (E 284) and sodium tetraborate (borax)(E 285) as food additives.EFSA J.201311103407
    [Google Scholar]
  50. HuangY. PingX. CuiY. Glycolysis aids in human lens epithelial cells’ adaptation to hypoxia.Antioxidants2023126130410.3390/antiox12061304
    [Google Scholar]
  51. Crop protection handbook.(Formerly Farm and Chemicals Handbook) Willoughby, OH.Meister Publishing Co20042004C-108
    [Google Scholar]
  52. TomlinC.D.S. Carboxin (5234-68-4). The e-Pesticide Manual.13th edThe e-Pesticide Manual
    [Google Scholar]
  53. PadalkinI.I. Veterinariya197868586
    [Google Scholar]
  54. LewisR.J. Sax’s Dangerous Properties of Industrial Materials.Van Nostrand Reinhold1994
    [Google Scholar]
  55. Reregistration eligibility decisions for carboxin.In: Washington, DC2004
    [Google Scholar]
  56. Proceedings of the Society for Experimental Biology and Medicine.195176847
    [Google Scholar]
  57. TanakaK. Actions of veratrum alkaloids upon the central nervous system of mice.JPET195511318999
    [Google Scholar]
  58. KrayerO. AchesonG.H. The pharmacology of the veratrum alkaloids.Reviews194626338344610.1152/physrev.1946.26.3.383
    [Google Scholar]
  59. NyffelerM. BenzG. Spiders in natural pest control: a review 1.J. Appl. Entomol.19871031-5321339
    [Google Scholar]
  60. KunaS. HealR.E. Toxicological and pharmacological studies on the powdered stem of Ryania speciosa, a plant insecticide.JPET1948933407413 18878179
    [Google Scholar]
  61. KriegerR. Hayes’ handbook of pesticide toxicology.Academic press2010
    [Google Scholar]
  62. BowersD.E. The economic research service, 1961-1977.Agricultural history1990642231243
    [Google Scholar]
  63. VerschoyleR.D. BarnesJ.M. Toxicity of natural and synthetic pyrethrins to rats.Pestic. Biochem. Physiol.19722330831110.1016/0048‑3575(72)90034‑X
    [Google Scholar]
  64. FujmotoK. ItayaN. OkunoY. KadotaT. YamaguchiT. A new insecticidal pyrethroid ester.Agric. Biol. Chem.197337112681268210.1080/00021369.1973.10861062
    [Google Scholar]
  65. HowardP. Handbook of environmental fate and exposure data: for organic chemicals, volume III pesticides.Routledge2017
    [Google Scholar]
  66. AndoT. ToiaR.F. CasidaJ.E. Epoxy and hydroxy derivatives of (S)-bioallethrin and pyrethrins I and II: Synthesis and metabolism.J. Agric. Food Chem.199139360661110.1021/jf00003a034
    [Google Scholar]
  67. YuanX. TianY. LiuC. ZhangZ. Environmental factors in Parkinson’s disease: New insights into the molecular mechanisms.Toxicol. Lett.202235635611010.1016/j.toxlet.2021.12.003 34864130
    [Google Scholar]
  68. GuptaR.C. MukherjeeI.R. MalikJ.K. DossR.B. DettbarnW.D. MilatovicD. Insecticides.Biomarkers in toxicology.Academic Press201945547510.1016/B978‑0‑12‑814655‑2.00026‑8
    [Google Scholar]
  69. YeohSL ChoongPS ZakariaR A case of rotenone poisoning from ingesting Derris trifoliata Lour.(Tuba fruit/pod) in Malaysia Malaysia202410755710.1016/j.toxicon.2023.107557 38072318
    [Google Scholar]
  70. JohnsonS. DurejaP. DhingraS. Photostabilizers for Azadirachtin‐A (a neem‐based pesticide).J. Environ. Sci. Health Part B2003384451462
    [Google Scholar]
  71. RaizadaR.B. SrivastavaM.K. KaushalR.A. SinghR.P. Azadirachtin, a neem biopesticide: Subchronic toxicity assessment in rats.FCT200139547748310.1016/S0278‑6915(00)00153‑8
    [Google Scholar]
  72. LiuY-B. UV stability and efficacy of bacillus thuringiensis formulations.J. Econ. Entomol.199588527533
    [Google Scholar]
  73. Simon-DelsoN. Amaral-RogersV. BelzuncesL.P. Systemic insecticides (neonicotinoids and fipronil): Trends, uses, mode of action and metabolites.Environ. Sci. Pollut. Res. Int.201522153410.1007/s11356‑014‑3470‑y 25233913
    [Google Scholar]
  74. MaienfischP. HuerlimannH. RindlisbacherA. The discovery of thiamethoxam: A second-generation neonicotinoid.Pest Manag. Sci.200157216517610.1002/1526‑4998(200102)57:2<165:AID‑PS289>3.0.CO;2‑G
    [Google Scholar]
/content/journals/cff/10.2174/0126668629301079240816072818
Loading
/content/journals/cff/10.2174/0126668629301079240816072818
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test