Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2666-8629
  • E-ISSN: 2666-8637

Abstract

Background

This review provides a concise overview of existing scientific research concerning the potential advantages of incorporating spirulina, a blue-green algae, into one's diet to promote brain health. The substantial nutritional composition and associated health benefits of algae have drawn significant interest.

Methods

Numerous studies have illuminated the neuroprotective characteristics of spirulina, contributing to its positive influence on brain functionality. Primarily, spirulina boasts antioxidants, like phycocyanin and beta-carotene, that effectively counter oxidative stress and curb inflammation within the brain. This is particularly significant as these factors play roles in the advancement of neurodegenerative conditions like Parkinson's and Alzheimer's disease. Additionally, spirulina has demonstrated the capacity to enhance cognitive capabilities and enrich memory and learning aptitudes.

Results

Animal-based investigations have revealed that introducing spirulina can bolster spatial learning and memory, as well as guard against cognitive decline linked to aging. Research has indicated its potential in shielding against neurotoxins, encompassing heavy metals and specific environmental pollutants. Its potential to neutralize heavy metals and counteract free radicals contributes to these protective effects, potentially thwarting neuronal harm.

Conclusion

In conclusion, the extant scientific literature proposes that spirulina integration can elicit advantageous outcomes for brain health. Its antioxidative, neuroprotective, cognitive-enhancing, and mood-regulating properties present a promising avenue for bolstering brain health and potentially diminishing the susceptibility to neurodegenerative ailments. Nonetheless, further research, notably well-designed human clinical trials, is imperative to ascertain the optimal dosing, duration, and enduring consequences of spirulina supplementation concerning brain health.

Loading

Article metrics loading...

/content/journals/cff/10.2174/0126668629269256231222092721
2024-01-12
2025-01-24
Loading full text...

Full text loading...

