Skip to content
2000
Volume 2, Issue 2
  • ISSN: 2666-8629
  • E-ISSN: 2666-8637

Abstract

Cooking oils and fats play a significant role in our daily diet and culinary practices by enhancing flavours, textures, and nutritional value. However, overheating these fats can compromise the quality and safety of cooked foods. When oils and fats exceed their smoke points, they undergo chemical breakdown, producing volatile compounds, off-flavours, and undesirable odors, including harmful substances like small chain fatty acids, trans fats, acrylamides, and polycyclic aromatic hydrocarbons. It is crucial to avoid overheating oils to mitigate the formation of these toxic substances and instead opt for those with higher smoke points for high-temperature cooking methods. The smoke point, indicating the temperature at which visible smoke is emitted, serves as a critical indicator of thermal stability and suitability for various cooking oils and fats. Therefore, understanding and considering the smoke points of different oils and fats are essential for maintaining food quality and safety in culinary practices. This review consolidates existing knowledge on the smoke points of various oils and fats and methods for determining smoke points, providing a list of fifty-one oils and fats with their respective smoke points and highlighting their applications in cooking. By considering the smoke point, chefs, cooks, and food manufacturers can select oils that optimize cooking, frying, taste, texture, flavour enhancement, salad dressings, marinades, baking, and overall safety in their culinary practices. Mindfulness of the smoke point helps prevent the degradation of nutritional value and the generation of harmful compounds during the cooking process.

Loading

Article metrics loading...

/content/journals/cff/10.2174/0126668629273114231108210359
2023-12-04
2025-01-24
Loading full text...

Full text loading...

References

  1. GibsonR.S. BaileyK.B. GibbsM. FergusonE.L. A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability.Food Nutr. Bull.202041337339620715598
    [Google Scholar]
  2. Kris-EthertonP.M. HeckerK.D. BonanomeA. Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer.Am. J. Med.20021139Suppl. 9B718810.1016/S0002‑9343(01)00995‑012566142
    [Google Scholar]
  3. KumarP. ChatliM.K. MehtaN. Potential biological effects of conjugated linoleic acid (CLA) on human health: A review.Pol. J. Food Nutr. Sci.20186811021
    [Google Scholar]
  4. SinghA. KaurK. GrewalN. SinghN. Health benefits and processing aspects of mustard oil: A review.J. Food Sci. Technol.2018552460471
    [Google Scholar]
  5. EyresL. EyresM.F. ChisholmA. BrownR.C. Coconut oil consumption and cardiovascular risk factors in humans.Nutr. Rev.201674426728010.1093/nutrit/nuw00226946252
    [Google Scholar]
  6. HuangH.E. OdegaardA.O. KohW.P. Consumption of edible oils and risk of cardiovascular diseases: a systematic review and meta-analysis of prospective cohort studies.Clin. Nutr.20163561429143827083497
    [Google Scholar]
  7. Krajcovicová-KudláckováM. SimoncicR. BéderováA. BabinskáK. BéderI. Correlation between biochemical and clinical indicators in the antioxidant status of healthy young persons with regard to their dietary habits.Bratisl. Lek Listy201011128287
    [Google Scholar]
  8. HassanienM.F. Abdel-RazekA.G. El-ShamyH.A. MohamedH.M. Chemical and nutritional evaluation of soybean oil.Grasas Aceites2014651e002
    [Google Scholar]
