Skip to content
2000
Volume 2, Issue 2
  • ISSN: 2666-8629
  • E-ISSN: 2666-8637

Abstract

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline, memory loss, and impaired daily functioning. The etiology of AD is complex and multifactorial, involving various pathological mechanisms such as the accumulation of amyloid-beta plaques, neurofibrillary tangles, neuroinflammation, and oxidative stress. As the global prevalence of AD continues to rise, there is a growing interest in identifying potential therapeutic interventions to prevent or slow down the progression of the disease. Resveratrol, a natural polyphenolic compound found in various plant sources such as grapes, berries, and peanuts, has gained considerable attention due to its potential neuroprotective effects. Numerous preclinical studies utilizing and animal models have investigated the impact of resveratrol on AD pathology and associated cognitive impairments. This review aims to provide a comprehensive summary of the current research on the role of resveratrol in AD. In conclusion, resveratrol holds promise as a potential therapeutic agent for AD due to its ability to target multiple pathological processes involved in the disease. Further research, including well-designed clinical trials with larger sample sizes, is needed to fully elucidate the efficacy, optimal dosage, and long-term effects of resveratrol in AD patients. Nevertheless, resveratrol remains an intriguing compound with neuroprotective properties and may contribute to the development of novel therapeutic approaches for AD in the future.

Loading

Article metrics loading...

/content/journals/cff/10.2174/0126668629269244231127071411
2023-12-12
2025-01-24
Loading full text...

Full text loading...

References

  1. BreijyehZ KaramanR. Comprehensive review on Alzheimer’s disease: causes and treatment.molecules20202524578910.3390/molecules2524578933302541
    [Google Scholar]
  2. HoltzmanD.M. MorrisJ.C. GoateA.M. Alzheimer’s disease: the challenge of the second century.Sci. Transl. Med.201137777sr110.1126/scitranslmed.300236921471435
    [Google Scholar]
  3. NeugroschlJ. WangS. Alzheimer’s disease: diagnosis and treatment across the spectrum of disease severity.Mt. Sinai J. Med.201178459661210.1002/msj.2027921748748
    [Google Scholar]
  4. GrøntvedtG.R. SchröderT.N. SandoS.B. WhiteL. BråthenG. DoellerC.F. Alzheimer’s disease.Curr. Biol.20182811R645R64910.1016/j.cub.2018.04.08029870699
    [Google Scholar]
  5. KnopmanD.S. PetersenR.C. Mild cognitive impairment and mild dementia: a clinical perspective.Mayo Clin. Proc.201489101452145910.1016/j.mayocp.2014.06.01925282431
    [Google Scholar]
  6. DetureM.A. DicksonD.W. The neuropathological diagnosis of alzheimer’s disease.Mol. Neurodegener.2019141410.1186/s13024‑019‑0333‑5
    [Google Scholar]
  7. YiannopoulouK.G. PapageorgiouS.G. Current and future treatments for Alzheimer’s disease.Ther. Adv. Neurol. Disord.201361193310.1177/175628561246167923277790
    [Google Scholar]
  8. DuboisB. PadovaniA. ScheltensP. RossiA. Dell’AgnelloG. Timely diagnosis for Alzheimer’s disease: a literature review on benefits and challenges.J. Alzheimers Dis.201549361763110.3233/JAD‑15069226484931
    [Google Scholar]
  9. AbubakarM.B. SanusiK.O. UgusmanA. Alzheimer’s disease: An update and insights into pathophysiology.Front. Aging Neurosci.20221474240810.3389/fnagi.2022.74240835431894