References

  1. Abdel-MoneimA.M.E. El-SaadonyM.T. ShehataA.M. Antioxidant and antimicrobial activities of Spirulina platensis extracts and biogenic selenium nanoparticles against selected pathogenic bacteria and fungi.Saudi J. Biol. Sci.20222921197120910.1016/j.sjbs.2021.09.046 35197787
    [Google Scholar]
  2. SorrentiV. CastagnaD.A. FortinguerraS. BurianiA. ScapagniniG. WillcoxD.C. Spirulina microalgae and brain health: A scoping review of experimental and clinical evidence.Mar. Drugs202119629310.3390/md19060293 34067317
    [Google Scholar]
  3. TrottaT. PorroC. CianciulliA. PanaroM.A. Beneficial effects of spirulina consumption on brain health.Nutrients202214367610.3390/nu14030676 35277035
    [Google Scholar]
  4. BortoliniD.G. MacielG.M. FernandesI.A.A. Functional properties of bioactive compounds from Spirulina spp.: Current status and future trends.Food Chemistry: Molecular Sciences2022510013410.1016/j.fochms.2022.100134 36177108
    [Google Scholar]
  5. LopezM.J. MohiuddinS.S. Biochemistry, Essential Amino Acids.StatPearls2023
    [Google Scholar]
  6. SinhaS. PatroN. PatroI.K. Amelioration of neurobehavioral and cognitive abilities of F1 progeny following dietary supplementation with Spirulina to protein malnourished mothers.Brain Behav. Immun.202085698710.1016/j.bbi.2019.08.181 31425827
    [Google Scholar]
  7. MonjotinN. AmiotM.J. FleurentinJ. MorelJ.M. RaynalS. Clinical evidence of the benefits of phytonutrients in human healthcare.Nutrients2022149171210.3390/nu14091712 35565680
    [Google Scholar]
  8. PizzinoG. IrreraN. CucinottaM. Oxidative stress: Harms and benefits for human health.Oxid. Med. Cell. Longev.2017201711310.1155/2017/8416763 28819546
    [Google Scholar]
  9. AbdelghanyA.K. GamalA. Abdel-WahabA. RETRACTED ARTICLE: Evaluating the neuroprotective effect of spirulina platensis-loaded niosomes against Azheimer’s disease induced in rats.Drug Deliv. Transl. Res.20231310269010.1007/s13346‑023‑01301‑2 36790720
    [Google Scholar]
  10. DuggerB.N. DicksonD.W. Pathology of neurodegenerative diseases.Cold Spring Harb. Perspect. Biol.201797a02803510.1101/cshperspect.a028035 28062563
    [Google Scholar]
  11. PabonM.M. JernbergJ.N. MorgantiJ. A spirulina-enhanced diet provides neuroprotection in an α-synuclein model of Parkinson’s disease.PLoS One201279e4525610.1371/journal.pone.0045256 23028885
    [Google Scholar]
  12. McCarthyB. O’NeillG. Abu-GhannamN. Potential psychoactive effects of microalgal bioactive compounds for the case of sleep and mood regulation: Opportunities and challenges.Mar. Drugs20222049310.3390/md20080493
    [Google Scholar]
  13. SubermaniamK. TeohS.L. YowY.Y. TangY.Q. LimL.W. WongK.H. Marine algae as emerging therapeutic alternatives for depression: A review.Iran. J. Basic Med. Sci.2021248997101310.22038/IJBMS.2021.54800.12291 34804417
    [Google Scholar]
  14. ParkkinenV.P. WallmannC. WildeM. An Introduction to Mechanisms.SpringerBriefs Philos2018112110.1007/978‑3‑319‑94610‑8_2
    [Google Scholar]
  15. KunnumakkaraA.B. HegdeM. ParamaD. Role of turmeric and curcumin in prevention and treatment of chronic diseases: Lessons learned from clinical trials.ACS Pharmacol. Transl. Sci.20236444751810.1021/acsptsci.2c00012 37082752
    [Google Scholar]
  16. DwyerJ. CoatesP. SmithM. Dietary supplements: Regulatory challenges and research resources.Nutrients20181014110.3390/nu10010041 29300341
    [Google Scholar]
  17. KarkosP.D. LeongS.C. KarkosC.D. SivajiN. AssimakopoulosD.A. Spirulina in clinical practice: Evidence-based human applications.Evid. Based Complement. Alternat. Med.201120111410.1093/ecam/nen058 18955364
    [Google Scholar]
  18. GentschevaG. NikolovaK. PanayotovaV. Application of arthrospira platensis for medicinal purposes and the food industry: A review of the literature.Life20231384510.3390/life13030845