  9. SchwabU. LauritzenL. TholstrupT. Effect of the amount and type of dietary fat on cardiometabolic risk factors and risk of developing type 2 diabetes, cardiovascular diseases, and cancer: A systematic review.Food Nutr. Res.20145812514510.3402/fnr.v58.2514525045347
    [Google Scholar]
  10. ChoudharyM. KumarV. MalhotraA. KaurG. A review on health benefits of corn oil.Int. J. Curr. Microbiol. Appl. Sci.20209410171026
    [Google Scholar]
  11. USDAn.d. Vegetable oils.United States Department of Agriculture.Retrieved from https://www.choosemyplate.gov/eathealthy/fats/oils [
    [Google Scholar]
  12. Pérez-HerreraA. Delgado-ListaJ. Torres-SánchezL.A. Rangel-ZuñigaO.A. CamargoA. Moreno-NavarreteJ.M. Dietary fat differentially influences regulatory endothelial function during the postprandial state in patients with metabolic syndrome: from the LIPGENE study.Atherosclerosis20182697987
    [Google Scholar]
  13. PappasA. LiakouA. ZouboulisC.C. Nutrition and skin.Rev. Assoc. Med. Bras.2017639785787
    [Google Scholar]
  14. CaligiuriS.P.B. AukemaH.M. RavandiA. GuzmanR. DibrovE. PierceG.N. Flaxseed consumption reduces blood pressure in patients with hypertension by altering circulating oxylipins via an α-linolenic acid-induced inhibition of soluble epoxide hydrolase.Hypertension2014641535910.1161/HYPERTENSIONAHA.114.0317924777981
    [Google Scholar]
  15. SchwingshacklL. HoffmannG. Monounsaturated fatty acids, olive oil and health status: A systematic review and meta-analysis of cohort studies.Lipids Health Dis.202120111633407491
    [Google Scholar]
  16. Martínez-GonzálezM.A. DominguezL.J. Delgado-RodríguezM. Olive oil consumption and risk of CHD and/or stroke: A meta-analysis of case–control, cohort and intervention studies.Br. J. Nutr.2014112224825910.1017/S000711451400071324775425
    [Google Scholar]
  17. JonesM. MillerC. The impact of frying with different oils on the formation of volatile compounds.Int. J. Food Sci. Technol.201651920982107
    [Google Scholar]
  18. TarekeE. RydbergP. KarlssonP. ErikssonS. TörnqvistM. Analysis of acrylamide, a carcinogen formed in heated foodstuffs.J. Agric. Food Chem.200250174998500610.1021/jf020302f12166997
    [Google Scholar]
  19. OrsavovaJ. MisurcovaL. AmbrozovaJ. VichaR. MlcekJ. Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids.Int. J. Mol. Sci.20151612128711289010.3390/ijms16061287126057750
    [Google Scholar]
  20. AkohC.C. Food lipids: chemistry, nutrition, and biotechnology.CRC press201710.1201/9781315151854
    [Google Scholar]
  21. IUPACO. International union of pure and applied chemistry.Stand Meth Analy Oil Fat Deriv1992
    [Google Scholar]
  22. MarchandV. Trans fats: What physicians should know.Paediatr. Child Health201015637337510.1093/pch/15.6.37321731420
    [Google Scholar]
  23. ForceT F T ARCHIVED-transforming the food supply: Report of the trans fat task forceIn: [Health Canada, 2006].2006
    [Google Scholar]
  24. MensinkR.P. KatanM.B. Effect of dietary trans fatty acids on high-density and low-density lipoprotein cholesterol levels in healthy sub-jects.N. Engl. J. Med.1990323743944510.1056/NEJM1990081632307032374566
    [Google Scholar]
  25. MozaffarianD. KatanM.B. AscherioA. StampferM.J. WillettW.C. Trans fatty acids and cardiovascular disease.N. Engl. J. Med.2006354151601161310.1056/NEJMra05403516611951
    [Google Scholar]
  26. MorrisM.C. EvansD.A. BieniasJ.L. Dietary fats and the risk of incident Alzheimer disease.Arch. Neurol.200360219420010.1001/archneur.60.2.19412580703