    [Google Scholar]
  10. BrodatyH. DonkinM. Family caregivers of people with dementia.Dialogues Clin. Neurosci.200911221722810.31887/DCNS.2009.11.2/hbrodaty19585957
    [Google Scholar]
  11. MishraS. PalaniveluK. The effect of curcumin (turmeric) on Alzheimer′s disease: An overview.Ann. Indian Acad. Neurol.2008111131910.4103/0972‑2327.4022019966973
    [Google Scholar]
  12. MaT. TanM.S. YuJ.T. TanL. Resveratrol as a therapeutic agent for Alzheimer’s disease.BioMed Res. Int.2014201411310.1155/2014/35051625525597
    [Google Scholar]
  13. KhattarS. KhanS.A. ZaidiS.A.A. Resveratrol from dietary supplement to a drug candidate: An assessment of potential.Pharmaceuticals202215895710.3390/ph1508095736015105
    [Google Scholar]
  14. SalehiB. MishraA. NigamM. Resveratrol: A double-edged sword in health benefits.Biomedicines2018639110.3390/biomedicines603009130205595
    [Google Scholar]
  15. AlievG. ObrenovichM. ReddyV. Antioxidant therapy in Alzheimer’s disease: Theory and practice.Mini Rev. Med. Chem.20088131395140610.2174/13895570878636958218991755
    [Google Scholar]
  16. TönniesE. TrushinaE. Oxidative stress, synaptic dysfunction, and Alzheimer’s disease.J. Alzheimers Dis.20175741105112110.3233/JAD‑16108828059794
    [Google Scholar]
  17. MaharjanR. Diaz BustamanteL. GhattasK.N. IlyasS. Al-RefaiR. KhanS. Role of lifestyle in neuroplasticity and neurogenesis in an aging brain.Cureus2020129e1063910.7759/cureus.1063933133809
    [Google Scholar]
  18. NovelleM.G. WahlD. DiéguezC. BernierM. de CaboR. Resveratrol supplementation: Where are we now and where should we go?Ageing Res. Rev.20152111510.1016/j.arr.2015.01.00225625901
    [Google Scholar]
  19. YangA.J.T. BagitA. MacPhersonR.E.K. Resveratrol, metabolic dysregulation, and Alzheimer’s disease: Considerations for neurogenerative disease.Int. J. Mol. Sci.2021229462810.3390/ijms2209462833924876
    [Google Scholar]
  20. ShaitoA. PosadinoA.M. YounesN. Potential adverse effects of resveratrol: A literature review.Int. J. Mol. Sci.2020216208410.3390/ijms2106208432197410
    [Google Scholar]
  21. WicińskiM. DomanowskaA. WódkiewiczE. MalinowskiB. Neuroprotective properties of resveratrol and its derivatives-influence on potential mechanisms leading to the development of Alzheimer’s disease.Int. J. Mol. Sci.2020218274910.3390/ijms2108274932326620
    [Google Scholar]
  22. GuoT. ZhangD. ZengY. HuangT.Y. XuH. ZhaoY. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease.Mol. Neurodegener.20201514010.1186/s13024‑020‑00391‑732677986
    [Google Scholar]
  23. FrozzaR.L. LourencoM.V. De FeliceF.G. Challenges for alzheimer’s disease therapy: Insights from novel mechanisms beyond memory defects.Front. Neurosci.2018123710.3389/fnins.2018.0003729467605
    [Google Scholar]
  24. RajmohanR. ReddyP.H. Amyloid-beta and phosphorylated tau accumulations cause abnormalities at synapses of Alzheimer’s disease neurons.J. Alzheimers Dis.201757497599910.3233/JAD‑16061227567878
    [Google Scholar]
  25. PinheiroL. FaustinoC. Therapeutic strategies targeting amyloid-β in Alzheimer’s disease.Curr. Alzheimer Res.201916541845210.2174/156720501666619032116343830907320
    [Google Scholar]
  26. SinskyJ. PichlerovaK. HanesJ. Tau protein interaction partners and their roles in Alzheimer’s disease and other tauopathies.Int. J. Mol. Sci.20212217920710.3390/ijms2217920734502116