    [Google Scholar]
  19. DengR. ChowT.J. Hypolipidemic, antioxidant, and antiinflammatory activities of microalgae Spirulina.Cardiovasc. Ther.2010284e33e4510.1111/j.1755‑5922.2010.00200.x 20633020
    [Google Scholar]
  20. AlFadhlyN.K.Z. AlhelfiN. AltemimiA.B. VermaD.K. CacciolaF. NarayanankuttyA. Trends and technological advancements in the possible food applications of spirulina and their health benefits: A review.Molecules20222717558410.3390/molecules27175584 36080350
    [Google Scholar]
  21. ArdietD-L. Von Der WeidD. Spirulina as a food complement to support health and cognitive development. In: Nutrition and cognitive development.2004
    [Google Scholar]
  22. Stunda-ZujevaA. BereleM. LeceA. ŠķestersA. Comparison of antioxidant activity in various spirulina containing products and factors affecting it.Sci. Rep.2023131452910.1038/s41598‑023‑31732‑3 36941370
    [Google Scholar]
  23. UttaraB. SinghA. ZamboniP. MahajanR. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options.Curr. Neuropharmacol.200971657410.2174/157015909787602823 19721819
    [Google Scholar]
  24. WangY. ChangC.F. ChouJ. Dietary supplementation with blueberries, spinach, or spirulina reduces ischemic brain damage.Exp. Neurol.20051931758410.1016/j.expneurol.2004.12.014 15817266
    [Google Scholar]
  25. LiuR. QinS. LiW. Phycocyanin: Anti-inflammatory effect and mechanism.Biomed. Pharmacother.202215311336210.1016/j.biopha.2022.113362 36076518
    [Google Scholar]
  26. FanH.X. ShengS. ZhangF. New hope for Parkinson’s disease treatment: Targeting gut microbiota.CNS Neurosci. Ther.202228111675168810.1111/cns.13916 35822696
    [Google Scholar]
  27. HanP. LiJ. ZhongH. Anti-oxidation properties and therapeutic potentials of spirulina.Algal Res.20215510224010.1016/j.algal.2021.102240
    [Google Scholar]
  28. AngE.T. TaiY.K. LoS.Q. SeetR. SoongT.W. Neurodegenerative diseases: Exercising towards neurogenesis and neuroregeneration.Front. Aging Neurosci.201022510.3389/fnagi.2010.00025 20725635
    [Google Scholar]
  29. ChoiW.Y. LeeW.K. KimT.H. The effects of spirulina maxima extract on memory improvement in those with mild cognitive impairment: A randomized, double-blind, placebo-controlled clinical trial.Nutrients20221418371410.3390/nu14183714 36145090
    [Google Scholar]
  30. GasmiA. NasreenA. MenzelA. Neurotransmitters regulation and food intake: The role of dietary sources in neurotransmission.Mol20222821010.3390/molecules28010210
    [Google Scholar]
  31. MartinsT. BarrosA.N. RosaE. AntunesL. Enhancing health benefits through chlorophylls and chlorophyll-rich agro-food: A comprehensive review.Mol202328534410.3390/molecules28145344
    [Google Scholar]
  32. GaoH.M. HongJ.S. Why neurodegenerative diseases are progressive: Uncontrolled inflammation drives disease progression.Trends Immunol.200829835736510.1016/j.it.2008.05.002 18599350
    [Google Scholar]
  33. DiSabatoD.J. QuanN. GodboutJ.P. Neuroinflammation: The devil is in the details.J. Neurochem.2016139S213615310.1111/jnc.13607 26990767
    [Google Scholar]
  34. ChenY. QinC. HuangJ. The role of astrocytes in oxidative stress of central nervous system: A mixed blessing.Cell Prolif.2020533e1278110.1111/cpr.12781 32035016
    [Google Scholar]
  35. OusmanS.S. KubesP. Immune surveillance in the central nervous system.Nat. Neurosci.2012151096110110.1038/nn.3161
    [Google Scholar]
  36. Wyss-CorayT. MuckeL. Inflammation in neurodegenerative disease--a double-edged sword.Neuron200235341943210.1016/S0896‑6273(02)00794‑8 12165466
    [Google Scholar]
  37. SchaferD.P. StevensB. Microglia function in central nervous system development and plasticity.Cold Spring Harb. Perspect. Biol.2015710a02054510.1101/cshperspect.a020545 26187728