    [Google Scholar]
  27. KohlmeierL. SimonsenN. van ’t VeerP. Adipose tissue trans fatty acids and breast cancer in the european community multicenter study on antioxidants, myocardial infarction, and breast cancer.Cancer Epidemiol. Biomarkers Prev.1997697057109298578
    [Google Scholar]
  28. HornstraG. Essential fatty acids in mothers and their neonates.Am. J. Clin. Nutr.2000715Suppl.1262S1269S10.1093/ajcn/71.5.1262s10799400
    [Google Scholar]
  29. EliasS.L. InnisS.M. Infant plasma trans, n−6, and n−3 fatty acids and conjugated linoleic acids are related to maternal plasma fatty acids, length of gestation, and birth weight and length.Am. J. Clin. Nutr.200173480781410.1093/ajcn/73.4.80711273857
    [Google Scholar]
  30. ChavarroJ.E. Rich-EdwardsJ.W. RosnerB.A. WillettW.C. Dietary fatty acid intakes and the risk of ovulatory infertility.Am. J. Clin. Nutr.200785123123710.1093/ajcn/85.1.23117209201
    [Google Scholar]
  31. Yli-JamaP. MeyerH.E. RingstadJ. PedersenJ.I. Serum free fatty acid pattern and risk of myocardial infarction: A case-control study.J. Intern. Med.20022511192810.1046/j.1365‑2796.2002.00922.x11851861
    [Google Scholar]
  32. SuganoM. IkedaI. Metabolic interactions between essential and trans-fatty acids.Curr. Opin. Lipidol.199671384210.1097/00041433‑199602000‑000098925188
    [Google Scholar]
  33. SlatteryM.L. BensonJ. MaK.N. SchafferD. PotterJ.D. Trans-fatty acids and colon cancer.Nutr. Cancer200139217017510.1207/S15327914nc392_211759276
    [Google Scholar]
  34. SalmerónJ. HuF.B. MansonJ.E. Dietary fat intake and risk of type 2 diabetes in women.Am. J. Clin. Nutr.20017361019102610.1093/ajcn/73.6.101911382654
    [Google Scholar]
  35. MeyerK.A. KushiL.H. JacobsD.R.Jr FolsomA.R. Dietary fat and incidence of type 2 diabetes in older Iowa women.Diabetes Care20012491528153510.2337/diacare.24.9.152811522694
    [Google Scholar]
  36. GhafoorunissaG. Role of trans fatty acids in health and challenges to their reduction in Indian foods.Asia Pac. J. Clin. Nutr.200817Suppl. 121221518296340
    [Google Scholar]
  37. RisérusU. ArnerP. BrismarK. VessbyB. Treatment with dietary trans10cis12 conjugated linoleic acid causes isomer-specific insulin resistance in obese men with the metabolic syndrome.Diabetes Care20022591516152110.2337/diacare.25.9.151612196420
    [Google Scholar]
  38. KavanaghK. JonesK.L. SawyerJ. Trans fat diet induces abdominal obesity and changes in insulin sensitivity in monkeys.Obesity (Silver Spring)20071571675168410.1038/oby.2007.20017636085
    [Google Scholar]
  39. DhakaV. GuliaN. AhlawatK.S. KhatkarB.S. Trans fats—sources, health risks and alternative approach - A review.J. Food Sci. Technol.201148553454110.1007/s13197‑010‑0225‑823572785
    [Google Scholar]
  40. WeilandS.K. von MutiusE. HiJsing A, Asher MI. ISAAC Steering Committee. Intake of trans fatty acids and prevalence of childhood asthma and allergies in Europe.Lancet199935391692040204110.1016/S0140‑6736(99)01609‑810376626
    [Google Scholar]
  41. WillettW. StampferM.J. MansonJ.E. Intake of trans fatty acids and risk of coronary heart disease among women.Lancet1993341884558158510.1016/0140‑6736(93)90350‑P8094827
    [Google Scholar]
  42. MahfouzM. Effect of dietary trans fatty acids on the delta 5, delta 6 and delta 9 desaturases of rat liver microsomes in vivo.Acta Biol. Med. Ger.19814012169917057345825
    [Google Scholar]