    [Google Scholar]
  27. MandelkowE.M. MandelkowE. Biochemistry and cell biology of tau protein in neurofibrillary degeneration.Cold Spring Harb. Perspect. Med.201227a00624710.1101/cshperspect.a00624722762014
    [Google Scholar]
  28. SuB. WangX. NunomuraA. Oxidative stress signaling in Alzheimer’s disease.Curr. Alzheimer Res.20085652553210.2174/15672050878689845119075578
    [Google Scholar]
  29. SuL.J. ZhangJ.H. GomezH. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis.Oxid. Med. Cell. Longev.2019201911310.1155/2019/508084331737171
    [Google Scholar]
  30. KinneyJ.W. BemillerS.M. MurtishawA.S. LeisgangA.M. SalazarA.M. LambB.T. Inflammation as a central mechanism in Alzheimer’s disease.Alzheimers Dement.20184157559010.1016/j.trci.2018.06.01430406177
    [Google Scholar]
  31. KandimallaR. ReddyP.H. Therapeutics of neurotransmitters in Alzheimer’s Disease.J. Alzheimers Dis.20175741049106910.3233/JAD‑16111828211810
    [Google Scholar]
  32. RajjiT.K. Impaired brain plasticity as a potential therapeutic target for treatment and prevention of dementia.Expert Opin. Ther. Targets2019231212810.1080/14728222.2019.155007430451545
    [Google Scholar]
  33. BekrisL.M. YuC.E. BirdT.D. TsuangD.W. Genetics of Alzheimer disease.J. Geriatr. Psychiatry Neurol.201023421322710.1177/089198871038357121045163
    [Google Scholar]
  34. BernardoT.C. Marques-AleixoI. BelezaJ. OliveiraP.J. AscensãoA. MagalhãesJ. Physical exercise and brain mitochondrial fitness: The possible role against Alzheimer’s Disease.Brain Pathol.201626564866310.1111/bpa.1240327328058
    [Google Scholar]
  35. PardridgeW.M. Drug transport across the blood-brain barrier.J. Cereb. Blood Flow Metab.201232111959197210.1038/jcbfm.2012.12622929442
    [Google Scholar]
  36. IqbalK. Grundke-IqbalI. Alzheimer’s disease, a multifactorial disorder seeking multitherapies.Alzheimers Dement.20106542042410.1016/j.jalz.2010.04.00620813343
    [Google Scholar]
  37. YiannopoulouK.G. PapageorgiouS.G. Current and future treatments in Alzheimer disease: An update.J. Cent. Nerv. Syst. Dis.20201210.1177/117957352090739732165850
    [Google Scholar]
  38. RahmanM.H. AkterR. BhattacharyaT. Resveratrol and neuroprotection: Impact and its therapeutic potential in Alzheimer’s disease.Front. Pharmacol.20201161902410.3389/fphar.2020.61902433456444
    [Google Scholar]
  39. WeiskirchenS. WeiskirchenR. Resveratrol: How much wine do you have to drink to stay healthy?Adv. Nutr.20167470671810.3945/an.115.01162727422505
    [Google Scholar]
  40. JeonB.T. JeongE.A. ShinH.J. Resveratrol attenuates obesity-associated peripheral and central inflammation and improves memory deficit in mice fed a high-fat diet.Diabetes20126161444145410.2337/db11‑149822362175
    [Google Scholar]
  41. MorrisonC.D. PistellP.J. IngramD.K. High fat diet increases hippocampal oxidative stress and cognitive impairment in aged mice: implications for decreased Nrf2 signaling.J. Neurochem.201011461581158910.1111/j.1471‑4159.2010.06865.x20557430
    [Google Scholar]
  42. van DintherM. VoorterP.H.M. JansenJ.F.A. Assessment of microvascular rarefaction in human brain disorders using physiological magnetic resonance imaging.J. Cereb. Blood Flow Metab.202242571873710.1177/0271678X22107655735078344
    [Google Scholar]
  43. LagougeM. ArgmannC. Gerhart-HinesZ. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha.Cell200612761109112210.1016/j.cell.2006.11.01317112576