    [Google Scholar]
  38. ReemstK. NoctorS.C. LucassenP.J. HolE.M. The indispensable roles of microglia and astrocytes during brain development.Front. Hum. Neurosci.20161056610.3389/fnhum.2016.00566 27877121
    [Google Scholar]
  39. ElmoreS. Apoptosis: A review of programmed cell death.Toxicol. Pathol.200735449551610.1080/01926230701320337 17562483
    [Google Scholar]
  40. TjalkensR.B. PopichakK.A. KirkleyK.A. Inflammatory activation of microglia and astrocytes in manganese neurotoxicity.Adv. Neurobiol.20171815918110.1007/978‑3‑319‑60189‑2_8 28889267
    [Google Scholar]
  41. CorrealeJ. MarrodanM. YsrraelitM.C. Mechanisms of neurodegeneration and axonal dysfunction in progressive multiple sclerosis.Biomed201971410.3390/biomedicines7010014
    [Google Scholar]
  42. Solleiro-VillavicencioH. Rivas-ArancibiaS. Effect of chronic oxidative stress on neuroinflammatory response mediated by CD4+T cells in neurodegenerative diseases.Front. Cell. Neurosci.20181211410.3389/fncel.2018.00114 29755324
    [Google Scholar]
  43. SinhaS. PatroN. TiwariP.K. PatroI.K. Maternal Spirulina supplementation during pregnancy and lactation partially prevents oxidative stress, glial activation and neuronal damage in protein malnourished F1 progeny.Neurochem. Int.202014110487710.1016/j.neuint.2020.104877 33049335
    [Google Scholar]
  44. RunwalG. StamatakouE. SiddiqiF.H. PuriC. ZhuY. RubinszteinD.C. LC3-positive structures are prominent in autophagy-deficient cells.Sci. Rep.2019911014710.1038/s41598‑019‑46657‑z 31300716
    [Google Scholar]
  45. Pentón-RolG. Marín-PridaJ. McCartyM.F. C-phycocyanin-derived phycocyanobilin as a potential nutraceutical approach for major neurodegenerative disorders and COVID-19- induced damage to the nervous system.Curr. Neuropharmacol.202119122250227510.2174/1570159X19666210408123807 33829974
    [Google Scholar]
  46. TaleverS TaleverS ShivendraK SunamS AkashG Herbal medicines as promising inhibitors of NF-kB for the therapy of Alzheimer's Disease.YMER Digital22227790
    [Google Scholar]
  47. OcklefordC. AdriaanseP. BernyP. Investigation into experimental toxicological properties of plant protection products having a potential link to Parkinson’s disease and childhood leukaemia.EFSA J.2017153e0469110.2903/j.efsa.2017.4691 32625422
    [Google Scholar]
  48. RomayC. GonzálezR. LedónN. RemirezD. RimbauV. C-phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects.Curr. Protein Pept. Sci.20034320721610.2174/1389203033487216 12769719
    [Google Scholar]
  49. WangC. ZhaoY. WangL. C-phycocyanin mitigates cognitive impairment in doxorubicin-induced chemobrain: Impact on neuroinflammation, oxidative stress, and brain mitochondrial and synaptic alterations.Neurochem. Res.202146214915810.1007/s11064‑020‑03164‑2 33237471
    [Google Scholar]
  50. ChoiW.Y. KangD.H. HeoS.J. LeeH.Y. Enhancement of the neuroprotective effect of fermented spirulina maxima associated with antioxidant activities by ultrasonic extraction.Appl. Sci.20188246910.3390/app8122469
    [Google Scholar]
  51. WuK.L.H. ChanS.H.H. ChanJ.Y.H. Neuroinflammation and oxidative stress in rostral ventrolateral medulla contribute to neurogenic hypertension induced by systemic inflammation.J. Neuroinflammation20129121210.1186/1742‑2094‑9‑212 22958438
    [Google Scholar]
  52. KohE.J. KimK.J. ChoiJ. KangD.H. LeeB.Y. Spirulina maxima extract prevents cell death through BDNF activation against amyloid beta 1-42 (Aβ 1-42) induced neurotoxicity in PC12 cells.Neurosci. Lett.2018673333810.1016/j.neulet.2018.02.057 29499310
    [Google Scholar]