  43. McNamaraR.K. HahnC.G. JandacekR. Selective deficits in the omega-3 fatty acid docosahexaenoic acid in the postmortem orbito-frontal cortex of patients with major depressive disorder.Biol. Psychiatry2007621172410.1016/j.biopsych.2006.08.02617188654
    [Google Scholar]
  44. GolombB.A. BuiA.K. A fat to forget: Trans fat consumption and memory.PLoS One2015106e012812910.1371/journal.pone.012812926083739
    [Google Scholar]
  45. MelnikB. Linking diet to acne metabolomics, inflammation, and comedogenesis: An update.Clin. Cosmet. Investig. Dermatol.2015837138810.2147/CCID.S6913526203267
    [Google Scholar]
  46. XiongR.G. ZhouD.D. WuS.X. Health benefits and side effects of short-chain fatty acids.Foods20221118286310.3390/foods1118286336140990
    [Google Scholar]
  47. KumarJ. DasS. TeohS.L. Dietary acrylamide and the risks of developing cancer: Facts to ponder.Front. Nutr.201851410.3389/fnut.2018.0001429541638
    [Google Scholar]
  48. RiceJ.M. The carcinogenicity of acrylamide.Mutat. Res. Genet. Toxicol. Environ. Mutagen.20055801-232010.1016/j.mrgentox.2004.09.00815668103
    [Google Scholar]
  49. BesaratiniaA. PfeiferG.P. A review of mechanisms of acrylamide carcinogenicity.Carcinogenesis200628351952810.1093/carcin/bgm00617234719
    [Google Scholar]
  50. LoPachinR.M. RossJ.F. LehningE.J. Nerve terminals as the primary site of acrylamide action: A hypothesis.Neurotoxicology2002231435910.1016/S0161‑813X(01)00074‑212164547
    [Google Scholar]
  51. LoPachinR.M. BalabanC.D. RossJ.F. Acrylamide axonopathy revisited.Toxicol. Appl. Pharmacol.2003188313515310.1016/S0041‑008X(02)00072‑812729714
    [Google Scholar]
  52. PennisiM. MalaguarneraG. PuglisiV. VinciguerraL. VacanteM. MalaguarneraM. Neurotoxicity of acrylamide in exposed workers.Int. J. Environ. Res. Public Health20131093843385410.3390/ijerph1009384323985770
    [Google Scholar]
  53. SakamotoJ. HashimotoK. Reproductive toxicity of acrylamide and related compounds in mice? effects on fertility and sperm morphology.Arch. Toxicol.198659420120510.1007/BF002905383827588
    [Google Scholar]
  54. CostaL.G. DengH. GregottiC. Comparative studies on the neuro- and reproductive toxicity of acrylamide and its epoxide metabolite glycidamide in the rat.Neurotoxicology19921312192241508423
    [Google Scholar]
  55. BesaratiniaA. PfeiferG.P. Genotoxicity of acrylamide and glycidamide.J. Natl. Cancer Inst.200496131023102910.1093/jnci/djh18615240786
    [Google Scholar]
  56. MeiN. McDanielL.P. DobrovolskyV.N. The genotoxicity of acrylamide and glycidamide in big blue rats.Toxicol. Sci.2010115241242110.1093/toxsci/kfq06920200216
    [Google Scholar]
  57. CarereA. Genotoxicity and carcinogenicity of acrylamide: A critical review.Ann. Ist. Super. Sanita200642214415517033134
    [Google Scholar]
  58. RengarajanT. RajendranP. NandakumarN. LokeshkumarB. RajendranP. NishigakiI. Exposure to polycyclic aromatic hydrocarbons with special focus on cancer.Asian Pac. J. Trop. Biomed.20155318218910.1016/S2221‑1691(15)30003‑4
    [Google Scholar]
  59. BurchielS.W. GaoJ. Polycyclic aromatic hydrocarbons and the immune system.Encyclopedia Immunotoxicology201410.1007/978‑3‑642‑27786‑3_1192‑4
    [Google Scholar]
  60. GedikS. ErdemliM.E. GulM. Hepatoprotective effects of crocin on biochemical and histopathological alterations following acrylamide-induced liver injury in Wistar rats.Biomed. Pharmacother.20179576477010.1016/j.biopha.2017.08.13928892787
    [Google Scholar]