    [Google Scholar]
  44. BenameurT. GiacomucciG. PanaroM.A. New promising therapeutic avenues of curcumin in brain diseases.Molecules202127123610.3390/molecules2701023635011468
    [Google Scholar]
  45. SinghN. AgrawalM. DoréS. Neuroprotective properties and mechanisms of resveratrol in in vitro and in vivo experimental cerebral stroke models.ACS Chem. Neurosci.2013481151116210.1021/cn400094w23758534
    [Google Scholar]
  46. YangJ. HuangJ. ShenC. Resveratrol treatment in different time-attenuated neuronal apoptosis after oxygen and glucose deprivation/reoxygenation via enhancing the activation of nrf-2 signaling pathway in vitro.Cell Transplant.201827121789179710.1177/096368971878093030008229
    [Google Scholar]
  47. ZhangQ.L. JiaL. JiaoX. APP/PS1 transgenic mice treated with aluminum: An update of Alzheimer’s disease model.Int. J. Immunopathol. Pharmacol.2012251495810.1177/03946320120250010722507317
    [Google Scholar]
  48. MargiorisA.N. MarkogiannakisE. MakrigiannakisA. GravanisA. PC12 rat pheochromocytoma cells synthesize dynorphin. Its secretion is modulated by nicotine and nerve growth factor.Endocrinology1992131270370910.1210/endo.131.2.13534431353443
    [Google Scholar]
  49. PorquetD. CasadesúsG. BayodS. Dietary resveratrol prevents Alzheimer’s markers and increases life span in SAMP8.Age (Omaha)20133551851186510.1007/s11357‑012‑9489‑423129026
    [Google Scholar]
  50. CharrièreK. GhzaielI. LizardG. VejuxA. Involvement of microglia in neurodegenerative diseases: Beneficial effects of docosahexahenoic acid (DHA) supplied by food or combined with nanoparticles.Int. J. Mol. Sci.202122191063910.3390/ijms22191063934638979
    [Google Scholar]
  51. KudoT. KanetakaH. MochizukiK. Induction of neurite outgrowth in PC12 cells treated with temperature-controlled repeated thermal stimulation.PLoS One2015104e012402410.1371/journal.pone.012402425879210
    [Google Scholar]
  52. VingtdeuxV. GilibertoL. ZhaoH. AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-β peptide metabolism.J. Biol. Chem.2010285129100911310.1074/jbc.M109.06006120080969
    [Google Scholar]
  53. SunP. OrtegaG. TanY. Streptozotocin impairs proliferation and differentiation of adult hippocampal neural stem cells in vitro-correlation with alterations in the expression of proteins associated with the insulin system.Front. Aging Neurosci.20181014510.3389/fnagi.2018.0014529867451
    [Google Scholar]
  54. KumarA. NaiduP.S. SeghalN. PadiS.S.V. Neuroprotective effects of resveratrol against intracerebroventricular colchicine-induced cognitive impairment and oxidative stress in rats.Pharmacology2007791172610.1159/00009751117135773
    [Google Scholar]
  55. MaY. LiY. YinR. Therapeutic potential of aromatic plant extracts in Alzheimer’s disease: Comprehensive review of their underlying mechanisms.CNS Neurosci. Ther.20232982045205910.1111/cns.1423437122144
    [Google Scholar]
  56. AkbarzadehA. NorouzianD. MehrabiM.R. Induction of diabetes by Streptozotocin in rats.Indian J. Clin. Biochem.2007222606410.1007/BF0291331523105684
    [Google Scholar]
  57. JabirN.R. KhanF.R. TabrezS. Cholinesterase targeting by polyphenols: A therapeutic approach for the treatment of Alzheimer’s disease.CNS Neurosci. Ther.201824975376210.1111/cns.1297129770579
    [Google Scholar]