  53. ChattopadhyayaI. GuptaS. MohammedA. MushtaqN. ChauhanS. GhoshS. Neuroprotective effect of spirulina fusiform and amantadine in the 6-OHDA induced parkinsonism in rats.BMC Complement. Altern. Med.20151511110.1186/S12906‑015‑0815‑0/FIGURES/8
    [Google Scholar]
  54. LiZ. GanL. YanS. YanY. HuangW. Effect of C-phycocyanin on HDAC3 and miRNA-335 in Alzheimer’s disease.Transl. Neurosci.202011116117210.1515/tnsci‑2020‑0101 33312721
    [Google Scholar]
  55. MurilloL.C. SutachanJ.J. AlbarracínS.L. An update on neurobiological mechanisms involved in the development of chemotherapy-induced cognitive impairment (CICI).Toxicol. Rep.20231054455310.1016/j.toxrep.2023.04.015 37396847
    [Google Scholar]
  56. KohE.J. KimK.J. SongJ.H. Spirulina maxima extract ameliorates learning and memory impairments via inhibiting GSK-3β phosphorylation induced by intracerebroventricular injection of amyloid-β 1–42 in mice.Int. J. Mol. Sci.20171811240110.3390/ijms18112401 29137190
    [Google Scholar]
  57. ZhangY. LiL. QinS. C-phycocyanin alleviated cisplatin-induced oxidative stress and inflammation via gut microbiota—metabolites axis in mice.Front. Nutr.2022999661410.3389/fnut.2022.996614 36225866
    [Google Scholar]
  58. GhanbariA. VafaeiA.A. Naghibi nasab FS, Attarmoghaddam M, Bandegi AR, Moradi- Kor N. Spirulina microalgae improves memory deficit induced by scopolamine in male pup rats: Role of oxidative stress.S. Afr. J. Bot.201912722022510.1016/j.sajb.2019.08.045
    [Google Scholar]
  59. LuoH. XiangY. QuX. Apelin-13 suppresses neuroinflammation against cognitive deficit in a streptozotocin-induced rat model of Alzheimer’s disease through activation of BDNF-TrkB signaling pathway.Front. Pharmacol.20191039510.3389/fphar.2019.00395 31040784
    [Google Scholar]
  60. WangS.M. ChuuJ.J. LeeC.K. ChangC.Y. Exploring the therapeutic efficacy of Chlorella pyrenoidosa peptides in ameliorating Alzheimer’s disease.Heliyon202395e1540610.1016/j.heliyon.2023.e15406 37144207
    [Google Scholar]
  61. PiovanA. FilippiniR. ArgentiniC. MoroS. GiustiP. ZussoM. The effect of c-phycocyanin on microglia activation is mediated by toll-like receptor 4.Int. J. Mol. Sci.202223144010.3390/ijms23031440
    [Google Scholar]
  62. DecandiaD. GelfoF. LandolfoE. BalsamoF. PetrosiniL. CutuliD. Dietary protection against cognitive impairment, neuroinflammation and oxidative stress in Alzheimer’s Disease animal models of lipopolysaccharide-induced inflammation.Int. J. Mol. Sci.2023246592110.3390/ijms24065921 36982996
    [Google Scholar]
  63. Mohd SairaziN.S. SirajudeenK.N.S. Natural products and their bioactive compounds: Neuroprotective potentials against neurodegenerative diseases.Evid. Based Complement. Alternat. Med.2020202013010.1155/2020/6565396 32148547
    [Google Scholar]
  64. GregoryJ. VengalasettiY.V. BredesenD.E. RaoR.V. Neuroprotective herbs for the management of Alzheimer’s Disease.Biomol20211154310.3390/biom11040543
    [Google Scholar]
  65. ChenX. DrewJ. BerneyW. LeiW. Neuroprotective natural products for alzheimer’s disease.Cells2021106130910.3390/cells10061309 34070275
    [Google Scholar]
  66. ZhangC. LiC. JiaX. In vitro and in vivo anti-inflammatory effects of polyphyllin VII through downregulating MAPK and NF-κB pathways.Molecules201924587510.3390/molecules24050875 30832224
    [Google Scholar]
  67. AshokA. AndrabiS.S. MansoorS. KuangY. KwonB.K. LabhasetwarV. Antioxidant therapy in oxidative stress-induced neurodegenerative diseases: Role of nanoparticle-based drug delivery systems in clinical translation.Antioxidants202211240810.3390/antiox11020408 35204290
    [Google Scholar]
  68. CalissanoP. MatroneC. AmadoroG. Apoptosis and in vitro Alzheimer’s disease neuronal models.Commun. Integr. Biol.20092216316910.4161/cib.7704 19513272
    [Google Scholar]