  61. GhorbelI. ElwejA. ChaabeneM. Effects of acrylamide graded doses on metallothioneins I and II induction and DNA fragmentation: Bochemical and histomorphological changes in the liver of adult rats.Toxicol. Ind. Health201733861162210.1177/074823371769661328490250
    [Google Scholar]
  62. YuanJ.M. RossR.K. WangX.L. GaoY.T. Polycyclic aromatic hydrocarbons and lung cancer in Shanghai, China.Occup. Environ. Med.20025912846851
    [Google Scholar]
  63. World Health Organization.Polycyclic aromatic hydrocarbons, selected non-heterocyclic.Environ. Health Criteria1998202
    [Google Scholar]
  64. BachP.B. KelleyM.J. TateR.C. McCroryD.C. Screening for lung cancer: A review of the current literature.Chest20031231Suppl.72S82S10.1378/chest.123.1_suppl.72S12527566
    [Google Scholar]
  65. OlssonA.C. FevotteJ. FletcherT. Occupational exposure to polycyclic aromatic hydrocarbons and lung cancer risk: A multicenter study in Europe.Occup. Environ. Med.20106729810310.1136/oem.2009.04668019773276
    [Google Scholar]
  66. DiggsD.L. HudersonA.C. HarrisK.L. Polycyclic aromatic hydrocarbons and digestive tract cancers: A perspective.J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev.201129432435710.1080/10590501.2011.62997422107166
    [Google Scholar]
  67. Abdel-ShafyH I MansourM S A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation.Egyptian journal of petroleum20162511072310.1016/j.ejpe.2015.03.011
    [Google Scholar]
  68. PlískováM. VondrácekJ. VojtěšekB. KozubíkA. MachalaM. Deregulation of cell proliferation by polycyclic aromatic hydrocarbons in human breast carcinoma MCF-7 cells reflects both genotoxic and nongenotoxic events.Toxicol. Sci.200483224625610.1093/toxsci/kfi04015548639
    [Google Scholar]
  69. PokornýJ. Are natural antioxidants better – and safer – than synthetic antioxidants?Eur. J. Lipid Sci. Technol.2007109662964210.1002/ejlt.200700064
    [Google Scholar]
  70. SmithJ.P. DaifasD.P. El-KhouryW. KoukoutsisJ. Thermal Degradation of Edible Oils.In: Encyclopedia of Food Chemistry.Elsevier2018418425
    [Google Scholar]
  71. International Organization for Standardization (ISO)ISO 2592:2011. Animal and vegetable fats and oils - Determination of the smoke point.In: Geneva, SwitzerlandISO2011
    [Google Scholar]
  72. American Oil Chemists’ Society (AOCS)AOCS Cc 9a-48: Determination of the Smoke Point of Animal and Vegetable Fats and Oils.In: Urbana, ILAOCS2017
    [Google Scholar]
  73. ASTM InternationalASTM D1322-18: Standard Test Method for Smoke Point of Kerosene and Aviation Turbine Fuel. West Con-shohocken.PAASTM International2018
    [Google Scholar]
  74. United States Pharmacopeial Convention (USP)Chapter Loss on Drying, Chapter Residue on Ignition, and Chapter Water Determination The United States Pharmacopeia 42 (USP 42).Rockville, MDUSP2019
    [Google Scholar]
  75. AlmondsC. Almond Oil.2021Available from: https://www.almonds.com/consumers/products/retail-oil
    [Google Scholar]
  76. SunY. LapsleyK. Apricot Kernel Oil. LapsleyK. NamSK. Aromatherapy, Herbal Remedies, and Essential Oils for Everyday Wellness.Sterling Publishing2011789
    [Google Scholar]
  77. Moroccan ElixirArgan Oil n.d.Available from: https://moroccanelixir.com/
    [Google Scholar]
  78. ShahidiF. AmbigaipalanP. Avocado Oil. Functional Foods and Beverages.2nd edCRC Press20183133
    [Google Scholar]
  79. de OliveiraR.A.M. Chemical composition and smoke point of beef tallow (bos taurus) rendered from fresh trim.J. Am. Oil Chem. Soc.2019963277286