  58. ShojaeiS. PanjehshahinM.R. ShafieeS.M. Differential effects of resveratrol on the expression of brain-derived neurotrophic factor transcripts and protein in the hippocampus of rat brain.Iran. J. Med. Sci.2017421323928293048
    [Google Scholar]
  59. YuJ. AuwerxJ. The role of sirtuins in the control of metabolic homeostasis.Ann. N. Y. Acad. Sci.20091173S1E10E1910.1111/j.1749‑6632.2009.04952.x19751409
    [Google Scholar]
  60. RazickD.I. AkhtarM. WenJ. The role of sirtuin 1 (SIRT1) in neurodegeneration.Cureus2023156e4046310.7759/cureus.4046337456463
    [Google Scholar]
  61. KimD. NguyenM.D. DobbinM.M. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis.EMBO J.200726133169317910.1038/sj.emboj.760175817581637
    [Google Scholar]
  62. ChuangYC ChenS Der Resveratrol promotes mitochondrial biogenesis and protects against seizure-induced neuronal cell damage in the hippocampus following status epilepticus by activation of the PGC-1α signaling pathway.Int. J. Mol. Sci.20192099810.3390/ijms20040998
    [Google Scholar]
  63. AshokA. AndrabiS.S. MansoorS. KuangY. KwonB.K. LabhasetwarV. Antioxidant therapy in oxidative stress-induced neurodegenerative diseases: Role of nanoparticle-based drug delivery systems in clinical translation.Antioxidants202211240810.3390/antiox1102040835204290
    [Google Scholar]
  64. LeeE.O. ParkH.J. KangJ.L. KimH.S. ChongY.H. Resveratrol reduces glutamate-mediated monocyte chemotactic protein-1 expression via inhibition of extracellular signal-regulated kinase 1/2 pathway in rat hippocampal slice cultures.J. Neurochem.201011261477148710.1111/j.1471‑4159.2009.06564.x20050970
    [Google Scholar]
  65. Griñán-FerréC. Bellver-SanchisA. IzquierdoV. The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer’s disease pathology: From antioxidant to epigenetic therapy.Ageing Res. Rev.20216710127110.1016/j.arr.2021.10127133571701
    [Google Scholar]
  66. BastianettoS. MénardC. QuirionR. Neuroprotective action of resveratrol.Biochim. Biophys. Acta Mol. Basis Dis.2015185261195120110.1016/j.bbadis.2014.09.01125281824
    [Google Scholar]
  67. FangJ.Y. LiZ.H. LiQ. HuangW.S. KangL. WangJ.P. Resveratrol affects protein kinase C activity and promotes apoptosis in human colon carcinoma cells.Asian Pac. J. Cancer Prev.201213126017602210.7314/APJCP.2012.13.12.601723464396
    [Google Scholar]
  68. BastianettoS. ZhengW.H. QuirionR. Neuroprotective abilities of resveratrol and other red wine constituents against nitric oxide-related toxicity in cultured hippocampal neurons.Br. J. Pharmacol.2000131471172010.1038/sj.bjp.070362611030720
    [Google Scholar]
  69. YahfoufiN. AlsadiN. JambiM. MatarC. The immunomodulatory and anti-inflammatory role of polyphenols.Nutrients20181011161810.3390/nu1011161830400131
    [Google Scholar]
  70. Candelario-JalilE. de OliveiraA.C.P. GräfS. Resveratrol potently reduces prostaglandin E2production and free radical formation in lipopolysaccharide-activated primary rat microglia.J. Neuroinflammation2007412510.1186/1742‑2094‑4‑2517927823
    [Google Scholar]
  71. MengT. XiaoD. MuhammedA. DengJ. ChenL. HeJ. Anti-inflammatory action and mechanisms of resveratrol.Molecules202126122910.3390/molecules26010229
    [Google Scholar]
  72. SchlotteroseL. PravdivtsevaM.S. EllermannF. Resveratrol mitigates metabolism in human microglia cells.Antioxidants2023126124810.3390/antiox1206124837371977