  69. WinnerB. WinklerJ. Adult neurogenesis in neurodegenerative diseases.Cold Spring Harb. Perspect. Biol.201574a02128710.1101/cshperspect.a021287 25833845
    [Google Scholar]
  70. MurphyM.P. LeVineH.III Alzheimer’s disease and the amyloid-β peptide.J. Alzheimers Dis.201019131132310.3233/JAD‑2010‑1221 20061647
    [Google Scholar]
  71. Ferreira-VieiraT.H. GuimaraesI.M. SilvaF.R. RibeiroF.M. Alzheimer’s disease: Targeting the cholinergic system.Curr. Neuropharmacol.201614110111510.2174/1570159X13666150716165726 26813123
    [Google Scholar]
  72. WangW.Y. TanM.S. YuJ.T. TanL. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease.Ann. Transl. Med.201531013610.3978/J.ISSN.2305‑5839.2015.03.49 26207229
    [Google Scholar]
  73. RongJ. YangC. ChengY. ZhaoJ. Releasing Nrf2 to promote neurite outgrowth.Neural Regen. Res.201510121934193510.4103/1673‑5374.169618 26889175
    [Google Scholar]
  74. JohriA. BealM.F. Mitochondrial dysfunction in neurodegenerative diseases.J. Pharmacol. Exp. Ther.2012342361963010.1124/jpet.112.192138 22700435
    [Google Scholar]
  75. DongX. WangY. QinZ. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases.Acta Pharmacol. Sin.200930437938710.1038/aps.2009.24 19343058
    [Google Scholar]
  76. BirbenE. SahinerU.M. SackesenC. ErzurumS. KalayciO. Oxidative stress and antioxidant defense.World Allergy Organ. J.20125191910.1097/WOX.0b013e3182439613 23268465
    [Google Scholar]
  77. BrundenK.R. TrojanowskiJ.Q. LeeV.M.Y. Advances in tau-focused drug discovery for Alzheimer’s disease and related tauopathies.Nat. Rev. Drug Discov.200981078379310.1038/nrd2959 19794442
    [Google Scholar]
  78. ZhaoD. GuM.Y. XuJ.L. ZhangL.J. RyuS.Y. YangH.O. Anti-neuroinflammatory effects of 12-dehydrogingerdione in LPS-activated microglia through inhibiting Akt/IKK/NF-κB pathway and activating Nrf-2/HO-1 pathway.Biomol. Ther. (Seoul)20192719210010.4062/biomolther.2018.104 30404129
    [Google Scholar]
  79. PetzingerG.M. FisherB.E. McEwenS. BeelerJ.A. WalshJ.P. JakowecM.W. Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson’s disease.Lancet Neurol.201312771672610.1016/S1474‑4422(13)70123‑6 23769598
    [Google Scholar]
  80. BlesaJ. PrzedborskiS. Parkinson’s disease: Animal models and dopaminergic cell vulnerability.Front. Neuroanat.2014815510.3389/fnana.2014.00155 25565980
    [Google Scholar]
  81. CastelliV. AlfonsettiM. d’AngeloM. Neurotrophic factor-based pharmacological approaches in neurological disorders.Neural Regen. Res.20231861220122810.4103/1673‑5374.358619 36453397
    [Google Scholar]
  82. MarkL.P. ProstR.W. UlmerJ.L. Pictorial review of glutamate excitotoxicity: Fundamental concepts for neuroimaging.AJNR Am. J. Neuroradiol.2001221018131824 11733308
    [Google Scholar]
  83. TelloJ.A. WilliamsH.E. EpplerR.M. SteinhilbM.L. KhannaM. Animal models of neurodegenerative disease: Recent advances in fly highlight innovative approaches to drug discovery.Front. Mol. Neurosci.20221588335810.3389/fnmol.2022.883358 35514431
    [Google Scholar]
  84. LeeH. LiuZ. YoonC.S. Anti-neuroinflammatory and anti-inflammatory activities of phenylheptatriyne isolated from the flowers of coreopsis lanceolata L. via NF-κB inhibition and HO-1 expression in BV2 and RAW264.7 cells.Int. J. Mol. Sci.20212214748210.3390/ijms22147482 34299102
    [Google Scholar]
  85. HyunD.H. LeeJ. A new insight into an alternative therapeutic approach to restore redox homeostasis and functional mitochondria in neurodegenerative diseases.Antioxidants2021111710.3390/antiox11010007 35052511
    [Google Scholar]
  86. GongC.X. IqbalK. Hyperphosphorylation of microtubule-associated protein tau: A promising therapeutic target for Alzheimer disease.Curr. Med. Chem.200815232321232810.2174/092986708785909111 18855662
    [Google Scholar]