    [Google Scholar]
  80. LawJ. RheeJ. Butter.In Edible Oleogels: Structure and Health Implications In.Springer201597104
    [Google Scholar]
  81. GertzC. KlostermannA. Vegetable oils in food technology: Composition, properties, and uses.John Wiley & Sons2011
    [Google Scholar]
  82. GoldR. Fat: An appreciation of a misunderstood ingredient, with recipes.Little, Brown and Company2015
    [Google Scholar]
  83. HayesK.C. KhoslaP. PronczukA. Fats and oils: Formulating and processing for applications.3rd edCRC Press2012
    [Google Scholar]
  84. DetwilerS.B.Jr MarkleyK.S. Smoke, flash, and fire points of soybean and other vegetable oils.J. Am. Oil Chem. Soc.1940172394010.1007/BF02543003
    [Google Scholar]
  85. AgarwalP. MalhotraS. Indian foods: Composition and nutritional values.2nd edCRC Press2016
    [Google Scholar]
  86. LambeletP. Grapeseed Oil.Encyclopedia of Food and Health. CaballeroB. FinglasP.M. ToldráF. Academic Press2016Vol. 2464468
    [Google Scholar]
  87. KarleskindA. MorettonJ. Hazelnut oil.Bailey’s industrial oil and fat products.6th ed ShahidiF. John Wiley & Sons2016Vol. 2469481
    [Google Scholar]
  88. CertA. BargallóM. Olive oil.Bailey’s industrial oil and fat products.6th ed ShahidiF. John Wiley & Sons2008Vol. 2149244
    [Google Scholar]
  89. PrattD.E. HudsonB.J.F. Natural antioxidants not exploited commercially.Food antioxidants. HudsonB.J.F. Elsevier199027330810.1007/978‑94‑009‑0753‑9_5
    [Google Scholar]
  90. LiangY. Comparison of lipids composition and antioxidant capacity of tea seed oils obtained by different extraction methods.Eur. J. Lipid Sci. Technol.20121141011491156
    [Google Scholar]
  91. ShrivastavaM. GautamA. Ghee: An indian nutritional treasure.J. Nutr. Food Sci.20188113
    [Google Scholar]
  92. AfoakwaE.O. Chocolate science and technology.Wiley-Blackwell201010.1002/9781444319880
    [Google Scholar]
  93. JhaA.K. Kokum butter. Handbook of fruit science and technology: Production, composition, storage, and processing.CRC Press. SalunkheD.K. DesaiB.B. 2015675684
    [Google Scholar]
  94. WangS. XuS. Mongolian Cuisine: Recipes from Hunnu Mongolia.Independently Published2019
    [Google Scholar]
  95. HolsonL. 2000Inuit Seek Ban on Seal Oil Imports.The New York Times.Available from: https://www.nytimes.com/2000/11/17/world/inuit-seek-ban-on-seal-oil-imports.html
    [Google Scholar]
  96. NairA. Emu Oil: Chemistry and Application.In: Essential Oils in Food Preservation, Flavor and Safety.Academic Press2016249258
    [Google Scholar]
  97. MartinR.A. Mink production. ChavanneDG HalbachGC Wild mammals in captivity: Principles and techniques for zoo management.2nd edUniversity of chicago press201646176
    [Google Scholar]
  98. LeeK. ShibamotoT. LeeK. The effect of heat on the stability of triacylglycerols and fatty acid methyl esters.Food Chem.2013141439343940
    [Google Scholar]
  99. SmithJ.P. WhiteP.J. Vegetable oil temperature and time of heating affects product volatiles.J. Am. Oil Chem. Soc.20179414352
    [Google Scholar]
  100. JohnsonE.R. MillerC.J. The effect of frying oils on flavor.Eur. J. Lipid Sci. Technol.201812011700207
    [Google Scholar]
  101. World Health OrganizationCountdown to 2023: WHO report on global trans fat elimination 2021.2021
    [Google Scholar]
/content/journals/cff/10.2174/0126668629273114231108210359
Loading
/content/journals/cff/10.2174/0126668629273114231108210359
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test