    [Google Scholar]
  73. GegundeS. AlfonsoA. AlvariñoR. Pérez-FuentesN. BotanaL.M. Anhydroexfoliamycin, a Streptomyces secondary metabolite, mitigates microglia-driven inflammation.ACS Chem. Neurosci.202112132336234610.1021/acschemneuro.1c0003334110771
    [Google Scholar]
  74. KothaA. SekharamM. CilentiL. Resveratrol inhibits Src and Stat3 signaling and induces the apoptosis of malignant cells containing activated Stat3 protein.Mol. Cancer Ther.20065362162910.1158/1535‑7163.MCT‑05‑026816546976
    [Google Scholar]
  75. HuiY. ChengyongT. ChengL. HaixiaH. YuandaZ. WeihuaY. Resveratrol attenuates the cytotoxicity induced by amyloid-β1-42 in PC12 cells by upregulating heme oxygenase-1 via the PI3K/Akt/Nrf2 pathway.Neurochem. Res.201843229730510.1007/s11064‑017‑2421‑729090409
    [Google Scholar]
  76. JangJ. SongJ. LeeJ. MoonS.K. MoonB. Resveratrol attenuates the proliferation of prostatic stromal cells in benign prostatic hyperplasia by regulating cell cycle progression, apoptosis, signaling pathways, BPH Markers, and NF-κb activity.Int. J. Mol. Sci.20212211596910.3390/ijms2211596934073143
    [Google Scholar]
  77. MannaS.K. MukhopadhyayA. AggarwalB.B. Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-kappa B, activator protein-1, and apoptosis: Potential role of reactive oxygen intermediates and lipid peroxidation.J. Immunol.2000164126509651910.4049/jimmunol.164.12.650910843709
    [Google Scholar]
  78. LabbanS. AlghamdiB.S. AlshehriF.S. KurdiM. Effects of melatonin and resveratrol on recognition memory and passive avoidance performance in a mouse model of Alzheimer’s disease.Behav. Brain Res.202140211310010.1016/j.bbr.2020.11310033417994
    [Google Scholar]
  79. LinY-T. WuY.C. SunG.C. Effect of resveratrol on reactive oxygen species-induced cognitive impairment in rats with angiotensin II-induced early Alzheimer’s Disease.J. Clin. Med.201871032910.3390/jcm7100329
    [Google Scholar]
  80. ChandrashekarD.V. SteinbergR.A. HanD. Alcohol as a modifiable risk factor for alzheimer’s disease—evidence from experimental studies.Int. J. Mol. Sci.202324949210.3390/ijms24119492
    [Google Scholar]
  81. HuJ. LinT. GaoY. The resveratrol trimer miyabenol C inhibits β-secretase activity and β-amyloid generation.PLoS One2015101e011597310.1371/journal.pone.011597325629409
    [Google Scholar]
  82. UgusmanA. ZakariaZ. HuiC.K. Megat Mohd NordinN.A. Piper sarmentosum inhibits ICAM-1 and Nox4 gene expression in oxidative stress-induced human umbilical vein endothelial cells.BMC Complement. Altern. Med.20111113110.1186/1472‑6882‑11‑3121496279
    [Google Scholar]
  83. Al-EdresiS. AlsalahatI. FreemanS. AojulaH. PennyJ. Resveratrol-mediated cleavage of amyloid β1-42 peptide: Potential relevance to Alzheimer’s disease.Neurobiol. Aging202094243310.1016/j.neurobiolaging.2020.04.01232512325
    [Google Scholar]
  84. ChakrabortyA. MohapatraS.S. BarikS. RoyI. GuptaB. BiswasA. Impact of nanoparticles on amyloid β-induced Alzheimer’s disease, tuberculosis, leprosy and cancer: a systematic review.Biosci. Rep.2023432BSR2022032410.1042/BSR2022032436630532
    [Google Scholar]
  85. SavelieffM.G. NamG. KangJ. LeeH.J. LeeM. LimM.H. Development of multifunctional molecules as potential therapeutic candidates for Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis in the last decade.Chem. Rev.201911921221132210.1021/acs.chemrev.8b0013830095897