  87. PatilK.R. MahajanU.B. UngerB.S. Animal models of inflammation for screening of anti-inflammatory drugs: Implications for the discovery and development of phytopharmaceuticals.Int. J. Mol. Sci.20192018436710.3390/ijms20184367 31491986
    [Google Scholar]
  88. TeleanuR.I. NiculescuA.G. RozaE. VladâcencoO. GrumezescuA.M. TeleanuD.M. Neurotransmitters—key factors in neurological and neurodegenerative disorders of the central nervous system.Int. J. Mol. Sci.20222311595410.3390/ijms23115954 35682631
    [Google Scholar]
  89. MittalP. DhankharS. ChauhanS. A review on natural antioxidants for their role in the treatment of Parkinson’s Disease.Pharm20231690810.3390/ph16070908
    [Google Scholar]
  90. YangZ. LiP. GanX. Novel pyrazole-hydrazone derivatives containing an isoxazole moiety: Design, synthesis, and antiviral activity.Molecules2018237179810.3390/molecules23071798 30037021
    [Google Scholar]
  91. AlexanderG.E. Biology of Parkinson’s disease: Pathogenesis and pathophysiology of a multisystem neurodegenerative disorder.Dialogues Clin. Neurosci.20046325928010.31887/DCNS.2004.6.3/galexander 22033559
    [Google Scholar]
  92. JagadeesanA.J. MurugesanR. Vimala DeviS. Current trends in etiology, prognosis and therapeutic aspects of Parkinson’s disease: A review.Acta Biomed.201788324926210.23750/abm.v%vi%i.6063 29083328
    [Google Scholar]
  93. ReeveA. SimcoxE. TurnbullD. Ageing and Parkinson’s disease: Why is advancing age the biggest risk factor?Ageing Res. Rev.201414100193010.1016/j.arr.2014.01.004 24503004
    [Google Scholar]
  94. O’HaraD.M. PawarG. KaliaS.K. KaliaL.V. LRRK2 and α-synuclein: Distinct or synergistic players in Parkinson’s Disease?Front. Neurosci.20201457710.3389/fnins.2020.00577 32625052
    [Google Scholar]
  95. PajaresM. I Rojo A, Manda G, Boscá L, Cuadrado A. Inflammation in Parkinson’s Disease: Mechanisms and therapeutic implications.Cells202097168710.3390/cells9071687 32674367
    [Google Scholar]
  96. HouL. BaoX. ZangC. Integrin CD11b mediates α-synuclein-induced activation of NADPH oxidase through a Rho-dependent pathway.Redox Biol.20181460060810.1016/j.redox.2017.11.010 29154191
    [Google Scholar]
  97. Gutiérrez-RebolledoG.A. Galar-MartínezM. García-RodríguezR.V. Chamorro-CevallosG.A. Hernández-ReyesA.G. Martínez-GaleroE. Antioxidant effect of Spirulina (Arthrospira) maxima on Chronic inflammation induced by freund’s complete adjuvant in rats.J. Med. Food201518886587110.1089/jmf.2014.0117 25599112
    [Google Scholar]
  98. AraújoB. Caridade-SilvaR. Soares-GuedesC. Neuroinflammation and parkinson’s disease—from neurodegeneration to therapeutic opportunities.Cells20221118290810.3390/cells11182908 36139483
    [Google Scholar]
  99. StrömbergI. GemmaC. VilaJ. BickfordP.C. Blueberry- and spirulina-enriched diets enhance striatal dopamine recovery and induce a rapid, transient microglia activation after injury of the rat nigrostriatal dopamine system.Exp. Neurol.2005196229830710.1016/j.expneurol.2005.08.013 16176814
    [Google Scholar]
  100. KumarA. ChristianP.K. PanchalK. GuruprasadB.R. TiwariA.K. Supplementation of spirulina (Arthrospira platensis) improves lifespan and locomotor activity in paraquat-sensitive DJ-1βΔ93 flies, a Parkinson’s Disease model in Drosophila melanogaster.J. Diet. Suppl.201714557358810.1080/19390211.2016.1275917 28166438
    [Google Scholar]
  101. BalakrishnanK. MuraliV. RathikaC. Hsp70 is an independent stress marker among frequent users of mobile phones.J. Environ. Pathol. Toxicol. Oncol.201433433934710.1615/JEnvironPatholToxicolOncol.2014011761 25404380
    [Google Scholar]
  102. DeTureM.A. DicksonD.W. The neuropathological diagnosis of alzheimer’s disease.Mol. Neurodegener.20191411411810.1186/s13024‑019‑0333‑5