    [Google Scholar]
  86. GomesB.A.Q. SilvaJ.P.B. RomeiroC.F.R. Neuroprotective mechanisms of resveratrol in Alzheimer’s disease: Role of SIRT1.Oxid. Med. Cell. Longev.2018201811510.1155/2018/8152373
    [Google Scholar]
  87. WendeburgL. de OliveiraA.C.P. BhatiaH.S. Candelario-JalilE. FiebichB.L. Resveratrol inhibits prostaglandin formation in IL-1β-stimulated SK-N-SH neuronal cells.J. Neuroinflammation20096126610.1186/1742‑2094‑6‑2619751497
    [Google Scholar]
  88. ZarghiA. ArfaeiS. Selective COX-2 inhibitors: A review of their structure-activity relationships.Iran. J. Pharm. Res.2011104655683
    [Google Scholar]
  89. KonyaliogluS. ArmaganG. YalcinA. AtalayinC. DagciT. Effects of resveratrol on hydrogen peroxide-induced oxidative stress in embryonic neural stem cells.Neural Regen. Res.20138648549510.3969/J.ISSN.1673‑5374.2013.06.00125206691
    [Google Scholar]
  90. NogueirasR. HabeggerK.M. ChaudharyN. Sirtuin 1 and sirtuin 3: Physiological modulators of metabolism.Physiol. Rev.20129231479151410.1152/physrev.00022.201122811431
    [Google Scholar]
  91. SilvaP. VauzourD. Wine polyphenols and neurodegenerative diseases: An update on the molecular mechanisms underpinning their protective effects.Beverages201849610.3390/beverages4040096
    [Google Scholar]
  92. SongS.Y. KimI.S. KoppulaS. 2-Hydroxy-4-Methylbenzoic anhydride inhibits neuroinflammation in cellular and experimental animal models of Parkinson’s disease.Int. J. Mol. Sci.20202121819510.3390/ijms2121819533147699
    [Google Scholar]
  93. TucciP. LattanziR. SeveriniC. SasoL. Nrf2 pathway in huntington’s disease (HD): What is its role?Int. J. Mol. Sci.2022231527210.3390/ijms232315272
    [Google Scholar]
  94. LiuS. LinF. WangJ. PanX. SunL. WuW. Polyphenols for the treatment of ischemic stroke: New applications and insights.Molecules20222713418110.3390/molecules2713418135807426
    [Google Scholar]
  95. ConstantinescuC.S. FarooqiN. O’BrienK. GranB. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS).Br. J. Pharmacol.201116441079110610.1111/j.1476‑5381.2011.01302.x21371012
    [Google Scholar]
  96. ZhangX.M. ZhuJ. Kainic Acid-induced neurotoxicity: Targeting glial responses and glia-derived cytokines.Curr. Neuropharmacol.20119238839810.2174/15701591179559654022131947
    [Google Scholar]
  97. SargsyanS.A. BlackburnD.J. BarberS.C. MonkP.N. ShawP.J. Mutant SOD1 G93A microglia have an inflammatory phenotype and elevated production of MCP-1.Neuroreport200920161450145510.1097/WNR.0b013e328331e8fa19752764
    [Google Scholar]
  98. GottliebP.A. BaroneT. SachsF. PlunkettR. Neurite outgrowth from PC12 cells is enhanced by an inhibitor of mechanical channels.Neurosci. Lett.2010481211511910.1016/j.neulet.2010.06.06620600595
    [Google Scholar]
  99. DescampsO. SpilmanP. ZhangQ. AβPP-selective BACE inhibitors (ASBI): Novel class of therapeutic agents for Alzheimer’s disease.J. Alzheimers Dis.201337234335510.3233/JAD‑13057823948888
    [Google Scholar]
  100. NumakawaT. OdakaH. AdachiN. Actions of brain-derived neurotrophin factor in the neurogenesis and neuronal function, and its involvement in the pathophysiology of brain diseases.Int. J. Mol. Sci.20181911365010.3390/ijms1911365030463271
    [Google Scholar]
  101. ChenX.Q. FangF. FlorioJ.B. TRiC enhances retrograde axonal transport by modulating tau phosphorylation.Traffic20181984010.1111/tra.1261030120810