    [Google Scholar]
  103. Soria LopezJ.A. GonzálezH.M. LégerG.C. Alzheimer’s disease.Handb. Clin. Neurol.201916723125510.1016/B978‑0‑12‑804766‑8.00013‑3 31753135
    [Google Scholar]
  104. SharmaA. AnandJ.S. KumarY. Immunotherapeutics for AD: A work in progress.CNS Neurol. Disord. Drug Targets202221975276510.2174/1871527320666210903101522 34477533
    [Google Scholar]
  105. What Are the Signs of Alzheimer's Disease?Available from: https://www.nia.nih.gov/health/what-are-signs-alzheimers-disease (Accessed on: 20 July 2023).
  106. KnowlesJ. Donepezil in Alzheimer’s disease: An evidence-based review of its impact on clinical and economic outcomes.Core Evid.200613195219 22500154
    [Google Scholar]
  107. YiannopoulouK.G. PapageorgiouS.G. Current and future treatments for Alzheimer’s disease.Ther. Adv. Neurol. Disord.201361193310.1177/1756285612461679 23277790
    [Google Scholar]
  108. SchmidS. JungwirthB. GehlertV. Intracerebroventricular injection of beta-amyloid in mice is associated with long-term cognitive impairment in the modified hole-board test.Behav. Brain Res.2017324152010.1016/j.bbr.2017.02.007 28193522
    [Google Scholar]
  109. NielsenH. Wennström. Cell adhesion molecules in Alzheimer’s disease.Degener. Neurol. Neuromuscul. Dis.20122657710.2147/DNND.S19829 30890880
    [Google Scholar]
  110. DhamiM. RajK. SinghS. Neuroprotective effect of fucoxanthin against intracerebroventricular streptozotocin (ICV-STZ) induced cognitive impairment in experimental rats.Curr. Alzheimer Res.202118862363710.2174/1567205018666211118144602 34792011
    [Google Scholar]
  111. ArcaroA. GuerreiroA. The phosphoinositide 3-kinase pathway in human cancer: Genetic alterations and therapeutic implications.Curr. Genomics20078527130610.2174/138920207782446160 19384426
    [Google Scholar]
  112. The Multiple Sclerosis Process and SymptomsAvailable from: https://mymsaa.org/ms-information/overview/process-symptoms/ (Accessed on: 20 July 2023).
  113. GhasemiN. RazaviS. NikzadE. Multiple sclerosis: Pathogenesis, symptoms, diagnoses and cell-based therapy.Cell J.201719111010.22074/CELLJ.2016.4867 28367411
    [Google Scholar]
  114. Rae-GrantA. DayG.S. MarrieR.A. Practice guideline recommendations summary: Disease-modifying therapies for adults with multiple sclerosis.Neurology2018901777778810.1212/WNL.0000000000005347 29686116
    [Google Scholar]
  115. ÖmerhocaS. Yazici AkkasS. Kale IcenN. Multiple sclerosis: Diagnosis and differrential diagnosis.Noro Psikiyatri Arsivi201855S1S1S910.29399/npa.23418 30692847
    [Google Scholar]
  116. DargahiN. KatsaraM. TseliosT. Multiple Sclerosis: Immunopathology and Treatment Update.Brain Sci.20177127810.3390/brainsci7070078 28686222
    [Google Scholar]
  117. ConstantinescuC.S. FarooqiN. O’BrienK. GranB. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS).Br. J. Pharmacol.201116441079110610.1111/j.1476‑5381.2011.01302.x 21371012
    [Google Scholar]
  118. AbeN. NishiharaT. YorozuyaT. TanakaJ. Microglia and macrophages in the pathological central and peripheral nervous systems.Cells202099213210.3390/cells9092132 32967118
    [Google Scholar]
  119. RobinsonA.P. HarpC.T. NoronhaA. MillerS.D. The experimental autoimmune encephalomyelitis (EAE) model of MS.Handb. Clin. Neurol.201412217318910.1016/B978‑0‑444‑52001‑2.00008‑X 24507518
    [Google Scholar]
  120. CarlsonN.G. RojasM.A. ReddJ.W. Cyclooxygenase-2 expression in oligodendrocytes increases sensitivity to excitotoxic death.J. Neuroinflammation2010712510.1186/1742‑2094‑7‑25 20388219
    [Google Scholar]
/content/journals/cff/10.2174/0126668629269256231222092721
Loading
/content/journals/cff/10.2174/0126668629269256231222092721
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test