    [Google Scholar]
  102. BathinaS. DasU.N. Brain-derived neurotrophic factor and its clinical implications.Arch. Med. Sci.2015661164117810.5114/aoms.2015.5634226788077
    [Google Scholar]
  103. RocamondeB. ParadellsS. BarciaC. Garcia EsparzaA. SoriaJ.M. Lipoic acid treatment after brain injury: Study of the glial reaction.Clin. Dev. Immunol.201320131810.1155/2013/52193924302959
    [Google Scholar]
  104. JahrlingJ. LabergeR.M. Age-related neurodegeneration prevention through mTOR inhibition: Potential mechanisms and remaining questions.Curr. Top. Med. Chem.201515212139215110.2174/156802661566615061012585626059360
    [Google Scholar]
  105. MaY. LiC. HeY. Beclin-1/LC3-II dependent macroautophagy was uninfluenced in ischemia-challenged vascular endothelial cells.Genes Dis.20229254956110.1016/j.gendis.2021.02.01035224166
    [Google Scholar]
  106. SilvestroS. MazzonE. Nrf2 activation: Involvement in central nervous system traumatic injuries. A promising therapeutic target of natural compounds.Int. J. Mol. Sci.202224119910.3390/ijms2401019936613649
    [Google Scholar]
  107. WaseemM. SahuU. SalmanM. Melatonin pre-treatment mitigates SHSY-5Y cells against oxaliplatin induced mitochondrial stress and apoptotic cell death.PLoS One2017127e018095310.1371/journal.pone.018095328732061
    [Google Scholar]
  108. AsanoT. XuanM. IwataN. Involvement of the restoration of cerebral blood flow and maintenance of eNOS expression in the prophylactic protective effect of the novel ferulic acid derivative FAD012 against ischemia/reperfusion injuries in rats.Int. J. Mol. Sci.20232411966310.3390/ijms2411966337298615
    [Google Scholar]
  109. PasinettiG.M. WangJ. HoL. ZhaoW. DubnerL. Roles of resveratrol and other grape-derived polyphenols in Alzheimer’s disease prevention and treatment.Biochim. Biophys. Acta Mol. Basis Dis.2015185261202120810.1016/j.bbadis.2014.10.00625315300
    [Google Scholar]
  110. IntagliataS. ModicaM.N. SantagatiL.M. MontenegroL. Strategies to improve resveratrol systemic and topical bioavailability: An update.Antioxidants20198824410.3390/antiox808024431349656
    [Google Scholar]
  111. MazzantiG. Di GiacomoS. Antioxidant clinical trials in mild cognitive impairment and Alzheimer’s disease.Biochim. Biophys. Acta Mol. Basis Dis.2016182263163810.3390/molecules21091243
    [Google Scholar]
  112. MecocciP. PolidoriM.C. Antioxidant clinical trials in mild cognitive impairment and Alzheimer’s disease.Biochim. Biophys. Acta Mol. Basis Dis.20121822563163810.1016/j.bbadis.2011.10.00622019723
    [Google Scholar]
  113. ZhuC.W. GrossmanH. NeugroschlJ. A randomized, double‐blind, placebo‐controlled trial of resveratrol with glucose and malate (RGM) to slow the progression of Alzheimer’s disease: A pilot study.Alzheimers Dement.20184160961610.1016/j.trci.2018.09.00930480082
    [Google Scholar]
  114. CummingsJ. The role of biomarkers in Alzheimer’s disease drug development.Adv. Exp. Med. Biol.20191118296110.1007/978‑3‑030‑05542‑4_230747416
    [Google Scholar]
  115. TurnerR.S. ThomasR.G. CraftS. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease.Neurology201585161383139110.1212/WNL.000000000000203526362286
    [Google Scholar]
/content/journals/cff/10.2174/0126668629269244231127071411
Loading
/content/journals/cff/10.2174/0126668629269244231127071411
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test